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Abstract Representing data using multiresolution is a valuable tool for the inter-
active exploration of very large datasets. Current multiresolution tools
are written specifically for a single kind of multiresolution data. As a
step toward developing general purpose multiresolution tools, we present
here a model that represents a wide range of multiresolution data within
a single paradigm. In addition, our model provides support for working
with multiresolution data in a distributed environment.
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Introduction
New data gathering and data generation tools have created an ex-

plosion in the amount of data available to scientists. The existence of
such large amounts of data provides opportunities that have not pre-
viously been possible, but the dataset sizes present major obstacles to
understanding and interpreting the significant underlying phenomena
represented in the data. This problem is particularly apparent when we
try to develop tools for allowing the scientist to visualize the data in a
form that may provide insight. Even relatively modest size data sets
can have orders of magnitude more information than can possibly be
displayed at one time.

Fortunately, it is often the case that most of the data can be vi-
sualized at a relatively coarse resolution as long as that presentation
uses an authentic representation of the original data. The scientist can
then identify “interesting” subsets of the data which can be displayed
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at increasingly higher levels of resolution. Our research involves the
development and evaluation of a distributed adaptive data representa-
tion scheme that allows interactive analysis of vast amounts of data in
a progressive refinement environment.

Support for scientific data exploration of this sort requires both good
visualization tools and good data management tools that incorporate
error representation as an integral component. To provide such support
for a wide class of applications, it is essential to develop a formal model
for describing multiresolution data representations and how they can be
accessed efficiently in a distributed environment. This paper presents
such a formal model that will provide a framework for building a system
to manage a variety of distributed multiresolution data representations.
Our goal is to provide facilities that allow application programs and users
to focus on the semantics associated with a given data request, not the
details of data storage or the particular nature of the multiresolution
representation.

In the remainder of the paper, we establish the basic data exploration
paradigm we strive to support, define a formal model for representing
scientific data, and then define a formal model for describing multires-
olution scientific data. Finally, we conclude with a brief summary of
the features we feel should be incorporated into a data management sys-
tem intended to support interactive exploration of very large distributed
scientific data.

1. Scientific Data Exploration Paradigm
We are interested in developing tools that support scientists in the

development and evaluation of hypotheses about a phenomenon, par-
ticularly when such efforts are based on data observations from the
phenomenon. The scientific community is engaged in numerous mas-
sive data collection and archiving activities. In addition to support-
ing many current research investigations, both narrow and broad-based,
these archives form a baseline for a diverse set of future research projects.
The size of data archives is growing rapidly. Until recently, units of ter-
abytes characterized large datasets. Lately, the term petabytes occurs
increasingly often. This escalation of dataset sizes will continue and
undoubtedly accelerate.

1.1 Focused Exploration
One initial task of a typical research effort can be characterized as

selecting and downloading a potentially relevant subset of an archive (or
archives) into a scientific database system for further evaluation. Of-
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ten, data are transferred over a network. Potentially relevant subsets of
huge archives can themselves be quite large, often too large to fully an-
alyze directly. Rather, the scientist must rapidly and efficiently explore
the data for interesting phenomena. Focus then usually moves to these
interesting zones, ignoring and perhaps discarding the rest.

1.2 Data Models
Identifying a suitable data model is a critical step toward managing

and processing scientific data. It forms the basis of the interaction with
exploration and analysis software. An appropriate data model can also
be a vital tool for accessing and importing archive data. Existing sci-
entific data models include the fiber bundle model [6], the lattice model
[1, 19], and various grid models [13, 20].

One desirable characteristic of a data model is the ability to express an
effective compromise between the necessity to restrict working dataset
sizes to levels manageable by a workstation or LAN, yet include the detail
the science requires. Some grid models, for example, permit variable
size grids, coarse in dull or quiet data zones and fine in critical zones
[20]. Such models work well in single purpose and limited scope studies
where all investigators share a similar view of the data and agree on
what constitutes interesting and uninteresting zones.

Unfortunately, the determination of important data zones is appli-
cation and task dependent. Archive data must support a wide vari-
ety of uses from different, perhaps unanticipated, applications. Instead
of static grids, scientific database systems must support dynamically
formed multiple-resolution grids based on the specific purpose and on
the data itself. To do that, the database must include another special
type of metadata, termed semantic metadata, which describes or char-
acterizes database content so that visualization and analysis tools work
effectively [8, 9, 14].

There are many analytical and statistical tools for characterizing data.
In fact, one of the goals of experimental research is the characterization
of data in a way that distills new meaning from it, illuminating the
phenomenon under investigation. Such metadata can accumulate as the
data is studied and it can provide important guidelines for subsequent
research. In particular, semantic metadata helps scientists identify those
portions of data that merit further exploration. If a user/scientist can
specify in semantic metadata terms what constitutes interesting data (or
uninteresting data), the archive can select the most promising subsets.
Having the archive dynamically form the multiresolution representation
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of these subsets can save considerable network and visualization band-
width.

1.3 Multiresolution Hierarchy
We envision the creation of a standard multilevel data hierarchy for

large scientific data sets. The original dataset would be stored perma-
nently at some repository site for that data. A preprocessing operation
would generate a complete multiresolution representation with increas-
ingly coarse representations and the associated localized error represen-
tations. All components of this data representation would be available
for downloading arbitrary subsets at arbitrary resolutions. A scientist is
likely to extract some small coarse component of the hierarchy to store
at his or her workstation, may access the next several levels on a data
server on the local network, and perhaps access the finest resolution
representations over the Internet.

This model works because only very small subsets of the total dataset
will need to be accessed at the higher resolutions. Note that we can
assume that the original data is essentially read only, although we cer-
tainly need to be able to dynamically update both the lower resolution
representations and the metadata associated with the dataset.

In order for this multilevel storage representation to be effective, it is
essential that every representation include both the data at that repre-
sentation level and the cumulative local error measure associated with
that data. The error representation must be an integral component of
the data exploration process providing the scientist with critical feed-
back concerning where the current representation is likely to be accurate
and where it isnt. Without such information, the scientist could not
trust anything but the finest resolution.

1.4 Multiresolution Examples
We are not attempting to develop new methods of generating mul-

tiresolution data. Instead, we are developing a model for describing
multiresolution data that addresses the features that all MR methods
have in common. In this section we describe two different application
domains for which MR data is particularly appropriate. Although these
examples use very different kinds of data our model must be able to
represent them both effectively.

1.4.1 MR and Regular Data. Much scientific data is sampled
on a regular grid. Such data is particularly suitable for the applica-
tion of wavelet transformations to produce an MR hierarchy. A wavelet
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representation of data includes two parts: the summary and the detail.
As the names imply, the summary is an approximation of the original
data, while the detail can provide a more refined representation when
combined with the summary. For orthogonal wavelets, the detail com-
ponent can also be interpreted as a representation of the error in the
summary component [15].

Since summaries are a coarser representation of the data, we can pro-
duce a hierarchy of summaries of decreasing resolution by recursive ap-
plication of the wavelet operation. In this way we can construct an
MR hierarchy in which top levels are extremely coarse but take up little
space, while lower levels are physically larger, yet provide much finer
resolution.

Each level of the hierarchy has uniform resolution. If some regions of
the data are much more interesting than others, it might be desirable to
produce a single representation of the data in which uninteresting areas
are represented coarsely in order to save space, while more important
areas are reproduced more faithfully with finer resolution. This is an
Adaptive Resolution (AR) representation. For instance, an AR repre-
sentation might be constructed so that every region of the data meets
a specified error bound. A localized error measure makes this a much
simpler task by indicating features that require more resolution in order
to meet the error bound. Since each summary coefficient has an asso-
ciated detail coefficient, the wavelet transform generates localized error
which can be used to represent the authenticity of the summary [22].

A researcher might want access to a hierarchy of representations with
varying error bounds, yet also not want to waste space on uninteresting
data or by representing simple features with excessive resolution. We
can produce an AR Hierarchy by manufacturing a series of AR repre-
sentations using different error bounds. The levels of the hierarchy are
still arranged according to increasing resolution, but none of the levels
waste space with unnecessarily fine resolution.

1.4.2 Multiresolution And Irregular Data. Our approach
can also deal with irregular data such as is used for surface representa-
tion. For example, De Berg and Dobrindt [4] have developed a multires-
olution method for terrains that is specifically geared towards computer
graphics. Their motivation is to eliminate the unnecessary rendering of
detailed polygons in the far distance of a rendered scene. The method
allows resolution to slowly decrease as the terrain recedes into the dis-
tance. An important feature of the algorithm is that it seamlessly blends
these different resolutions into a single mesh. The De Berg and Dobrindt
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method could therefore be classified as an adaptive resolution represen-
tation.

The authors build their MR representation in a bottom-up fashion.
The original data is first triangulated using the Delaunay method. In
forming each level, they remove a set of points from the previous level
and then retriangulate in the area of each removed point using Delau-
nay. The removed points are chosen so that the retriangulation can
be done locally without interacting with the neighborhood of other re-
moved points. Presumably, they could also be chosen so that error is
minimized in the resulting level. The algorithm continues forming new
levels in bottom-up fashion until the number of points in the topmost
level is equal to or less than a specified threshold.

The De Berg and Dobrindt algorithm fits very nicely into our model
because it has distinct levels formed by the removal of a set of points.
Not all algorithms behave this way. For example, Cignoni et al. describe
an algorithm that removes one point at a time, choosing a point that
generates the least error when removed [2]. Although we could say that
each level in this hierarchy differs from its finer neighbor by the removal
of a single point, it might be more useful to organize this fine-grained
hierarchy into sets of points that satisfy a series of error bounds.

1.4.3 Model Motivations. Currently, an application program-
mer must write code that is specific to the kind of MR data he or she is
manipulating. Modelling the commonalities of MR methods will facili-
tate the development of interfaces for handling MR data. Such interfaces
will allow application programmers to write code that works with a va-
riety of multiresolution methods, perhaps within the same application.

The key properties of these examples include the ability to define
what is meant by a level and the ability to measure the accuracy of any
approximation. We should also be able to model the process through
which a level is produced from an existing level.

2. Data Model Foundations
Pfaltz et al. [16] identify the major features of scientific data as large

size, complex entities and relationships, and volumetric retrieval. Al-
though such characterization is correct, we need a more rigorous def-
inition if we hope to provide effective database support for scientific
data. For our purposes, scientific data is a collection of values that rep-
resents some natural phenomenon [7] that is a function over a domain
[11] which might be time, space, radio frequency, etc. or some multi-
dimensional combination. The notion of a dataset domain is central to
our model of scientific data. The value space of the function defined over



A Data Model For Adaptive Multi-resolution Scientific Data 7

the domain usually consists of the Cartesian product of the value ranges
of several data attributes. This is equivalent to saying that any point in
the domain has a number of attributes–the value of the data function at
that point.

2.1 Dimensional Data
Much scientific data can be meaningfully represented in a continuous

n-dimensional data space [2, 8]. If a dataset consists of some attributes
that are ordinal, independent, and defined on a continuous value range,
the dataset contains dimensional data, and those attributes are dimen-
sional attributes. Each possible combination of dimensions defines a view
of the data, a notion similar to the view capability found in traditional
databases. Spatial data is dimensional data that represents an actual
physical space. A dataset can be dimensional without being spatial but
even non-spatial dimensional data can often be visualized as if it were
spatial, since humans find this representation familiar and easy to grasp.
It may also be convenient to treat a set of attributes as if they are di-
mensional attributes even though they may not satisfy all the conditions
for dimensional data. For example, we might want to treat a set of at-
tributes as independent for exploration purposes with the goal of either
validating or disproving that assumption.

Spatial (dimensional) data is often represented as points defined on a
wide variety of regular and irregular grid types [2, 4, 6, 20]. The choice
of the grid, usually based on a natural organization of the data, impacts
the nature of the representation chosen for the data and the specification
of algorithms for analyzing it.

2.2 Geometry, Topology, and Neighborhoods
The terminology used in the literature to describe various systems of

grids is not standardized. We propose to develop a more comprehensive
and consistent framework for describing and defining grids that encom-
passes most reported grid structures [9, 11], including both point and
cell data organizations. We separately represent the underlying space in
which the grid is defined, which we call the geometry, and the point and
cell relationships implied by the grid, which we call the topology. Thus,
the geometry of a dataset refers to the space defined by the dimensions;
the topology of a dataset defines how the points of the grid are con-
nected to each other. A dataset’s topology is a graph with data points
as nodes and arcs between nodes representing a neighbor or adjacency
relationship.
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This approach enables database support for application algorithms to
process data either geometrically or topologically. In many cases, the
topology and/or geometry do not have an explicit representation within
the dataset because they derive easily from the indexes of an array that
stores the data points. The array and its index structure compose the
computational space of a dataset. Other more complex geometries and
topologies may have a separate representation from their computational
spaces.

In other applications the data has no inherent geometry or topology.
For example, categorical data is normally not defined in a geometric
space and scatter data has no predefined topology. Our data model
allows a user to represent and manipulate both kinds of data. However,
it may be useful to impose additional structure on the data. For example,
we could impose a topology on scatter data either for efficiency of access
or to support an alternative conceptual model for the data. Similarly
we have shown that topology can be an effective vehicle for imposing a
metric space upon categorical data [11, 12].

Many scientific applications require selecting the neighborhood of a
point [5, 12, 17]. The neighborhood of a point p consists of points near
p. Nearness may be defined geometrically (e.g., as the set of points
within distance d of p in the geometric space) or topologically (e.g., as
the set of points within n arcs of p in a topological space).

2.3 Error
Most scientific data contains some inherent error. This includes mea-

surement error from sampling or computational error from simulation.
Furthermore, operations and analyses may introduce additional error.
Our model of scientific data includes localized error (i.e., it is estimated
at every point within the domain [3, 22]).

2.4 Data Representation
Effective exploration tools for very large data sets are best developed

on a rigorous conceptual model of the data. Such a model must be ac-
cessible to both the programmer and the user and must be able to adapt
to the actual data in a natural and efficient way. We now present a
data model that forms a promising foundation for describing scientific
data that can be organized into a multiresolution hierarchy. The ba-
sic motivation for this model is to support distributed interactive data
exploration.

A rigorous definition of a data representation is the formal basis of
our model of the scientist’s dataset. Although the dataset represents a
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phenomenon defined over a continuous domain, D (a geometric space
with an infinite number of points), the dataset is a finite sampling of
this space. Consequently, our data representation is defined over a finite
set of points ∆ ⊂ D, known as sample points, within the domain D [8].
A sampling function f∆ maps ∆ to a subset Ω of a value space V [10],
denoted by

f∆ : ∆ → Ω , (1)

with sampling error described by a localized error function E∆ map-
ping each sample point to an error space E, denoted by E∆ : ∆ → E.
Formally, we define a data representation R to be a quadruple:

R = 〈∆,Ω, f∆, E∆〉 (2)

where ∆ is a set of sample points in D that are sampled using the
sampling function with an error function E∆, and Ω is the range of f∆.
(By convention, we use dot notation to refer to the components of a
tuple. Thus, R.∆ identifies the sample points of the representation R.)

2.5 The Lattice Representation
Although the data representation definition is comprehensive enough

to encompass most kinds of scientific data, it only represents the actual
data and does not incorporate any notion of how the different data el-
ements might be related in a grid structure. We incorporate the grid
definitions into our data model by adopting and extending the lattice
model [1]. A lattice includes a topology, τ , as well as a geometry [11]. A
lattice Ln

k has n topological dimensions that define a topological space,
and k attributes for a point located in that space. The dimensionality of
the lattice, n, is also the dimensionality of the lattice topology. Thus, a
0-dimensional lattice is simply an unordered set, a 1-dimensional lattice
is an ordered list, a 2-dimensional lattice lies in a plane, and so on. The
lattice geometry need not have the same dimensionality as the lattice
topology. For example, a 2D lattice can be mapped to a curvilinear sur-
face that exists in three-dimensional space. Formally, a lattice L consists
of a data representation R and a topology τ ; that is, L = 〈R, τ〉. Op-
erations on lattices include value transformations (e.g., normalization),
geometric domain transformations (including affine transformations like
scaling, translation, and rotation), and topological transformations such
as mesh simplification. Operations like extension and projection can be
either geometric or topological transformations (or both) depending on
which components are altered.
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The separation of geometry and topology in our lattice model allows
us to represent both cell-based and point-based datasets in a unified
fashion. Either a cell-based or point-based topology can be imposed on
the same dataset, allowing the user to easily switch between these two
views. Similarly, data read into the system as a collection of cells can
be converted into a point-based representation, and vice versa.

2.6 Simple Data Model
Our notions of data representation and lattice are sufficient to rep-

resent a gridded scientific dataset, but they do not provide a represen-
tation for the phenomenon that the dataset is intended to model. We
now define a simple data model which uses the lattice to approximate
the phenomenon in the domain, as well as the error. Formally, a data
model M consists of a lattice, and functions fD and EC to approximate
the data value and its associated error at every point in the domain; i.e.,

M = 〈L, fD, EC〉 . (3)

The approximating function, fD is normally based on the sampling
function and returns a value that approximates the phenomenon in the
domain; i.e., fD : D → V . Interpolating functions are approximating
functions that satisfy the condition: ∀d ∈ ∆, fD(d) = f∆(d). That is,
the interpolating function and the sampling function agree at each point
in the sample domain ∆.

A possible definition of the initial EC , representing error over the
entire domain, could be fE∆

, which uses the approximating function
to find values ED from the values of E∆, the original sampling error
function. For data models derived from other data models, EC is the
cumulative error including both sampling error and the error introduced
by the derivation process.

3. Multiresolution Data Model
Although the basic data model described above represents a very wide

range of data sets, it is not a model for multiresolution data. A multires-
olution (MR) model allows a researcher to view data using resolutions
ranging from very coarse to very fine (the original data). Using a coarse
resolution can vastly reduce the size of the data that needs to be stored,
manipulated, and displayed. It also serves as an overview of the entire
dataset, allowing the researcher to pick out regions of interest without
examining the original data directly. The researcher may examine in-
teresting regions at finer resolutions, perhaps even accessing the original
data. Note that finer resolutions are thought of as lower levels in a hi-
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erarchy, with the original data on the very bottom. “Drilling down”
through this hierarchy allows the researcher to examine only data of
interest at fine resolution, minimizing processing and display costs.

3.1 Multiresolution Data Representation
The MR representation offers scientists a tradeoff between detail and

efficiency. Incorporating multiple resolution capability into the data
model allows the database system to provide direct support for managing
and using data at the resolution most appropriate to the immediate task.
We first develop a definition of resolution based on the process by which
the data is generated.

A reducing operator ρ transforms one data model, M , into another
data model, M ′, where the new representation is smaller than the old
[2]. In other words, M ′.L.∆ contains fewer sample points than M.L.∆.
This change in ∆ causes M ′.fD to differ from M.fD since the reduction
in data points may change the approximating function. This reduction
introduces additional associated localized error Eρ. The domains of M
and M ′ are both D, the domain of the natural phenomenon. M ′.EC is a
composition of M.EC and Eρ, to reflect the error that ρ introduces. An
MR hierarchy M is a sequence of levels {λ0 . . . λn}. Each λi in M is a
pair consisting of a data model and associated localized reduction error:
λi = 〈M i, Ei〉. In summary, we formally define the reducing operator
with the notation:

ρ : M → (M ′, Eρ) . (4)

If we wish, we can define a sequence of reducing operators R = {ρ1 . . .
ρn−1} where ρi : λi → λi+1. That is, the reducing function ρi maps a
level λi to a coarser level λi+1. The MR hierarchy is formed by repeated
applications of reducing operations. First, the original data is stored in
M0 which corresponds to level λ0. E0 is the error associated with the
original data, if it is known. A reducing operator is applied to M0 to
form M1 and an error Eρ which is E1. M1 and E1 make up level λ1.
The process is repeated a number of times until the size of the data has
been reduced sufficiently or until further reductions would introduce too
much error. Certain classes of wavelet functions form an ideal basis for
reducing functions because of their localized error characteristics [18, 21,
22], but our model is also appropriate for very different kinds of data
reduction techniques such as triangle mesh simplification [2, 4].
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Figure 1. Support and Influence.

3.2 Adaptive Resolution and Adaptive
Multiresolution

An adaptive resolution (AR) representation allows resolution to vary
within a single level of a data model. The resolution near a point may
depend on the behavior of the sampling function, on the behavior of the
error function, or on the nature of the domain in the neighborhood of
the point. A reducing operator that behaves differently over parts of D
can define an adaptive resolution hierarchy, which is an MR hierarchy
in which each layer is an AR representation. The reducing operator still
reduces the size of ∆, but is more sophisticated in how it chooses to
do so. For example, it can reduce resolution in areas with lowest error
when forming the next level. It might also try to preserve resolution in
areas of rapid value change and reduce resolution in less volatile areas.
Because an AR hierarchy contains multiple resolutions within each level,
it has the potential to achieve a representation with the same accuracy
as MR using less storage. Alternatively, for a given amount of memory,
it can retain increased detail and accuracy in important regions of the
domain.

3.3 Support and Influence
Our model for MR is very general. In practice, most MR hierarchies

are defined entirely by operations on the sampling set, ∆, and they often
place further restrictions on a reducing function such as requiring spatial
coherence. Typically, any neighboring set of sample points in λi should
map to a neighboring set of sample points in λi+1. More formally, such a
reducing function ρ can be defined as a collection of functions {r0 . . . rn}
such that each rj maps a neighboring set of points Si ⊂ ∆i in level
λi to a neighboring set of points Si ⊂ ∆i+1 in level λi+1. The set Si
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forms the support for Sk as shown in fig. 1. The union of all Sj for any
level should equal ∆i. Notice that this allows the domains of each ri to
overlap, meaning that a point p in λi might belong to the support for
several different points in λi+1. These points form the influence of p (see
fig. 1). By building the notions of influence and support explicitly into
the data model (and into the database support system), we can provide
a framework for better implicit support for efficient data distribution
and distributed computation.

4. Multiresolution Data Support Model
Given the existence of both multiresolution and adaptive resolution

representations of very large data sets, we need to develop a framework
for a system to support such data sets in a distributed environment.

4.1 Goals
Applications should have access to a distributed multiresolution data-

set without requiring explicit knowledge of either the distributed nature
of the data, or its multiresolution structure. Ideally, the application
should only be responsible for providing error tolerance measures along
with a high-level semantic description of each application process that is
applied to the data. We would like the distributed data support system
to be able to make both resolution and location decisions based on these
error measures and process descriptions. The system should be able
to determine an appropriate resolution level to extract and to decide
how and where the requested processing of that data should be carried
out. In particular, depending on the size of the input data, the size
of the output data, and the nature of the processing to be performed,
the system ought to be able to decide whether to migrate code to the
location of the data, or the data to the location of the process, or that
both should be migrated to a third location.

4.2 Distributed Processing Support
We would like our data management system to provide support for

distributing the processing associated with a distributed data represen-
tation. In order to balance the workload in a distributed processing en-
vironment, we need to have knowledge of the processing to be done and
how that processing is affected by different data partitioning, including
both spatial partitioning and partitioning introduced by the resolution
hierarchy. This is particularly difficult since most of the processes ap-
plied to the data are both application- and task-dependent. On the
other hand, we do not want the application programmer to have to be
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aware of the nature of the data distribution in order to benefit from the
opportunities for distributed processing. In particular, we want to sup-
port both the migration of a user process to improve performance and
the replication of the process to allow it to be distributed to separate
data partitions defined over different regions and different resolutions.

The replication and partitioning is particularly difficult since bound-
aries between partitions usually have to be handled in a very process-
dependent manner. Partition boundaries within the same resolution
level can be difficult to handle; boundaries between neighboring regions
that are represented at different resolutions are even more problematic
because the semantics of merging the separate results becomes even less
clear. For the system to provide meaningful automatic distributed pro-
cessing support, the user process must be restricted to a class of opera-
tions whose input and output semantics can be represented by our data
model. Within this context we plan to develop a semantic definition
of user processes that will allow the system to determine how to dis-
tribute processing and combine results with minimal intervention from
the process itself.

4.3 Application View
From the point of view of the application, the major role of the dis-

tributed data support environment is to find and extract any subset of
the data. The application program ought to be able to:

specify a range of data to extract, but allow the system to decide
resolution level based on error measures;

be able to override system resolution processing and request spe-
cific range/resolution;

extend a set of predefined error measure functions with its own.

Once the appropriate subset of the dataset has been determined, the
processing of that data should also be distributed. This is possible if
the application provides a module that is migratable and defines the
semantic effect of the operations to be performed so that the system
can make some intelligent decisions about where to do the processing.
This information could range from very precise parameter specifications
to rather approximate heuristics. In particular, it is especially helpful if
the system can predict the size of any output data sets and their eventual
desired locations.
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5. Conclusion
We have developed a preliminary formal data model for describing

distributed multiresolution scientific data sets. A vital component of
the data model is the incorporation of an error representation as an
integral component of the model. The model is intended to be the basis
for a scientific data management support environment that can provide
nearly transparent access to a multiresolution dataset.

The present specification of the data model is just a beginning. In
particular, we need to specify more fully the semantic metadata that
defines processes and how to incorporate those definitions into the data
model. We need to understand better how to characterize processes in
terms of how they transform data model objects and how we can use
that knowledge to more effectively access appropriate components of a
distributed multiresolution dataset.

We have begun the development of our multiresolution distributed
data support system. Our first goals are to provide the hierarchy gener-
ation support tools and straightforward access tools that require appli-
cation knowledge of range and resolution. These tools will provide the
basis for more intelligent interfaces.
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