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ABSTRACT
In this paper we propose a technique called storage-aware spatial prefetching that can provide significant per-
formance improvements for out-of-core visualization. This approach is motivated by file chunking in which a
multidimensional data file is reorganized into multidimensional sub-blocks that are stored linearly in the file.
This increases the likelihood that data close in the n-dimensional volume represented by the file will be closer
together in the physical file. Chunking has been demonstrated to improve the typical access to such data, but it
requires a complete re-organization of the file and sometimes efficient access is only achieved if multiple different
chunking organizations are maintained simultaneously. Our approach can be thought of as on-the-fly chunking,
but it does not require physical re-organization of the data or multiple copies with different formats. We also
describe an implementation of our technique and provide some performance results that are very promising.
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1. PROBLEM AND MOTIVATION
We define scientific data as multidimensional data obtained either from the real world or from a simulation. Two
characteristics which are important for our research are that this data is large in size and the retrieval is often
“volumetric”,1 meaning that data retrieval is done by querying a sub-volume of data.

As computer processing power and memory size have increased dramatically in recent years, scientists are
able to generate ever larger data sets. Today’s scientific data are measured in terabytes or larger. The sensors
used to acquire data are becoming more and more sophisticated and the computers used to generate simulation
data are becoming more and more powerful. Therefore, the size of the data that we need to process is likely to
keep increasing.2 It is still the case that visualization is one of the most effective techniques for analyzing these
data sets and understanding the physical phenomena that the data represents. Unfortunately, however, the huge
size of the data creates significant bottlenecks in the visualization process. Very often, the data to be rendered is
much too large to fit into main memory at once. This phenomenon has lead to increasing interest in out-of-core
visualization algorithms. Interactive out-of-core visualization is particularly challenging since the generation of
the next image may have to wait for a significant amount of time for needed data to be read from disk.

The past twenty years has seen a thousand-fold increase in processor speed,3 memory size and hard disk size.
Disk I/O performance improvements, however, lag far behind the progress made in all other areas of scientific
data processing. In addition, many of today’s I/O optimization techniques are not well suited for scientific
data processing. In particular, I/O system prefetching and caching algorithms treat every data file as a one
dimensional sequence of data items and the effectiveness of the algorithms is based on the assumption that the
file is likely to be read (either entirely or in large sections) in the order in which the data items are stored in the
file. This assumption is very often false when applied to scientific data that represents data in a spatial domain.
Such data is usually most effectively processed by being stored in a multidimensional array, which then must be
mapped to the linear physical storage of a disk file. In this context, data values that are close neighbors in the
multidimensional array (and in the visualization) can be very far apart on the disk. Consequently, interactive
out-of-core visualization requires better tools for accessing today’s I/O systems.

Scientific data can be stored in files using a variety of methods, the most common being linear storage and
chunked storage. A multidimensional array is stored in a file using linear storage by traversing its indexes (axes)



in predefined order using nested loops.4 A multidimensional array is stored in a file using chunked storage when
data is split in chunks (cubes or bricks) of equal size, and each individual chunk is stored contiguously in the
file using linear storage. Chunks are stored in the file in linear fashion by traversing the axes of the volume in a
certain order using nested loops. The order of traversing the axes and the size of the chunks is determined by
the expected access pattern.

The file system cache usually prefetches and stores data that is nearby in the file, to the data retrieved by
a “read” command. However, that data might not be nearby in the volume represented by the file. Therefore
the file system prefetching and caching does not prefetch or store data immediately required by a volumetric
retrieval method. Due to this fact, prefetching and caching methods used by the file system are not usually
effective for volumetric scientific data retrieval.

2. BACKGROUND AND RELATED WORK
2.1. Chunking
Sarawagi et al. have explored ways to improve the access to multidimensional arrays stored in files.4 They
reorganize the files using chunked storage and maintaining several copies of the data that would match each
access pattern. While this method is very effective and widely used, it has the disadvantage that data needs
to be reorganized or copies of the data need to be made with different organization. Because today’s scientific
data is measured in gigabytes or even terabytes, it is often impractical to store multiple copies of the data with
different organizations.

Following this work, many other reorganization methods have been developed. More and Choudary reorganize
their data according to the expected query type, and the likelihood that data values will be accessed together.5
The Active Data Repository uses chunking to reduce overall access costs and to achieve balanced parallel I/O.6,7

The Volume Server/Browser from the Pittsburgh Supercomputer Center provides a multi-user remote visu-
alization service for the Visible Human data sets.8 The 40-60GB data sets are pre-processed in a variety of ways
to extract multiple resolution levels and to compress the remaining data so that most of the needed data can be
held in main memory in the data server.

2.2. Prefetching
Prefetching has also been an active area of research for some time. Cao et al. allow applications to have control
of data cache replacement strategy in their share of cache blocks.9 Brown et al. describe a hint based method
that effectively accelerates paged virtual memory performance using an operating system that takes advantage
of compiler generated hints and multiple disks.10 Kotz describes disk directed I/O, a method for aggregating
and prefetching data requests in a parallel environment.11 Mowry presents software controlled prefetching for
hiding or reducing the latency experienced by a processor accessing memory.12 Gao et al. describe a prefetching
cache designed for large volume visualization in a distributed context.13

Rhodes et al. use iteration aware prefetching to speed-up a point or block iteration along one of the principal
axes.14 The authors introduce the idea of an n-dimensional cache block that has the same number of dimensions
as the volume represented by the file. Using the information about the access pattern provided by an iterator
object, and the fact that the iterator progresses along one of the principal axes, the authors can calculate a cache
block shape that reduces the number of reads from the file and contains all the data needed in the current and
future iteration steps. The time required to perform the iteration is greatly reduced because the number of disk
read operations is reduced.

2.3. Out-of-core visualization
Cox et al. use visualization of Computational Fluid Dynamics to test various ways of managing data that is
larger than physical memory.15 They compare and contrast three ways of managing data that cannot fit in the
available memory.



application controlled segmentation The application loads a small number of segments into memory at a
time and processes them before moving on to a new set of segments. The size of each segment is application
and data dependent which means that the size of a segment may be larger than physical memory. If that is
the case, the application uses virtual memory and its performance degrades precipitously with the increase
in the segment size and the decrease in available physical memory.15

memory mapped file An improvement to the use of virtual memory for large data is the use of a memory
mapped file. The improvement occurs when the traversal is sparse15 and it happens because only the data
actually needed is read from disk.
The authors identify two problems with this method. First, there is no control over page size. Second, if
data is stored in chunks in the file, it cannot be translated into linear storage in memory.
Another drawback of this method is not mentioned by the authors. Namely, the operating system has a
one dimensional view of n-dimensional data. This means points nearby in the volume may be stored in
different pages in memory. For sparse traversal of data and adequate physical memory this does not slow
down the application as only a few pages are needed to store the data to be processed.
For algorithms that need to access the whole volume of data (such as volume visualization algorithms) and
data that cannot fit in physical memory, this additional drawback causes the operating system to make
poor decisions for loading and discarding pages.

application controlled paging In this case the paging system is managed by the application. Page size can
be varied, and the application can translate from the storage format (compressed or chunked) in the file
into linear format in memory. For data stored in a linear file, this method suffers from the same problem
as memory mapped files. That is, the file is split into pages that are uni-dimensional so the volumetric
nature of processing in not exploited.

3. APPROACH
3.1. Storage-aware spatial prefetching
The goal of our research is to provide some of the benefits of file chunking without having to reorganize or
maintain multiple copies of the file. Our approach is to dynamically simulate the read behavior that would occur
with a chunked file. In other words, assume that we have a three-dimensional data set stored in conventional
linear order that we want to treat as if it had been chunked into 16x16x16 blocks. When the application initially
reads a single data record, our spatial prefetching module actually reads the entire block that contains the record
and saves the entire block in its local cache storage. In order to read the block, we issue 256 read requests for
16 data records each. Because of the effectiveness of today’s file system caching algorithms, there will typically
be many fewer physical read operations to satisfy the 256 application-level read invocations.

We call this approach storage aware spatial prefetching, where spatial refers to the multi-dimensionality of
the blocks and storage aware refers to the fact that the n-dimensional blocks are loaded from disk in a way that
most closely matches the ordering of the data in the file.14 That is, we read blocks from the file by reading along
the most frequently varying axis to the least frequently varying axis.

We built our module on top of the datasource component of the Granite system.14 A datasource is con-
ceptually an n-dimensional volume of voxels where each voxel can store one or more attributes. Our spatial
prefetching module splits the entire datasource into blocks of configurable size and creates a block table that
stores a reference to each of these blocks.

Each reference can point to a block from the volume which has the same number of dimensions as the original
volume or it can be nil. Loading a block is done on demand, as soon as a voxel from the block is needed. We
use the LRU block replacement algorithm to maintain cache relevance.



3.2. Test application
To test the effectiveness of our approach, we created an application that builds an image of a volume using the
maximum intensity projection (MIP) algorithm.16 Our application was built in Java, using JOGL library, which
is a Java binding to OpenGL.

We implemented the MIP algorithm by using a slice iterator. This iterator allows a user to specify a sub-
volume of the data and a vector which represents a plane normal. We step the plane along its normal for as
many iterations as the plane touches the sub-volume. At every step, we determine the voxels in the intersection
of the sub-volume and the plane. This intersection polygon is computed using a 3D scan-conversion algorithm
for polygons.17 We use nearest-neighbor interpolation to determine values that form the intersection polygon,
and we store the intersection polygon as a texture. Intersection polygons are composed using graphics hardware
to obtain the final image that represents the volume to be viewed from the direction specified by the vector
normal to the plane.

To speed up our application, the memory available to the spatial prefetching module needs to be able to
contain enough blocks to completely enclose the intersection polygon.

In our work we use multidimensional prefetch blocks to store blocks read from a multidimensional file. Unlike
the work by Cox et al.15 our blocks are not linear, one dimensional pieces of the file, but they are sub-blocks of
the volume represented by the file. Note that several read operations might be needed to read the data stored
in a memory block.

Unlike the work by Rhodes et al.14 we don’t use advanced knowledge about the iteration to calculate and
prefetch a unique cache block that contains data for the current and future iteration steps. While the knowledge
about the iteration is very useful for improving a point or block iteration parallel to one of the axes,14 we present
a general method for improvement when the iteration pattern is too complex for computing in advance the size
and shape of the prefetch block.

4. RESULTS AND CONTRIBUTIONS
For our tests we traversed a sub-volume of size 2563 voxels with three bytes per voxel (the sub-volume has 48
MB) located inside a data volume of size 1024×1216×2048 voxels (the data volume has 7.2GB). The sub-volume
has its lower corner at 256 × 512 × 768. We traversed the sub-volume by sliding a plane along its normal. At
each step we calculated the current slice through the volume, and we composed that slice with the current MIP
image of the sub-volume.

The data volume is stored in a file using linear storage. If we denote with 0, 1 and 2 the orthogonal axes of
the volume, data is laid out in the file using three nested loops, the outer loop along axis 0, then along axis 1
and the inner loop along axis 2. Rhodes et al. define a rod as a one dimensional sequence of elements that are
contiguous in both the n-dimensional index space and the 1-dimensional file space.14 Using this terminology we
can describe the file as storing rods parallel with axis 2. Several of these rods form planes orthogonal to axis 0.
Several of these planes form the entire volume.

We obtain the direction of iteration (the normal to the iteration plane) by using two Euler angles: heading
and pitch as described by Dunn and Parberry.18 We start with an identity direction (heading,pitch)=(0,0) in
the direction of axis 2. From there we apply heading rotation and then pitch rotation to get to the direction
we are describing. Heading measures the amount of rotation about axis 1, positive rotation is counter-clockwise
when axis 1 points toward the viewer. Pitch measures the amount of rotation about axis 0, counter-clockwise
when axis 0 points toward the viewer. For example (heading, pitch) (0,0) represents axis 2, (90,0) represents
axis 0, (-90, 0) represents a vector parallel with axis 0 but in opposite direction, (0, -90) represents axis 1.

Our tests measured traversal time for 40 plane orientations specified by the following pairs of heading and pitch
angles: {0, 45, 90, 135, 180, 225, 270, 315} × {−90,−45, 0, 45, 90}. Before each run of a traversal for a particular
plane orientation, we clear the file system cache by running a separate program called thrashcache. This program
allocates a block as big as the amount of available physical memory, loads that memory with data from a file
different than the file used for our tests and then frees the memory. This ensures that we start each test with a
file system cache that does not contain any data left over from previous test runs using the same data set.



The test machine is a 2.5GHz dual processor Power Macintosh G5 with 2GB of RAM running OS X 10.4 and
Java 1.5.0. The hard disk is a 7200 RPM SATA model with a 9 ms average seek time and 8 MB of cache.

4.1. File system cache versus spatial prefetching
Figure 1 displays the time we need to build a MIP representation of a 48MB sub-volume from a 7.2GB data
volume. This is approximately the same as the time required by the slice iterator to traverse the sub-volume,
because composing the slices in hardware takes negligible time. Note that we set the Java Virtual Machine
memory to be 20MB (using -Xms and -Xmx switches), less than the size of the sub-volume traversed.

Figure 1. File System Cache Versus Spatial Prefetching

We tested three cases:

file system cache only In this case traversal of the sub-volume is done without spatial prefetching (only the
file system cache is used)

spatial prefetching In this case traversal of the sub-volume is done with 10MB allocated to the spatial prefetch-
ing module and blocks of size (16,16,16).

sub-volume in memory In this case traversal of the sub-volume is done with the entire sub-volume in memory.
We do this by using a unique block as large as the sub-volume and by setting Java Virtual Machine memory
large enough so that the sub-volume fits in memory (500MB). This option represents the absolute best
possible performance.

As expected, traversal time is worst when only the file system prefetching and caching is used. This is shown
in the graph in Figure 1 labeled “file system cache only”. The directions for which the file system cache performs
well are around (heading,pitch)=(90,0) and (270,0). These directions correspond to a plane orthogonal to axis
0. In this case, data prefetched by the file system is part of the next iteration, so this data is read from cache,
and few read operations are issued to the hard disk.



The graph in Figure 1 labeled “spatial prefetching” displays the running time of a sub-volume traversal when
spatial prefetching is used. On average, traversal time is 6.9 times better when spatial prefetching is used than
traversal time when only the file system cache is used.

The graph in Figure 1 labeled “sub-volume in memory” displays the running time of a sub-volume traversal
when the sub-volume is loaded in memory. This is done by using spatial prefetching with a block size equal to
the sub-volume size.

This “optimal” performance is about 2.5 times better on average than spatial prefetching with a block size
(16,16,16).

4.2. Block shape variation
Figure 2 shows how traversal time of a linear file with spatial prefetching varies with the shape of the block.
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Figure 2. Block shape variation

We tested three block shapes (8,8,64), (8,64,8), (64,8,8) such that the volume of a block is the same as the
volume of a block used in the previous tests: (16,16,16). Different block shapes yield different traversal times,
with the best shape being (8,8,64) which results in 22% better performance than block shape (16,16,16). The
reason for this improvement is the fact that these blocks are longer in the rod direction. To read a block of
size (8,8,64) we issue 8 ∗ 8 = 64 read operations where each operation reads 64 bytes. To read a block of size
(16,16,16) we issue 16 ∗ 16 = 256 read operations where each operation reads 16 bytes. Since fewer reads are
issued in the first case, the cost of positioning the head over the hard disk is payed fewer times, so performance
is improved.

The relationships of the performance of the other shapes is a bit more complicated. Shapes (8,64,8) and
(64,8,8) both result in 8 ∗ 64 = 512 reads of 8 bytes each. However, the file system prefetching is very aggressive,
so that a read for a block of shape (8,64,8) is very likely to result in a file system read that is large enough to
contain 1 or more rods that are requested in subsequent reads. This data gets cached by the file system resulting
in future application reads that do not result in a physical read. In the (64,8,8) case, however, the needed rods
are so far apart in the physical file that many fewer application reads will hit the file system cache.



4.3. Spatial prefetching versus chunking
Table 1 shows how spatial prefetching over a linear file compares with access to a chunked file and to spatial
prefetching implemented on top of a chunked file. Note that spatial prefetching over a chunked file has a similar
performance advantage as a scenario where the chunked file is memory mapped and the chunk size is the same
as the page size.

mean time (s) min time (s) max time (s)
sub-volume in memory 30.7 25.7 44.4
block size=(8, 8, 64) 60.6 35.1 112.2
block size=(8, 64, 8) 63.2 53.9 142.4
chunked file and spatial prefetching 75.3 54.5 83.6
block size=(16, 16, 16) 78.3 50.3 135.5
block size=(64, 8, 8) 87.1 75.3 130.9
chunked file 505.4 169.2 817.1
file system cache only 540.4 158.5 860.9

Table 1. Linear Storage Versus Chunked Storage

We measured the time required to traverse the same 48MB sub-volume of data from a data volume stored
using chunked storage. We used 163 as both the chunk size and block size. We obtained a small improvement of
4% for spatial prefetching over a chunked file than the performance for spatial prefetching over a linear file with
block of size (16,16,16).

For spatial prefetching over a linear file with block size (8,8,64) we obtained an improvement of about 20%.
when compared with the performance for spatial prefetching over a chunked file.

5. CONCLUSIONS AND FUTURE WORK
We presented a spatial prefetching module that helps speed up an iteration used in a volume visualization
algorithm. Our tests showed an average speedup of 8.9 for a traversal that uses spatial prefetching with block
shape (8,8,64) when compared with a traversal that uses only the file system cache. We showed that spatial
prefetching over a chunked file is only about 4% better than spatial prefetching over a linear file and that we
could even improve on performance obtained with chunking and spatial prefetching if we shape the blocks used
in spatial prefetching such that the longer side is along the rod direction. We see spatial prefetching as an
attractive alternative to chunking when the space required for replicating the file is not available.

In the future, we intend to extend our tests to cover several platforms and larger data sets and we plan
to explore the benefits of spatial prefetching to other types of visualization applications. We are interested
in testing the benefits of virtual memory (memory mapped files) on applications that work with out-of-core
multidimensional data and compare that to spatial prefetching.
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