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Summary. Modern dataset sizes present major obstacles to understanding and
interpreting the significant underlying phenomena represented in the data. There is
a critical need to support scientists in the process of interactive exploration of these
very large data sets. Using multiple resolutions of the data set (multiresolution), the
scientist can identify potentially interesting regions with a coarse overview, followed
by narrower views at higher resolutions.

Scientific data sets are often multisourcecoming from different sources. Although
it may be infeasible to physically combine multiple datasets into a single compre-
hensive dataset, the scientist would often like to treat them as a single logical entity.
This paper describes formal conceptual models of multiresolution and distributed
multisource scientific data along with an implementation of our multisource model.
Our goal is to allow a scientist to describe a dataset that combines several mul-
tisource multiresolution datasets into a single conceptual entity and to provide
efficient and transparent access to the data based on functionality defined by the
model.

1 Introduction

New data gathering and data generation tools have created an explosion of
data available to scientists. The existence of such large amounts of data opens
up a wide range of opportunities for scientific data exploration. Widespread
availability of ever increasing compute power provides some hope that we
can realize these opportunities. The size and nature of the data, however, do
present substantial obstacles.

Multiresolution data consists of several representations of a dataset at
various resolutions, ranging from the original resolution to a very coarse
overview. The scientist can use the overview to identify significant regions
of the data and then examine such regions in greater detail using one of the
finer resolutions.

The problems presented by large data size are especially difficult when
a scientist wishes to combine a set of related multisource data sets into a
single conceptual entity. In order to access such data efficiently, we need to
understand the fundamental nature of the data and capitalize on its inherent
structure.
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We have developed a formal data model and an implementation of that
model that supports a wide range of scientific datasets with a variety of data
organizations [16]. The complete model encompasses hierarchies of multires-
olution and adaptive resolution data in a distributed environment.

Our model and our implementation is intended to support a concept anal-
ogous to a database view. For example, a scientist ought to be able to define
a dataset representing points in a three-dimensional space with 4 data at-
tributes, where one of the attributes is defined (for all points) in a single
physical file and the other 3 attributes are partitioned into spatial blocks
which are distributed to multiple locations across the web. The composite
dataset will never be instantiated as a single object, but should appear to
the user as a single unified entity.

We first describe the kind of data we wish to model and then give an
overview of our formal data model. We present a brief summary of our im-
plementation of the multisource data model and present a specific example
describing how a scientist might define and access a composite multisource
data set. We conclude with some observations and directions for future de-
velopment.

1.1 Problem Definition

The research described here focuses on developing database support for this
method of scientific research based on interactive exploration of very large
distributed multiresolution data. We believe that a major weakness of cur-
rent scientific database efforts is the lack of a comprehensive model that
encapsulates the structure inherent in the data. Such a model should allow a
database system to store and access this data efficiently without needing to
understand the meaning of the data for the application domain. The most
important requirements for a data model for distributed multiresolution data
include the following:

• The model must be general-purpose while still able to rigorously encap-
sulate the most important aspects of the data.

• In addition to describing the multiple resolution levels of a data set, it
must be able to describe an adaptive resolution level, i.e., a single level of
the data set that is itself composed of data that has different resolutions
in different regions.

• It must be able to describe both the physical domain in which the scien-
tific phenomenon actually occurs (we call this the geometry of the prob-
lem) as well as the structure of the data that represents that phenomenon
(which we call the topology of the data).

• It must incorporate information about how data points in each level of the
multiresolution representation relate to data points in the other levels.
We have developed notions of support and influence which encapsulate
these relations in an application-independent manner.
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• It must allow scientists to assemble data from multiple local or remote
sources into a single conceptual entity.

1.2 Summary of Research

The major components of our research include:
MR/AMR Model. We are developing a data model for hierarchical mul-

tiresolution (MR) and adaptive multiresolution (AMR) data representations
that supports interactive exploration of scientific data. This includes a model
of error and error operations that helps keep the experimenter informed of
the quality of data at various resolutions. Also, we characterize the kinds
of operations that can be performed on MR/AMR data, especially as they
relate to data in a distributed computing environment.

Geometry and Topology. Our data model distinguishes between the ge-
ometry and topology of a dataset, allowing us to characterize a wide variety
of data types. This work should allow us to develop a taxonomy of scientific
data that helps exploit regularities in both geometry and topology. We see
the topology as a bridge between the scientists geometric data view and the
index-oriented view of the underlying database.

Lattice Model. The lattice model is a single-level model of data that incor-
porates our ideas about geometry and topology, and is an important compo-
nent of the formal model especially for representing adaptive resolution data.
Geometry and topology forms the basis of a lattice class hierarchy that can
efficiently represent a variety of scientific data.

Domain Representation. We are developing an efficient way to represent
domains, and especially the extent of subdomains within an enclosing domain.
The representation should be space efficient and quick to access. This work is
particularly important because we represent certain metadata (e.g., extracted
features, classifications) as labeled subdomains.

Data Storage. We have developed a model for multisource data and im-
plemented a prototype for evaluation. For array-based data, our approach is
spatially coherent, i.e., given a point, we have efficient database access to its
geometric neighbors.

Evaluation. The model will be evaluated by implementing a prototype
and testing its performance with large datasets. Our goal is a system that is
flexible and expressive enough to be of real assistance as the scientist works
with the data.

2 Distributed Multiresolution Scientific Data

We envision the creation of a standard multi-level data hierarchy for large
scientific data sets . The original data sets would be stored permanently at
some repository site or sites. A preprocessing operation would generate a
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complete multiresolution representation with increasingly coarse representa-
tions and the associated localized error representations. All components of
this data representation would be available for downloading arbitrary sub-
sets at arbitrary resolutions. A scientist is likely to extract some small coarse
component of the hierarchy to store at his or her workstation, may access the
next several levels on a data server on the local network, and perhaps access
the finest resolution representations over the Internet. In addition, the scien-
tist would like to define virtual datasets composed of sections or attributes
taken from other datasets.

This model works because only very small subsets of the total data set
will need to be accessed at the higher resolutions. Note that we can assume
that the original data is essentially read-only, although we certainly need to
be able to dynamically update both the lower resolution representations and
the metadata associated with the data set.

In order for this multi-level storage representation to be effective, the
scientist needs to have a cumulative local error value associated with the lower
resolution representations of that data. The error representation must be an
integral component of the data exploration process providing the scientist
with critical feedback concerning where the current representation is likely
to be accurate and where it isnt. Without such information, the scientist
could not trust anything but the finest resolution.

3 Data Model Foundations

Pfaltz et al. [14] identify the major features of scientific data as large size,
complex entities and relationships, and volumetric retrieval. Although such
characterization is correct, we need a more rigorous definition if we hope to
provide effective database support for scientific data. For our purposes, scien-
tific data is a collection of values that represents some natural phenomenon
[7] that is a function over a domain [11] which might be time, space, radio
frequency, etc. or some multidimensional combination. The value space of the
function defined over the domain usually consists of the cartesian product of
the value ranges of several data attributes. This is equivalent to saying that
any point in D has a number of attributes – the value of the data function
at that point.

3.1 Dimensional Data

Much scientific data can be meaningfully represented in a continuous n-
dimensional data space [2,8]. If a data set consists of some attributes that are
ordinal, independent, and defined on a continuous value range, the data set
contains dimensional data, and those attributes are dimensional. Each possi-
ble combination of dimensions defines a view of the data, a notion similar to
the view capability found in traditional databases. Spatial data is dimensional
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data that represents an actual physical space. A data set can be dimensional
without being spatial but even non-spatial dimensional data can often be
visualized as if it were spatial, since humans find this representation familiar
and easy to grasp. It may also be convenient to treat a set of attributes as
if they are dimensional attributes even though they may not satisfy all the
conditions for dimensional data. For example, we might want to treat a set
of attributes as independent for exploration purposes with the goal of either
validating or disproving that assumption.

Spatial (dimensional) data is often represented as points defined on a wide
variety of regular and irregular grid types [2,4,6,18]. The choice of the grid,
usually based on a natural organization of the data, impacts the nature of
the representation chosen for the data and the specification of algorithms for
analyzing it.

3.2 Geometry, Topology, and Neighborhoods

The terminology used in the literature to describe various systems of grids is
not standardized. We propose a more comprehensive and consistent frame-
work for describing and defining grids that encompasses most reported grid
structures [9,11], including both point and cell data organizations. We sepa-
rately represent the underlying space in which the grid is defined, which we
call the geometry, and the point and cell relationships implied by the grid,
which we call the topology. Thus, the geometry of a data set refers to the
space defined by the dimensions; the topology of a data set defines how the
points of the grid are connected to each other. A data sets topology is a
graph with data points or cells as nodes and arcs between nodes representing
a neighbor or adjacency relationship.

This approach enables database support for application algorithms to
process data either geometrically or topologically. In many cases, the topology
and/or geometry do not have an explicit representation within the data set
because they derive easily from the indexes of an array that stores the data.
The array and its index structure compose the computational space of a data
set. Other more complex geometries and topologies may have a separate
representation from their computational spaces.

In some applications the data has no inherent geometry or topology. For
example, categorical data is normally not defined in a geometric space and
scatter data has no predefined topology. Our data model allows a user to
represent and manipulate both kinds of data. However, it may be useful to
impose additional structure on the data. For example, we could impose a
topology on scatter data either for efficiency of access or to support an alter-
native conceptual model for the data. Similarly we have shown that topology
can be an effective vehicle for imposing a metric space upon categorical data
[11,12].

Many scientific applications require selecting the neighborhood of a point
[5,12,15]. The neighborhood of a point p consists of points “near” p. Nearness
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may be defined geometrically (e.g., as the set of points within distance d of
p in the geometric space) or topologically (e.g., as the set of points within n
arcs of p in a topological space).

3.3 Error

Most scientific data contains some inherent error. This includes measurement
error from sampling or computational error from simulation. Furthermore,
operations and analyses may introduce additional error. Our model of scien-
tific data includes localized error that is estimated at every point within the
domain [3,19].

We expect that the process of developing lower resolution representations
will introduce additional error that increases as resolution decreases. Hence
we refer to the error as cumulative error. Error information plays an impor-
tant role in helping a scientist determine the appropriate level of resolution
for his or her needs.

3.4 Data Representation

Effective exploration tools for very large data sets are best developed on a
rigorous conceptual model of the data. Such a model must be accessible to
both the programmer and the user and must be able to adapt to the actual
data in a natural and efficient way. We now present a data model that de-
scribes scientific data that can be organized into a multiresolution hierarchy.
The basic motivation for this model is to support distributed interactive data
exploration.

A rigorous definition of a data representation is the formal basis of our
model of the scientists data set. Although the data set represents a phe-
nomenon defined over a continuous domain, D (a geometric space with an
infinite number of points), the data set is a finite sampling of this space.
Consequently, our data representation is defined over a finite set of points
∆ ⊂ D, known as sample points, within the domain D [8]. A sampling func-
tion f∆ maps ∆ to a subset Ω of a value space V [10], denoted by

f∆ : ∆ → Ω , (1)

with sampling error described by a localized error function E∆ mapping each
sample point to an error space E, denoted by E∆ : ∆ → E. Formally, we
define a data representation R to be a quadruple:

R = 〈∆, Ω, f∆, E∆〉 (2)

where ∆ is a set of sample points in D that are sampled using the sampling
function with an error function E∆, and Ω is the range of f∆. (By convention,
we use dot notation to refer to the components of a tuple. Thus, R.∆ identifies
the sample points of the representation R.)
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3.5 The Lattice Representation

Although the data representation definition is comprehensive enough to en-
compass most kinds of scientific data, it only represents the actual data and
does not incorporate any notion of how the different data elements might be
related in a grid structure. We incorporate the grid definitions into our data
model by adopting and extending the lattice model [1]. A lattice includes
a topology, τ , as well as a geometry [11]. A lattice Ln

k has n topological
dimensions that define a topological space, and k attributes for a point lo-
cated in that space. A 0-dimensional lattice is simply an unordered set, a
1-dimensional lattice is an ordered list, a 2-dimensional lattice lies in a plane,
and so on. The lattice geometry need not have the same dimensionality as
the lattice topology. For example, a 2D lattice can be mapped to a curvi-
linear surface that exists in three-dimensional space. Formally, a lattice L
consists of a data representation R and a topology τ ; that is, L = 〈R, τ〉. Op-
erations on lattices include value transformations (e.g., normalization), geo-
metric domain transformations (including affine transformations like scaling,
translation, and rotation), and topological transformations such as mesh sim-
plification. Operations like extension and projection can be either geometric
or topological transformations (or both) depending on which components are
altered.

The separation of geometry and topology in our lattice model allows us to
represent both cell-based and point based datasets in a unified fashion. Either
a cell-based or point-based topology can be imposed on the same dataset,
allowing the user to easily switch between these two views. Similarly, data
read into the system as a collection of cells can be converted into a point-
based representation, and vice versa.

3.6 Simple Data Model

Our notions of data representation and lattice are sufficient to represent a
gridded scientific data set, but they do not provide a representation for the
phenomenon that the data set is intended to model. We now define a simple
data model which uses the lattice to approximate the phenomenon in the
domain, as well as the error. Formally, an application data model M consists
of a lattice, and functions fD and EC to approximate the data value and its
associated error at every point in the domain; i.e.,

M = 〈L, fD, EC〉 . (3)

The approximating function, fD is normally based on the sampling func-
tion and returns a value that approximates the phenomenon in the domain;
i.e., fD : D → V . Interpolating functions are approximating functions that
satisfy the condition: ∀d ∈ ∆, fD(d) = f∆(d). That is, the interpolating func-
tion and the sampling function agree at each point in the sample domain
∆.
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A possible definition of the initial EC , representing error over the entire
domain, could be fE∆ , which uses the approximating function to find values
ED from the values of E∆,the original sampling error function. For appli-
cation data models derived from other application data models, EC is the
cumulative error including both sampling error and the error introduced by
the derivation process.

4 Multiresolution Data Model

Although the basic data model described above represents a very wide range
of basic data sets, it is not adequate as a model for multiresolution data. A
multiresolution (MR) model allows a researcher to view data using resolutions
ranging from very coarse to very fine (the original data). Using a coarse
resolution can vastly reduce the size of the data that needs to be stored,
manipulated, and displayed. It also serves as an overview of the entire dataset,
allowing the researcher to pick out regions of interest without examining the
original data directly. Once an interesting region has been identified, the
researcher may examine it at finer resolutions, perhaps even accessing the
original data. “Drilling down” allows the researcher to examine only data of
interest at fine resolution, minimizing processing and display costs.

4.1 Multiresolution Data Representation

The MR representation offers a tradeoff between detail and efficiency. In-
corporating multiple resolution capability into the data model allows the
database system to provide direct support for managing and using data at
the resolution most appropriate to the immediate task.

A reducing operator transforms one data model into another data model,
where the new representation is smaller than the old [2]. This reduction
introduces additional associated localized error which must be modeled. An
MR hierarchy is formed by repeated applications of reducing operations. The
process is repeated a number of times until the size of the data has been
reduced sufficiently or until further reductions would introduce too much
error. Certain classes of wavelet functions form an ideal basis for reducing
functions because of their localized error characteristics [19], but our model
is also appropriate for very different kinds of data reduction techniques such
as triangle mesh simplification [2].

4.2 Adaptive Multiresolution

An adaptive resolution (AR) representation allows resolution to vary within
a single lattice. The resolution near a point may depend on the behavior of
the sampling function, on local error, or on the nature of the domain in the
neighborhood of the point. A reducing operator that behaves differently over
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parts of D can define an adaptive multiresolution representation (AMR),
which is an MR hierarchy in which each layer is an AR representation. For
example, it can reduce resolution in areas with lowest error when forming
the next level. It might also try to preserve resolution in areas of rapid value
change and reduce resolution in less volatile areas. Because an AMR contains
multiple resolutions within each level, it has the potential to achieve a rep-
resentation with the same accuracy as MR using less storage. Alternatively,
for a given amount of memory, it can retain increased detail and accuracy in
important regions of the domain.

4.3 Support and Influence

Our model for MR is very general. In practice, most MR hierarchies are
defined entirely by operations on the sampling set, and they often place fur-
ther restrictions on a reducing function such as requiring spatial coherence.
Typically, any neighboring set of sample points Sj in λi should map to a
neighboring set of sample points Sk in λi+1. Sj forms the support for Sk as
shown in fig. 1. For any point p there is a set of points in the next level
that claim p as part of their support. We call this set of points the influence
of p (see fig. 1). By building the notions of influence and support explicitly
into the data model (and into the database support system), we can provide
a framework for better implicit support for efficient data distribution and
distributed computation.

S :(support for S )j k

Influence of pSk

λ i+1

λ i

Fig. 1. Support and Influence

5 Taxonomy of Geometry and Topology

Since our representation of data must be efficient, it is worthwhile to catego-
rize the way that data points lie in the geometry, and how they are connected
in the topology. Our classification is motivated by the desire to exploit pat-
terns within the spacing of the sample points, so the data can be represented
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efficiently. The taxonomy must be able to represent both cell and point based
grids and transformations between them such as Delaunay and Voronoi tech-
niques. Our software design for the lattice representation follows from this
taxonomy. We are particularly interested in how much information must be
stored in order to describe the geometry and topology of the dataset.

5.1 Periodic Tilings and Data

The study of tilings (tessellations) has some relevance to our research since
topologies often define a tiling. A review of this field can be found in [17].

If a tiling is periodic, then it is possible to duplicate the tiling, translate
it some distance, and place it down again so that it matches exactly with the
original copy. That is, the tiling consists of a number of translated repetitions
of some pattern of tiles. An important and related property of periodic tilings
is that there exists a subset of the space S that can be repeatedly copied and
translated throughout the space to complete the tiling. A minimal subset of
this kind is called a fundamental domain or generating region.

a b c

Fig. 2. The fundamental domains of the 2D regular tilings

A regular tiling is a periodic tiling made up of identical regular polygons
[17]. The three tilings shown in fig. 2 are the only regular tilings for 2D space.

This approach does not explicitly distinguish between the geometry and
topology components of a grid. The definition of a tiling includes aspects
of topology but most concepts are geometry specific. We are adapting these
ideas to our work with geometry and topology.

We use the notion of the supercell to represent periodic sampling topolo-
gies. As shown in fig. 3, a supercell represents a generating region for the
topology, allowing the entire topology to be conceptually represented by a
grid of repeated supercells while only storing a single supercell definition. If
we can find where in the grid a point lies, we can very easily form a search key
from the position in the grid (i.e. supercell identifier), and the position of the
point within the supercell (i.e. point identifier). Such a technique promises a
quick way to access a point’s data given its geometric position.
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Fig. 3. A possible supercell implementation

5.2 Regular Data

Usually, for scientific data to be considered regular, it must lie within a
mesh of squares or cubes, perhaps displaced by a shear operation [2]. By this
definition, data points arranged in a hexagonal fashion, as in case c of fig. 2,
would not be considered regular, though the first two would. However, this
may only be the case because of the ubiquity of array storage. Researchers
tend to think of regular data as any data that can be stored very easily in
an array.

It should be possible to develop a rigorous definition of regular data.
Besides being regular in the mathematical sense, the patterns in fig. 2 have
an interesting property: if we store the vertices (sample points) in an array, it
is possible to map a point’s array indices to its locations in both the geometry
and topology without using any other information. Since this property is of
immediate interest to designers of scientific databases, it might serve well as
a definition of regular scientific data.

5.3 Classifying Irregular Data

With irregular data, it is not possible to map array indices to a location in
geometric space without using extra information, if at all. Of course, arrays
may still be used to merely store the data points. Figure 4 shows examples of
irregular data. In fig. 4.a, there is no way to map indices to a geometric loca-
tion without referring to the spacing between the rows and columns, which
varies for each row and column. Therefore, the mapping between indices and
geometry must take this spacing as another parameter, i.e. as “extra infor-
mation”. The situation in fig. 4.b is even worse. Here, there is no pattern
whatsoever to the position of the sample points, so a simple mapping from
indices to geometry is out of the question.

We further classify irregular data according to how much information is
required to represent the pattern of sample points within the domain. In
fig. 4.a, points are lined up in rows and columns, so we only need to store the
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spacings for each row and column. The space required to store this informa-
tion is proportional to the number of rows plus the number of columns. In
fig. 4.b, there is no pattern whatsoever to the sample points, so we must store
coordinates for each individual point. Here, the space required is proportional
to the number of points. Of course, it is possible to have datasets that combine
these attributes, behaving in different ways along different dimensions.

a b

Fig. 4. Irregular data

6 Datasources

Lattices provide the scientist with a conceptual view of his or her data that
should be consistent with the operations that need to be applied to the data.
In principle, this conceptual view will be reflected in the organization of the
physical data. In practice, however, this is often not feasible. The scientist
may need different views of the same data and the data may be too large to
replicate and reorganize to match each desired view. In general, multisource
data and distributed computing require sophisticated ways of dividing large
files into smaller pieces while maintaining a simple view of the distributed
data.

6.1 Mapping Lattices to Data

A lattice is able to map locations in the geometry to locations in the topology.
It remains to map topological locations to offsets in file or network streams. A
datasource provides the lattice with a single, unified view of multisource data.
This simplifies the mapping from topological locations to file and network
stream offsets.

Some datasources are directly associated with a local file or remote source,
and are known as physical datasources. Other datasources are composite,
meaning they are made up of more than one component datasource. For ex-
ample, a datasource that performs an attribute join would be composite. It
is possible to perform very complex operations by combining several data-
sources together in a tree structure, with the root datasource at the top of
the tree providing the lattice with a simplified view of the data.
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6.2 Datasource Model

A datasource can be modeled as an n-dimensional array containing δ, a subset
of the set of lattice sample points ∆. We think of arrays as an index space
d paired with a collection of associated data values. An index space can be
expressed as the cross product of several indices, each defined as a finite
subset of the integers:

I1 × I2 × · · · In (4)

where each Ik is an integer in the range [ak . . . bk]. The dimensionality of a
datasource’s index space may or may not match the dimensionality of the
lattice domain D. If these dimensionalities do match, then the neighborhood
relationships present in the lattice may be reflected in the adjacencies present
in the underlying storage. In other cases, there is no simple pattern in the
distribution of ∆ in D, so the lattice topology must map points from D into
the underlying index space.

6.3 Physical Datasource

A physical datasource is a simple datasource that is directly connected to a file
or network stream that contains sample points. While the stream is in reality
a one dimensional entity, a physical datasource may have an index space
that is n-dimensional. In this case, the physical datasource is responsible for
mapping the n-dimensional view to the underlying data. This mapping can
be expressed as a function m that maps an index space to a single index If

used to access the actual data block.

m : I1 × I2 × · · · In → If (5)

For example, consider a file of three dimensional array data. Perhaps the
layers are stored in order of increasing z value, and each layer is stored in row
major order. The physical datasource is responsible for mapping the x, y, and
z values of its data space to a file index, which is really an offset from the
beginning of the file. Of course, a single file may contain many attributes, so
a physical datasource should be capable of returning all values corresponding
to a location in the index space.

6.4 Blocked Datasource

A blocked datasource is a composite datasource in which the index spaces of
the component datasources are joined together in contiguous, non-overlapping
fashion to form a single index space1.

d =
⋃

i=1...k

di where ∀i, j : i 6= j → (di ∩ dj = �) (6)

1 As defined here, this is an outer natural join. It is possible to relax the contiguity
and non-overlap constraints, but this is beyond the scope of this paper’s goals.
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For example, consider two datasources ds1 and ds2 that might represent
two contiguous satellite image files, as shown in fig. 5. Their index spaces
can be joined together in the fashion shown by ds3, a blocked datasource,
producing a single index space that can be manipulated as a single entity.
Of course, a blocked datasource can have an arbitrary number of component
datasources, allowing large amounts of data to be viewed as a single entity,
but stored and accessed in a distributed fashion.

ds1 ds2

ds3

Fig. 5. Two datasources joined by a blocked datasource

6.5 Attribute Join Datasource

An attribute join datasource is a composite datasource for which each point in
δ is composed of attributes taken from two or more component datasources.
If A is the attribute set of an attribute join datasource, then we say:

A =
⋃

i=1...n

Ai (7)

where Ai are the attribute sets of the component datasources. For example,
suppose ds1 is a datasource with attributes {salinity, pH, oxygen} and ds2 is
a datasource with attributes {temperature, depth}. If these two datasources
are combined by an attribute join datasource ds3, then each point in the
index space of ds3 has attributes {salinity, pH, oxygen, temperature, depth}.
Such an operation is particularly useful when data has been organized into
separate files, perhaps because it was gathered by different instruments.

7 Datasource Implementation

In this section we describe the primary elements of our prototype implemen-
tation and give a simple example of how the system processes multisource
data for both rectilinear and unstructured lattices.

7.1 Implementation Components

Figure 6 depicts the key components of the implementation of our model.
Lattice methods provide the functionality by which scientific applications in-
teract with lattice data. Each lattice has associated Geometry and Topology
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objects that map sample points of the lattice to a computational space in
the form of an N-dimensional array implemented as a DataSource object. We
use an array because physical storage is easily conceptualized as an array.
The mapping may be simple as when the sample grid forms a regular pat-
tern over the domain so that each sample point can be naturally associated
with a unique array element. The mapping is more complex for unstructured
sampling patterns.

The DataSource transforms computational space to low level file or net-
work URL requests. When all data appear in one file or one internet data
server, the DataSource may be implemented directly as a PhysicalDataSource
which maps an N dimensional data identity (index position) onto a 1 dimen-
sional storage device. Our DataSource is designed to be flexible enough to
integrate data from multiple physical data sources. We allow both spatial and
attribute joins. The BlockedDataSource is composed of multiple sources for
separate regions of the index space. The AttributeJoinDataSource combines
attributes from multiple datasources. Blocked and attribute join data sources
can be combined and nested to reflect multiple files and/or network URLs.

DataSource

+subset() : Lattice

Lattice

+map() : Point

Geometry

+map() : Point

Topology

PhysicalDataSource AttributeJoinDataSource BlockedDataSource

File/URL

1

1

1

1

1

1

11

*

*

1

1

Fig. 6. A UML representation of key components of our system

7.2 An Example Scenario

In this section we discuss two running examples to illustrate the concepts of
the lattice, datasource, and the relationship between them. Our first example
involves rectilinear data in which there is a simple mapping between the
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location of a point in the lattice geometry and its location in the datasource
index space. The second example involves unstructured data for which there
is no such simple mapping, forcing the lattice topology to play a greater role.

A Rectilinear Lattice Consider the two dimensional lattice in the diagram
below. The sample points are obviously placed in a regular fashion within
the geometry. It is most likely that the experimenter will choose to use a
rectilinear topology for such data as shown in fig. 7.b, although it should be
understood that a different choice could be made. Lets suppose that each
point has attributes {time, carbon, nitrogen, oxygen}.

a b

Fig. 7. A 2D Rectilinear Lattice: (a) geometry only, and (b) with topology imposed

The query lattice.datum(p) asks for a value corresponding to a point p
in the domain, which is perhaps the simplest kind of lattice query. The lattice
topology is responsible for associating a point in the geometry with a location
in a datasource index space. Since we know there is a simple mapping from
geometric location to index space, it is easy to check whether p is a sample
point, or sufficiently close to one that it can be treated as such. In this case,
the Topology computes the datasource index for the point and then issues
the query ds.datum(new TwoDIndex(i,j)) to the root DataSource, which
then returns the correct value for the sample point.

If the query point does not correspond to a sample point, the lattice
approximating function must be used to generate an approximate value. To do
so it must be given the values of nearby sample points. Because the topology
closely reflects the Geometry, it is quite efficient to use the lattice topology to
select the four sample points that surround p. Their indices are then placed
into a list, after which the query ds.datumList(indexList) is issued to the
root DataSource. The values returned can then be given to the approximating
function to return a computed value.

An Unstructured Lattice The process for an unstructured lattice is sim-
ilar overall, except that there is no simple mapping between the location of
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a) b)

Fig. 8. A 2D Unstructured Lattice: (a) geometry only, and (b) with topology
imposed

sample points in the geometric space and their location in the datasource
index space. A 1D datasource is often appropriate for unstructured data,
effectively treating the data as a list of sample points. The lack of a simple
mapping forces the topology to do more work when computing the datasource
indices for sample points near the query point in the geometric space. In fact,
a multidimensional access method [5] such as a quadtree could be used to al-
low efficient search through the geometric space for nodes in the topology
graph that correspond to nearby sample points. These nodes will contain the
datasource index of the sample point they represent. Once nearby sample
points have been found, it is relatively easy to navigate the Topology graph
to find the set of points nearest the query point, and then send an array of
indices to the root datasource to have the corresponding values retrieved. As
with the rectilinear example, the query ds.datumList(indexList) will be
sent to the root datasource after the indexes of neighbor points have been
put into the indexList.

An Example Datasource with Rectilinear Data Now that we have
seen how a lattice translates geometric queries into datasource queries, we
examine how datasource queries are satisfied. Suppose the data consists of
one attribute that is stored in a single file organized as a 2D array and the
other three attributes are stored in four files that represent the four quad-
rants of the 2D array. This structure is shown by the DataSource tree in
fig. 9. The index spaces of the DataSources in this example are always two
dimensional. The four physical DataSources in the lowest level of this tree
are associated with network streams communicating with remote machines.
Lets assume that their attribute sets are all {carbon, nitrogen, oxygen}. The
BlockedDataSource in the middle level joins the index spaces of its compo-
nents together, but shares their attribute set. The PhysicalDataSource in
the second level is associated with a local file containing the single attribute
{time}. The two DataSources on the second level have identical index spaces
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Attribute Join DS

(root data source)

{time, carbon, nitrogen, oxygen}

Blocked DS 

{carbon, nitrogen, oxygen}
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{time}

Physical 
DS

Physical 
DS

Physical 
DS

Physical 
DS

Physical 
DS

Fig. 9. An example DataSource tree

and are combined using an AttributeJoinDataSource. This topmost Data-
Source is the root DataSource that communicates with the Lattice itself.

Let’s consider the query ds.datum(new TwoDIndex(i,j)) given to the
root DataSource by the Lattice. The parameter is an index for the root
DataSource. Since this DataSource is an attribute join, it sends the same
query to both of its component DataSources. No transformation is necessary
because the component DataSources have the same index space as the root
DataSource. Of course, the PhysicalDataSource in the second level maps
the two dimensional index to a one dimensional file offset and then return
values for its attribute. The BlockedDataSource has more work to do. It
must decide which of its component DataSources contains the index and
then transform it into the index space for that DataSource. After retrieving
the result from the chosen physical DataSource, the BlockedDataSource sends
the three attributes up to the root DataSource, which joins them with the one
already retrieved from the physical DataSource. Finally, the root DataSource
returns the four attributes to the Lattice.

An Example DataSource with Unstructured Data For unstructured
data, the principal difference at the datasource level is that the index spaces
of the various DataSources do not match the dimensionality of the Lattice.
Since unstructured data is often stored as a list of points, the datasource
index space may well be simply one dimensional.

To continue our unstructured data example, lets assume that the Data-
Source tree is the same as the one depicted in fig. 9. The root DataSource
still receives the query ds.datum(index) from the Lattice, but now the index
is one dimensional. The BlockedDataSource picks which PhysicalDataSource
in the bottom level to query based on the index value, retrieving {carbon,
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nitrogen, oxygen} from the appropriate component. The PhysicalDataSource
in the second level retrieves {time}, and finally the root DataSource joins
the four attributes together. Notice that except for the dimensionality of the
index space, the tree works in a fashion which is identical to the rectilinear
case.

8 Performance Issues

Systems that handle very large datasets should be designed to minimize re-
dundant data access and to take advantage of any structure in patterns of
access. It is also important to avoid unnecessary duplication of data.

Our prototype system allows us to experiment with and evaluate tech-
niques for minimizing access costs. We are particularly interested in finding
ways to reduce overhead associated with distributed multisource data.

8.1 Lazy Evaluation

The concept of a datasource fits naturally with lazy evaluation. This is espe-
cially apparent if we think of a tree of datasources as a description of a data
file that does not physically exist. When the tree is built, no data is actually
processed until the Lattice begins asking for sample points. Even at this point,
the file that the Lattice sees is only conceptual. Sample points are assembled
from component datasources but the entire file is never materialized.

We have already added a small enhancement to our prototype system
by allowing datasource datum() queries to take an argument that specifies
which attributes should be retrieved. In practice, this information is sent
down to the physical datasources so that only desired attributes are read and
processed by the rest of the datasource tree. Though conceptually simple,
this enhancement could greatly reduce the volume of data that is processed
in situations where each sample point has a large number of attributes.

We also have defined a subset operation to both the lattice and datasource
levels. At the lattice level it is useful to specify a new lattice as a subset of
an existing one. However, it is not practical to duplicate the lattice sample
points; it is much more efficient to implement a new subset datasource that
presents the new lattice with a subset of the original data without ever ma-
terializing an actual subset of the original. Of course, this scheme relies on
the fact that much scientific data is read-only. More complex mechanisms are
needed to support multiple lattices writing to the same data.

8.2 Caching and Prefetching

Future versions of our prototype system will incorporate caches as a primary
tool for avoiding redundant access to data.
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When data is accessed in a regular pattern, it is possible to predict which
elements will be required in the near future. Processes that iterate over a
lattice in a predictable fashion can be greatly accelerated by prefetching data
that is likely to be needed. Prediction may be straightforward with rectilinear
data since iteration will often proceed through rows and columns in a regular
fashion [13]. Effective prefetching of unstructured data is harder but can be
done using a topological or geometric neighborhood.

In fact, a flexible neighborhood query can serve as the basis for prefetching
for both structured and unstructured data. With this kind of query, a lattice
would ask its root DataSource to return two sets of points, a primary set and
a secondary set (such as a neighborhood). The DataSource must return the
primary set and may return some or all of the secondary set if it is conve-
nient. For example, a DataSource might return a partial result consisting of
the primaries and readily available secondaries. Other secondaries may later
arrive and can be cached for future queries.

The Topology and Geometry provide valuable information for identifying
appropriate secondary data points based on the nature of the processing
being done.

9 Conclusion

We have developed a formal data model for describing distributed multires-
olution multisource scientific data sets. The lattice provides the logical view
of data as it appears to the scientist. The DataSource is the principal mech-
anism for an efficient implementation of multisource datasets. Lattices also
include an explicit definition of topology which allows us to represent a wide
variety of grid structures. The topology uses the datasource representation
to map data points to physical locations. The entire model serves as the ba-
sis for a scientific data management support environment that can provide
nearly transparent access to distributed multisource data.

We have an initial implementation of a prototype system to support the
principal features of our data model. This implementation allows a scientist
to describe a single dataset that represents a unified view of data that is
physically stored in multiple datasets.

Although our current prototype is designed to include caching and prefetch-
ing, these features have not yet been implemented. Similarly, our current
support for unstructured data is minimal and we need to integrate multires-
olution and adaptive resolution functionality into the prototype.
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