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ABSTRACT1 

Visualization of multidimensional data presents special challenges for the design of efficient out-of-core data access. 
Elements that are nearby in the visualization may not be nearby in the underlying data file, which can severely tax the 
operating system’s disk cache. The Granite Scientific  Database System can address these problems because it is aware 
of the organization of the data on disk, and it knows the visualization method’s pattern of access. The access pattern is 
expressed using a toolkit of iterators that both describe the access pattern and perform the iteration itself. Because our 
system has knowledge of both the data organization and the access pattern, we are able to provide significant 
performance improvements while hiding the details of out-of-core access from the visualization programmer.

This paper presents a brief description of our disk access system placing special emphasis on the benefits offered to 
a visualization application. We describe a simple demonstration application that shows dramatic performance 
improvements when used with the 39GB Visible Woman Dataset.

CR Categories: E.5 [Files]—I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics Data Structures 
and Data Types I.3.m[Computer Graphics]: Miscellaneous—Scientific Visualization
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1. INTRODUCTION

Scientists often work with data represented in an n-dimensional space in which data values are associated with a 
location in the space1,2. For example, satellite data is typically considered to be organized in a two dimensional space, 
while medical data usually exists in a three dimensional space. Multidimensional data presents special challenges 
when designing efficient access methods because elements that are nearby in the data space may not be nearby in the 
underlying data file. The caching and prefetching schemes in most operating systems do not take into account the 
natural spatial relationships in the data, so they offer poor support for visualizing scientific data.

In the past, the rendering pipeline was often a significant bottleneck for visualization algorithms. More recently, the 
availability of powerful and inexpensive graphics hardware has accelerated rendering to the point that data can often 
be rendered more quickly than it can be read from disk. However, the average seek time of hard disk drives has 
improved only modestly over the same period3,4. In many cases, data I/O has replaced rendering as the new bottleneck 
for visualization of very large datasets.

The Granite Scientific Database System presents two approaches to the problem of reducing I/O costs: 
multiresolution data representation and iterator-aware prefetching. Multiresolution data representation allows the 
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experimenter to examine a coarse overview of the data, and then zoom in to progressively smaller subsets at finer 
resolutions1,5. Iteration aware prefetching, the focus of this paper, provides more efficient access to data stored on disk 
at any resolution. Both techniques can extend the experimenter’s reach to larger datasets than would otherwise be 
feasible, and can be used in concert to provide an even greater advantage. 

One of our primary goals is to hide the details of data access from the visualization programmer, while still 
providing efficient access to the underlying storage device. To implement this abstraction while still maintaining 
efficiency, the visualization programmer must be able to define the application’s data access pattern. We are 
developing a toolkit of iterators that  describe the access pattern and also perform the iteration through the data space. 
This description of the access pattern can then be used to generate a cache that provides a useful speedup to the 
application. The cache will be tuned to the particular iteration the visualization requires and to the storage organization 
of the data, but is also transparent to the application programmer. Freed from the details of data access, the 
visualization researcher is better able to focus on the visualization technique.

The work described here is done in the context of the datasource component of the Granite system, which is in turn 
an implementation of our multisource multiresolution data model for scientific data6. We begin by describing Slicer, 
our application for the visualization of data from the NIH Visible Human project, and the problems it presents for I/O 
performance. After a brief overview of related work, the next several sections describe the functionality and 
implementation of the datasource, iterator, and cache classes, all of which support transparent and efficient out-of-core 
access for the visualization researcher. We then present results for Slicer working on data from the 39 GB Visible 
Woman dataset. Finally, we end with future work and conclusions.

Figure 1. The Slicer application can view the Visible Woman dataset from the three principal directions by setting the slice axis 
equal to axis 0, 1, or 2.

2. THE SLICER APPLICATION

We use a simple visualization application to demonstrate the effectiveness of our out-of-core data access system. Our 
application, called Slicer, presents the user with an animated display showing progressive two dimensional slice planes 
of a three dimensional volume. The slice axis is orthogonal to the slice plane, and defines the direction of progression 
through the dataset. Figure 1 shows the three possible slice axes, which must be aligned with the principal axes. The 
user is able to select the slice axis and the subvolume to be visualized, similar in spirit to the volume roaming 



described in ref. 7. The 39 GB Visible Woman dataset from the National Institute of Health was used in all tests 
described in this paper. This dataset has dimensions 5186 x 1216 x 2048 with RGB byte values for each location, 
giving a total size of 39GB.

When the user chooses to view the volume through slice axis 0, the filesystem cache performs quite well, since this 
view produces accesses that are contiguous in the one dimensional file space. The filesystem performs less well with 
slice axis 1, and is almost violently unsuited for the access pattern resulting from a slice axis 2 view.

Figure 2 shows a closeup of the circled corner in Figure 1. The numbers in the figure indicate the one dimensional 
file offset of the labeled element. The white region is the set of elements contained in the first slice plane for slice axis 
2. If we load only the elements in this slice plane, each element requires a separate read, since none of them are 
neighbors in the one dimensional file space, as can be seen by examining the offsets. In fact, even the elements that are 
closest to each other are about 6K apart, which is larger than the 4K page size typical on many systems. This means 
that if we render a 1024x1024 slice plane  along slice axis 2, we must load 1024 x 1024 pages of 4K each, for a total of 
4GB. Since very few commodity systems have this much memory available, none of the pages loaded for the first slice 
plane will be resident when the second slice plane is rendered. Those reads will have to be repeated, which leads to a 
severe degradation in performance. 

Filesystems also prefetch pages following an explicitly accessed page in the hope that the prefetched pages will be 
accessed next, and reads to disk will be reduced. In this example, this just makes the situation worse, since Slicer is not 
proceeding through the file space in the way the filesystem expects. Prefetching just increases the number of 
inappropriate pages loaded, which makes it even less likely that Slicer will benefit from resident pages when it loads 
the next slice plane.

To address this problem, we load the data for many planes at once into a three dimensional array. Contiguous 
sequences of elements are loaded in a single read() call. This method has several beneficial effects. First, it reads more 
data from each filesystem page, thereby reducing the number of redundant reads made to disk. Second, it reduces the 
number of read() calls made to the operating system. Third, since the array can be filled in any order, we choose to fill 
it in a way that most closely matches the ordering of the data in the file. This allows Slicer to sometimes take 
advantage of the filesystem prefetching that is otherwise a liability.

 

Figure 2. A closeup of the circled corner of figure 1. Numbers indicate offsets in the one dimensional file space. None of the 
elements in the white slice plane are contiguous, and are all greater than 4K apart from each other.



3. RELATED RESEARCH

Providing efficient access to huge scientific datasets is a challenging problem, and has attracted a lot of attention. A 
great deal of work has been done in out-of-core visualization algorithms8-14. In the operating system and scientific 
data management communities, work has focused on either providing comprehensive scientific data and metadata 
management systems, or optimizing file systems using techniques like prefetching, caching and parallel I/O.

3.1 Chunking

Reorganizing datasets on disk to speed access has been explored by a number of researchers. Sarawagi and 
Stonebraker15 describe chunking, which groups spatially adjacent data elements into n-dimensional chunks which are 
then used as a basic I/O unit, making access to multidimensional data an order of magnitude faster. They also arrange 
the storage order of these chunks to minimize seek distance during access. Following this work, many other 
reorganization methods have been developed. More and Choudary16 reorganize their data according to the expected 
query type, and the likelihood that data values will be accessed together. The Active Data Repository (ADR)  uses 
chunking to reduce overall access costs and to achieve balanced parallel I/O17,18. Cox and Ellsworth13 compare the 
use of both chunked and plain files within the context of their application controlled paged segment system. 

Chunking is a very effective and general technique, and the Granite system supports chunked file organization. 
However, the required reorganization (and implied duplication) of the dataset can be  inconvenient, especially when 
working with large datasets. Also, performance may suffer if the data is accessed in a different way than was expected 
when the reorganization was performed. In another report, we have shown that the caching strategies adopted by the 
Granite system result in I/O performance that is competitive with and often superior to chunked files without requiring 
data reorganization. In addition, these strategies can also be applied to a chunked file to achieve significantly better 
performance19.

3.2 Prefetching and Caching

Software prefetching has been used by many researchers to hide or minimize the cost of I/O stalling. In the file 
systems arena, approaches to this problem can be distinguished by whether or not prefetching is guided by explicit 
information about the access pattern. Albers et al.20 describe an algorithm that produces an optimal schedule for 
prefetching and evicting one dimensional blocks when the entire access pattern is given in advance. Other researchers 
have explored the case where the access pattern is disclosed less completely in the form of hints. Patterson et al.21 
developed a framework for informed caching and prefetching based on a cost-benefit model. This model has been 
extended to account for storage devices with very different performance characteristics22. Cao et al. have had success 
by giving applications control of data cache replacement strategy in their share of cache blocks23.

When no explicit information about access pattern is available, the history of prior accesses can be used to predict 
future accesses. Ma keeps tracks of gaps between accesses in order to predict and prefetch the next block of data24. 
Amer et al. group files together based on historical file access patterns25. Other researchers have used probability trees 
or graphs to represent the likelihood of future block accesses given past and current block accesses26-29. Madhyastha 
et al. use a hidden Markov model to automatically predict file access patterns over time; the file system adaptively 
selects appropriate caching and prefetching policies according to the detected pattern30,31.

At the application level, Chang3 adds a separate thread to the user program that performs prefetching by mimicking 
the I/O behavior of the main thread and preloading data. The VisTools32 system is most similar to our approach. It 
provides an application level data prefetching and caching service for huge multidimensional datasets, using the 
Paged-Array schema.  It reads formatted pages of elements from the underlying files when the first element in the page 
is requested. Then, the formatted pages are stored in a page cache for fast future re-access. When the cache size limit 
is reached, the paged-arrays are deleted or written to a swap file. Like our own work, paged-arrays also support 
intelligent prefetching guided by iterators that have an n-dimensional view of the dataset. However, the one 
dimensional nature of pages fails to take into account the proximity of elements in n-dimensional space. In particular, 
elements that are nearby in n-dimensional space may be far apart in the one dimensional file space. Since paging is 
essentially a one dimensional method, it can be inefficient for an n-dimensional access pattern. Figure 3 shows an 



example of a column-by-column iteration through a 2D dataset split into pages of 5 elements each. At step 0 of the 
iteration, the striped page in the upper left of the diagram is loaded into memory. However, the second element in this 
page is not visited until the iteration has reached step 8. Worse, the last element in this page is not visited until step 32. 
This means that if we are to use all  the data read in the first page, we must keep this page in memory until much later 
in the iteration. The same argument holds for all the other pages that are loaded as the iteration proceeds down the first 

column. The size of very large datasets and the pages themselves prohibits all 
these pages being kept simultaneously in memory. Pages must be discarded 
before all the data has been used, and then reloaded at a future time. The 
problem is a  result of the one dimensional nature of paging, but a similar 
argument can be made for chunking when the dataset organization is poorly 
suited to an unexpected access pattern. See ref. 19 for a more thorough 
discussion of chunking in the context of the Granite system. The work 
described in this paper addresses these issues by creating cache blocks that are 
n-dimensional, and shaped according to the iteration.

Caching and prefetching methods implemented at the file system level work 
with little or no explicit information about access pattern. Such algorithms risk 
prefetching the wrong data, or having to make room in a cache by discarding 
blocks that will eventually need to be reloaded. However, the approach 
described in this paper takes advantage of nearly complete information about 
the access pattern given by our iterators. We don’t have to guess which data to 
prefetch, and we don’t discard needed data before it is used. Because of this, 
the various caches we have developed require at most two cache blocks to be 
maintained in memory at a time, which can extend the reach of an application 
to much larger datasets than would otherwise be possible. 

4. THE MULTIDIMENSIONAL DATA MODEL

We model the data to be processed as a datasource. The datasource represents the multidimensional data to the Granite 
user, and uses a storage model to help translate the n-dimensional data space to the one dimensional file space. The 
storage model can work with more than one file format. For example, the rod storage model discussed later in this 
section represents both chunked data files and files that have been left in their native plane-row-column order19. For 
this paper, we restrict our discussion to files left in their native format.

4.1 Datasources

The datasource is conceptually an n-dimensional array containing a set of sample points.  The array indices define the 
index space. Each index space location has a collection of  associated data values, called a datum. Although our 
datasource model allows datasources to be built on top of other datasources or to be associated with a network stream, 
we limit our discussion in this paper to datasources that are associated directly with a file on disk. 

Datasources must handle two basic kinds of queries. A datum query specifies a single index space location, and is 
satisfied by the return of a single datum. A subblock query specifies an n-dimensional rectangular region of the index 
space, and is satisfied by the return of a data block, which is conceptually an n-dimensional array of datums.

4.2 The Rod Storage Model 

While a datasource has an index space that is n-dimensional, the file is a one dimensional entity. The datasource is 
responsible for satisfying queries expressed in its index space by reading data from the file. It must therefore map its 
index space to file offsets. It does this with the help of a kind of axis ordering called the storage ordering. An axis 
ordering is simply a ranking of axes from outermost to innermost. “Innermost” and “outermost” suggest  position in a 
set of nested for loops. The innermost axis changes most frequently and is called the rod axis when referring to storage 
orderings. Axes are labeled with numbers, so an axis ordering is really just a list of integers. For example, the storage 
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ordering for figure 4 would be {0,1} if axis 0 is vertical and axis 1 is 
horizontal.

    I/O performance depends on the number of separate read requests 
made to the storage device. It is important to minimize the number of 
reads from disk when satisfying a subblock query. Toward this end, the 
rod storage model views the datasource as being conceptually composed 
of rods. A rod is a one dimensional sequence of elements that are 
contiguous in the index space as well as the file space. Consequently, 
rods are always aligned with the rod axis. Rods can be accessed in a 
single read operation. When a subblock query is processed, the requested 
region of index space is decomposed into a collection of the rod subsets 
contained entirely within the region. We then retrieve the subblock data 
from disk in rod-by-rod fashion where each rod is read with a single I/O 
operation. In the case where a set of rods is itself contiguous (or nearly 
so) in the file, we issue only one read and retrieve many rods in one disk 
operation. 

    It is important to note that the rod storage model is a conceptual view 
of an n-dimensional dataset stored in a one dimensional file. It does not 
require any reordering or reformatting of the data on disk. The main 
function of this model is to provide a conceptual foundation for the 
prefetching technique described in section 6.

5. ITERATORS

Since our system aims to improve I/O performance for particular access patterns, we use iterators to represent access 
patterns, as well as to perform the actual iteration through the datasource index space. Iterators have a value that 
changes with each invocation of the iterator’s next() method. This value might denote a single location in the index 
space, or perhaps an entire region. In either case, the iterator value can be used directly in both datum and subblock 
queries.

The pattern of iteration is determined when the iterator is constructed by the application built on top of Granite. At 
this time, we have implemented a variety of iterators that explicitly define the complete iteration pattern. It would be 
straightforward, however, to implement imprecise iterators in which some or all of the iteration pattern is chosen by 
the iterator itself. For example, if the application doesn’t require any special order at all, an imprecise iterator would 
choose to access data in the storage order for maximum performance. If the application only specifies that it wants to 
access data in a slice by slice fashion, an imprecise iterator would be free to choose the best access pattern for 
accessing data within each slice.

An axis ordering is used to help represent the behavior of iterators that proceed through the index space in 
rectilinear fashion. In this context, the innermost axis of the iteration is called the run axis. While the datasource is 
conceptually composed of rods, the space being traversed by a rectilinear iterator is conceptually composed of runs. 

The iteration space is the space traversed by the iterator. It may be the entire index space of a datasource, or some 
subset of that space. We also represent the starting point and the stride through the iteration space in cases where the 
iterator skips over some locations. Along with the axis ordering, all this information is useful and available when the 
system creates a prefetching cache tuned to the iteration.

6. CACHING AND PREFETCHING

Caching algorithms help to accelerate performance by loading a subset of data from a large, slow store into a smaller, 
faster store. For our purposes, the small, fast store is memory, and the larger, slower store is a disk.

Most cache methods view files as one dimensional entities, but this view of the data is not adequate for scientific 
applications involving multidimensional datasets because it misses the neighborhood relationships that the user needs. 
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The problem becomes even more acute as the dimensionality of the dataset increases. To address this issue we have 
designed a multidimensional cache that corresponds to the user’s dimensional view of the data. 

In this section we present a brief conceptual overview of the caching and prefetching employed in the Granite 
system. For a more thorough and formal discussion, see ref. 19.

6.1 Multidimensional Cache Blocks

Because our multidimensional cache model is aimed at supporting multidimensional array data, we organize the cache 
itself as a collection of data blocks, called cache blocks, with the same dimensionality as the data. A significant 
component of the caching strategy is to determine how  to shape the cache blocks to most effectively improve I/O 
performance.

6.2 Choosing Cache Block Shape

Typically, when a cache needs to load data from disk to satisfy a request, it loads a larger set of data in the 
neighborhood of the original request. Hopefully, the nearby data can be used to satisfy future requests without 
returning to the disk. If the pattern of future accesses is already known, however, we can choose a cache block shape 
that guarantees that all the needed contents will be used before being discarded. We call such a cache block shape well 
formed with respect to the iteration. Caches with blocks well formed for an iteration do not reload discarded blocks 
when the iteration is performed. 

Generally, cache blocks with long extent in the iterator’s run axis will increase performance by effectively 
prefetching data that will soon be needed by the iteration.  We refer to this notion as spatial  prefetching. Unlike other 
prefetching methods, spatial prefetching minimizes I/O costs by reducing the number of reads made to disk.

Producing an effective cache is easiest when the iterator run axis is the same as the datasource rod axis, as shown in 
Figure 5a. In this case, simply reading an entire iterator run, or even a portion of a run, greatly accelerates I/O 
performance. Because the rod and run axes are aligned, we can fill the entire cache block with a single read, yet we are 
assured that the entire cache block will be used by the access pattern. In this situation, even an operating system cache 
that is not aware of the data dimensionality performs well.
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Figure 5. a) Both the storage and iterator ordering is {0,1}. The shaded region represents an effective cache block shape.  b) The 
storage ordering is {0,1}, but the iterator ordering is {1,0}. The shaded region represents an effective cache block shape.



Operating system caching is not nearly as helpful when the rod and run axes are not the same, as shown in Figure 
5b. The iterator ordering in this figure is {1,0}, which indicates that it traverses the index space in column-by-column 
fashion. Here, awareness of dimensionality is necessary in order to provide effective speedup. Our approach is to use 
the axis ordering to guide the shaping of the cache block. Along the run axis, the cache block is given the same extent 
as the space being iterated over. The same is done for the next most frequently changing axis, if possible. The process 
continues, proceeding right to left through the axis ordering, until the memory allotted for the cache is exceeded, or the 
entire iteration space is contained in the cache block. We then check to ensure that the cache block has some 
reasonable extent along the rod axis. We call this property practicality. If a cache block isn’t practical, then using this 
block will result in too many short reads to provide a speedup. We must therefore allocate more memory to cache 
block construction to provide useful results. After this last check, we have a cache block shape that ensures the 
contents will be entirely used by the iterator, and will also accelerate I/O performance by reducing the number of disk 
reads. For a more detailed examination of our cache block shaping algorithm, see ref. 19.

6.3 Threaded Prefetching

Caches that use only spatial prefetching have achieved significant and useful speedups in our tests19. These caches 
only fill a cache block upon receipt of a query, which forces the application to wait while disk access is performed. 
This can be a particular disadvantage for interactive programs since it can lead to annoying discontinuities in 
visualization or interaction response. These and other applications can achieve even better results by employing a 
separate thread to perform the actual I/O operations that prefill the cache block. We want the application to process 
one block while the I/O thread reads the next block. We call this threaded prefetching. 

For threaded prefetching to be effective, the iterator must provide advance knowledge of the access pattern. 
Furthermore, the application must take enough time processing the data in one cache block to allow the I/O thread to 
make significant progress in preloading the next. Ideally, the I/O thread would be finished by the time the next block is 
required, but as long as it has made significant progress, the delay in fulfilling the query will be reduced.

Reducing query delay is particularly useful when visualizing data using animation. A human user finds any 
choppiness in the animation distracting. Delays in disk access are a common cause of such choppiness, and can be 
mitigated by using threaded prefetching. 

The application described in section 7 uses a threaded slice cache that is a specialized version of our threaded 
spatial prefetching cache. The cache blocks for this cache contain 2 or more slices of the iteration space, which 
simplifies access and slightly reduces cache overhead. 

7.  SLICER PERFORMANCE EVALUATION

The Visible Woman dataset from the National Institute of Health was used for our evaluation. Tests were performed 
for the three slice axes for two different volume subsets. The storage ordering is always {0,1,2}, since other storage 
orderings would yield symmetric performance. The results indicate that Granite’s prefetching brings interactive 
viewing of large datasets within the reach of an experimenter using a commodity machine.

7.1 Slicer Implementation

Slicer was implemented in Java 1.4.2 using the jogl OpenGL library. Each slice of the volume is rendered by issuing a 
subblock query to the datasource layer, and then sending the resulting data directly to OpenGL as a texture. OpenGL 
then applies the texture to a rectangular shape on screen. There is essentially no processing being done on the data 
itself, except that which is directly related to the I/O. Slicer was run on a single processor Pentium 4 machine with a 
2.4GHz CPU and 2GB of RAM running the Linux operating system. The disk on this machine has an average read 
latency of 3.8ms.

Slicer includes an optional governor mechanism to provide a maximum frame rate for the visualization. This is 
common with programs that use hardware rendering. The governor evens out any inconsistencies in the frame 
generation and frame rendering processes and generally provides smoother, more consistent visualizations when used 



with threaded prefetching. In addition to governor frame rate, Slicer provides user control over the type of cache, 
cache memory size and the slicing axis.

Because the Slicer application is I/O intensive and requires very little computation for the rendering, the 
performance overhead imposed by Java is not a significant factor in the total run time. This makes it an effective 
demonstration of the I/O performance improvements that our prefetching method can provide.

7.2 Evaluation Methodology

Linux has a very effective file system cache that loads and stores 4k blocks of data from disk. Of course, if some or all 
of a file is already in this cache, stalling costs are greatly reduced or eliminated. The file system also prefetches blocks 
that are stored following a requested block. Such prefetching is based upon a one dimensional view of the file, and can 
perform poorly with multidimensional datasets, especially when those datasets are far larger than the available RAM. 

Since the file system cache is persistent across task execution, it is possible for a task to request an I/O block for 
the first time, but still get a cache hit if another task had previously read that block. Although this is a good thing in 
general, it is problematic for our testing environment. In order to give valid and consistent performance statistics, each 
test must be independent of what happened previously. We wrote a small program that effectively "empties" the cache 
by filling it with blocks from a dummy file that is not used in the tests.  This guarantees a consistent environment by 
always starting with an empty file system cache, and more clearly shows the effectiveness of our own caching. 

Even with an empty file system cache, file system prefetching is still active. This effect is most obvious when the 
iteration pattern matches the file storage pattern. In this case, the file system prefetches the same blocks that our cache 
strategy identifies for prefetching, so we achieve only modest improvement (if any). For other iteration patterns the 
effect of file system prefetching is less obvious. It may have a negative effect on performance due to unwarranted 
reads, but Granite’s prefetching is sometimes able to take advantage of prefetched pages.

Note that we have not presented the hit ratio metric that is commonly used to measure cache performance. Since 
the access pattern is known in advance, it is rare that the application requests data that is not already in the cache. 
When threaded prefetching is used, cache blocks are filled concurrently with application access, so normally 100% of 
the data requests can be satisfied from cache. If the application consumes data faster than it can be read, or if spatial 
prefetching is used alone, the hit ratio is almost as high, since cache misses only occur when a cache block has been 
exhausted, and a new block must be read from disk. For example, the hit ratio for the 32 slice spatial cache in Table 1 
when iterating along slice axis 1 is (2048 - 2048/32) / 2048 = 97%. 

Slice Axis

0 1 2

No Cache

Spatial

Threaded

15.9 1.8 1.6

14.3 11.9 12.0

20.3 10.0 10.2

10.6 0.89 0.04

11.2 10.3 2.4

12.4 8.8 2.2

No Cache

Spatial

Threaded

Slice
Plane

Dimensions

512 x 512

Cache
Slices

128 

32 

32 

128 

Slice Axis 
Length

256 x 256

5186 2048 1216

Table 1. Frames per second for the plain datasource, spatial prefetching, and threaded prefetching caches. 

7.3 Slicer Results

The Visible Woman dataset has dimensions 5186 x 1216 x 2048 with RGB byte values for each location, giving a total 
size of 39GB. We compared performance with no cache, with spatial prefetching, and with threaded prefetching. For 



each case, we tried all three principal view directions (slice axes). Sample images showing several closeup views along 
all three slice axes can be seen in Figure 6 at the end of this paper. Only views along axis 0 are “natural”, in that they 
correspond to photographs of body slices. All other views are synthesized by Slicer.

Table 1 shows the maximum frame rates for each of the cases. For these tests, the frame rate governor was turned 
off, and a stable average frame rate recorded. Slicer is able to “wrap around” when it finishes an iteration, but we only 
recorded frame rates from the first pass, to minimize the effect of the file system cache.

For the first set of tests, the slice had dimensions 256x256, with the remaining dimension set to the extent of the 
entire data volume. Caches were given enough memory to store 32 slices. The second set of tests displayed slices of 
dimensions 512x512, with memory for 128 slices given to the multidimensional caches. For axis 0, the performance 
without our caching is quite good, since file system prefetching is very effective for this access pattern. It is even 
slightly better than plain spatial prefetching, since it avoids cache overhead costs. However, with the addition of the 
threaded prefetching we are able to show a small but noticeable improvement.  

For the other two orderings, the file system cache is unable to match the performance of either of our two 
multidimensional caches, which are 5 to 60 times greater than the file system cache alone.

When the slice plane includes the rod axis, as with slice axes 0 and 1, each slice can be read as a series of long rod 
reads. However, for slice axis 2, each datum in a slice is in a separate rod, which dramatically increases the number of 
reads. Happily, our multidimensional caches are able to extend the rod length along the slice axis, resulting in the 
performance improvements shown. The threaded cache performs slightly worse here, because it has two cache blocks 
of half the size of the cache doing spatial prefetching alone. For axis 2, this means that the rods in the threaded cache 
are half the size of those used with spatial prefetching which entails twice as many disk reads. Using a monitoring tool 
to view CPU load, we noticed that CPU load rises to 100% during disk activity for the axis 2 tests, but not for the other 
directions. This heavy load is likely due to the processing required for each read to disk. This makes it much more 
difficult for our threaded cache to show an advantage over plain spatial prefetching in this situation, since the 
application is essentially CPU bound. However, this problem can be overcome if enough memory is available. Using a 
512 slice cache with axis 2, we got frame rates of 3.6 for spatial prefetching alone and 4.0 with threaded prefetching.

With the frame rate governor turned off, there is a pause whenever a cache block is exhausted and a new block has 
to be fetched from disk. The pause is lessened but not entirely avoided with the threaded slice cache, since the 
rendering process is able to run through a block much faster than the next block can be loaded.

The viewer of an animation is distracted by stops and starts in the motion. With threaded prefetching, setting the 
frame rate governor to the average frame rate results in smooth animation. This slows the rate at which the renderer 
runs through a block, so that the next block is ready when it is needed. This situation simulates expected behavior 
when the Granite system is used with a more heavyweight renderer, such as a splatting based volume renderer33. In the 
optimal situation, a renderer that takes as much time to exhaust a cache block as it takes to load the block will show 
twice the performance with the threaded cache compared to spatial prefetching alone. Since the next block is ready just 
when it is needed, performance should be similar to the case where enough RAM is available to hold the entire dataset, 
even with very large datasets like the Visible Woman. 

8. CONCLUSION

The Granite Scientific Database provides an interface for efficient out-of-core access that presents a conceptual view 
of the data as a single volume. The programmer is therefore spared the considerable effort of choosing how to read 
data from disk most efficiently. By specifying an iterator, the programmer communicates the access pattern to Granite, 
which is then able to implement an efficient access strategy. 

Our system is particularly valuable to the visualization programmer because I/O is often a bottleneck in 
visualization, and because very large datasets are becoming increasingly common. Through the use of caching, our  
approach can put much larger datasets within reach of commodity machines.

With our demonstration application, we have shown that our approach can deliver important improvements in I/O 
performance to visualization applications. Slicer shows a significant increase in frame rate as well much smoother 
animation quality when our caches are employed. 



This paper is focused on comparing our prefetching with file system prefetching. The Granite system also supports 
access to distributed data via remote datasources. We still need to evaluate how effective our caching is for this 
scenario. We will examine the effectiveness of the Granite data access system with large three dimensional time series 
data. Since locality of reference declines with dimensionality, we expect to see an even greater advantage compared 
with file system caching alone. We will also extend our toolkit of iterators and caches to support a wider range of 
iterations, including slice iteration that is not limited to the principal axes. We also plan to expose a well designed 
caching interface to the application programmer, allowing them to create their own iterators that take advantage of the 
Granite caching mechanism.  Lastly, the Granite system provides support for unstructured data in the Lattice layer, and 
we plan to apply our multidimensional caching scheme at that level. 
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  a) a close up view of the waist viewed through axis 1. b) A view of the right hip joint viewed through axis 0.

   

c) The hip joint region viewed through axis 1.                    d) The hip joint region viewed through axis 2. 

Figure 5. Several example images taken from the Visible Woman dataset. All images were produced using a 
512x512 slice size. Only 5b is a “natural” image, the other views are synthesized by Slicer.     


