

1
Last edited: 09/25/06

Granite Datasource Tutorial
R. Daniel Bergeron

Philip J. Rhodes
August 31, 2005

1 Introduction
The Granite Scientific Database System (Granite SDB) provides a comprehensive set of classes
for accessing multidimensional scientific data organized in a wide variety of formats. An
important component of Granite is its support for multidimensional array-based data sets through
the DataSource class. This document describes the basic functionality supported by the Granite
DataSource and related classes through a series of programming examples. The goal is to
provide a simple introduction to basic functionality; not all options and parameters are described.
Conceptually, the datasource model represents rectilinear topologies using an array. The array
axes form an index space, and each element of the array contains a single datum, which has one
or more fields or attributes. Physical datasources may be directly associated with a file or
network stream. A composite datasource combines one or more component datasources. For
example, the AttributeJoinDataSource can join one or more attributes taken from each of several
component datasources to produce a single, unified representation of the component datasets.
Similarly, the BlockJoinDataSource can form a single view of several component datasources by
joining their index spaces. These two datasources form the core of support for multisource data,
in which data is combined from several different sources. The datasource model also supports
adaptive resolution for cell oriented rectilinear data.
Basic concepts: data not stored in Datasource, Datasource class is abstract, Datum class abstract,
avoid user knowledge of internal storage framework while still providing opportunity for
efficient access to the data.

Define key classes: DataCollection, Datasource, DataBlock, Datum, Iterators

2 Physical Datasources
The PhysicalDatasource class provides the key interface to physical files; it is the first point of
access to the data. Granite does not predefine any particular data format for data; the intent is to
access the original data as generated by the scientist’s application. Consequently, it is necessary
to provide a metadata file that describes how that data is organized. The metadata file must
describe both file and data attributes and is written in XML notation; we call these fdl files (fdl is
an abbreviation for file definition language).
2.1 FDL file format
Granite FDL files are defined using XML. The Granite system uses an XML data type definition
file (a dtd file) that describes the legal input. There are two general categories of metadata: file
attributes and data attributes. File attributes define the file name, its array dimensionality and
bounds, whether the file is in binary or ascii format, its byte order, the axis ordering, and how the
fields in the data set are stored in the file (by point or by attribute). Data attributes describe the
data type, and name of each field in the data set.

2
Last edited: 09/25/06

The following example is a complete specification that describes a 100 by 200 binary file with a
single float attribute, called value.
The recordSize attribute only needs to be specified if there is “padding” data in each record that
is not described in the field information. The fileOffset field is used if there is header information
that precedes the data; it defaults to “0”. The fieldLayout can be either “byPoint” or
“byAttribute”; the default is “byPoint”. The axisOrdering field describes the order in which the
axes are stored where the value gives the order of the axes from slowest changing to fastest
changing; the default ordering is “0 1 2 …” which is row ordering in 2D (i.e., all the elements of
a row are stored contiguously, followed by the next row). The lower attributed of the Bounds
field can be omitted; “0” is the default. Using the defaults, the above example could be specified
with the following simpler file.

2.2 Opening a data file
The code segment below creates a PhysicalDataSource from an fdl file named twoDim.xfdl; the
second String argument is an arbitrary name associated with the datasource during execution.
Creating the datasource does not actually open the data file or read any data. The data file gets
opened when the datasource is activated, but no file reads are issued until the program makes an
explicit request for data via a datum or subblock method call.

3 Data access
The data in a datasource can be read a single datum at a time or by requesting a rectilinear
subblock from the datasource. Of course, we need a way to identify which datum or subblock we
desire. Each point in a datasource is identified by its array position, which is encapsulated in the
IndexSpaceId class. The ISBounds class uses 2 IndexSpaceID’s to define a lower and upper
bound of a rectilinear subblock.
3.1 IndexSpaceID class
Each point in a datasource is associated with the position of that point in the multidimensional
array in which it is stored. An n-dimensional datasource requires n indexes to access each data

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE FileDescriptor PUBLIC "-//SDB//DTD//EN" "fdl.dtd">
<FileDescriptor
 fileName= "twoDim.bin"
 fileType= "binary"
 >
 <Bounds upper= "99"/>
 <Bounds upper= "199"/>

<Field fieldName= "value" fieldType= "float"/>
</FileDescriptor>

DataSource theData =
 DataSource.createPhysicalDatasource(“twoDim.xfdl”, “ds2d”);
theData.activate(); // activate is analogous to opening a file

3
Last edited: 09/25/06

point. Granite supports a variety of forms of index space identifiers; the simplest and most
straightforward version is the IntegerIndexSpaceID class which simply maintains an n-entry
array of integers representing the indexes. The code segment below creates a 2d IndexSpaceID
which identifies position [20,30] in the datasource.

Other specific constructors exist for 1d and 3d index spaces and a generic constructor accepts an
integer array argument and can be used for index spaces of any dimensionality.

3.2 ISBounds class
A rectilinear subblock of a datasource can be defined by an instance of the ISBounds class using
2 IndexSpaceID’s, as shown in the example below which identifies a 10 x 10 block with a lower
left corner at [20,30].

3.3 Datum class and datum method
The Datum class is an abstract class with children classes that are designed to handle particular
combinations of attribute types in as efficient a manner as possible. For example, if all the
attributes are of the same type, it is most efficient to use a homogeneous child of Datum based on
that type: DoubleDatum, FloatDatum, IntDatum, ShortDatum, or ByteDatum. The MixedDatum
can be used to include mixed type attributes in a single datum. Although this can be convenient,
there is a potential performance cost. The MixedDatum object encapsulates all the attributes in a
single Java ByteBuffer that requires a conversion from a byte sequence to the desired type
(double, float, int, short, or byte) every time the data value is accessed. In the (unlikely) event
that the original data is stored in this form, the overhead may be acceptable. [Support for
MixedDatum is not yet complete.]
In general, it is desirable to avoid references to the child classes of Datum. There are methods of
both DataSource and DataBlock that create a Datum object of an appropriate type based on the
underlying data format. Such methods also allow the programmer to extract all the attributes of a
specific type in a homogeneous Datum for that type.
The simplest (but relatively inefficient) mechanism for accessing data in a DataCollection (a
DataSource or a DataBlock) is to issue a request for the data of one position at a time using the
datum method call.

This Datum object contains all of the data fields at the specified location in the index space of the
DataCollection. The actual data values can be accessed individually as float, double, int, short,

IndexSpaceID position = new IntegerIndexSpaceID(20, 30);

ISBounds blockDef = new ISBounds(new IntegerIndexSpaceID(20, 30),
 new IntegerIndexSpaceID(29, 39));

DataCollection theData;
// set theData to reference a DataSource or DataBlock
Datum datum = theData.datum(position); // return datum at the position

float fval0 = datum.getFloat(0); // get first attribute as a float
short sval1 = datum.getShort(1); // get second attribute as a short

4
Last edited: 09/25/06

or byte values; they are converted from the internal type as needed.

If it is necessary to access a large number of data points one datum at a time, the datum method
used above would require construction of a new Datum object for each datum method
invocation. Since Java object construction is expensive, it is desirable in this case to allocate a
single Datum object and re-use it in successive datum method calls as shown below.

3.4 DataBlock class and the subblock method
In general, it is far more efficient to retrieve data from a datasource by extracting multiple data
points with each query. The subblock method extracts an arbitrary rectilinear set of data points
from the datasource in a single operation. The data is returned in an instance of the DataBlock
class. There several important subclasses of DataBlock, including especially BasicBlock and
CompositeBlock. A BasicBlock provides the most efficient implementation of DataBlock if all of
the data contained in the block has the same type. A CompositeBlock is composed of
BasicBlocks; it supports mixed types by organizing the data variates by type in separate
BasicBlocks. An important aspect of all of the DataBlock implementations is that the application
program can process the data in a DataBlock without being aware of the actual internal storage
characteristics. [Most of the following examples are based on the use of BasicBlock objects.]
As with the datum method, there is a subblock method that creates and returns the requested
information as a DataBlock and a version that stores data into a pre-allocated DataBlock.

Once a DataBlock has been filled with data, the application program can extract the data one
datum at a time with the datum method or a rectilinear subblock at a time with the subblock
method. [DataSource and DataBlock are both children of the DataCollection class which defines
the datum and subblock methods.]

3.5 Direct access to DataSource and DataBlock data
Although the Datum object is an important conceptual component of Granite and can be a
convenient mechanism for data access, it can be more efficient to extract data directly from the
DataCollection without going through the Datum class. It is als often necessary or convenient to
extract all or a portion of the data from a DataSource or DataBlock as a single one-dimensional

Datum datum = theData.createDatum(); // create Datum of right type/size
theData.datum(datum, position); // fill it with values from position

ISBounds blockBnds = new ISBounds(new IntegerIndexSpaceID(20, 30),
 new IntegerIndexSpaceID(29, 39));
Block bb1 = theData.subblock(blockBnds); // return a subblock
ISBounds blkBnds = new ISBounds(new IntegerIndexSpaceID(10, 10));
Block bb2 = theData.createBlock(blkBnds);
theData.subblock(bb2, blockBnds); // fill a subblock passed in

5
Last edited: 09/25/06

array. Granite provides a family of convenience functions that facilitate such access, including
data conversion if desired.
For multipoint access to multidimensional data sets, the order of the data storage in the returned
array is determined by the internal storage associated with the DataSource or DataBlock. [We
may want to have a method that will return the axis order associated with the storage or perhaps
a convenience that will transform any one-dimensional array according to an arbitrary axis
ordering.] If the desired access type and organization match the internal storage format, these
functions will return a reference to the actual data, rather than a copy; this can be a significant
performance issue for access to very large data sets.
The methods described below can be applied to either DataSource or DataBlock objects.
Because the result of these operations assemble all the data into a single array, it is possible to
get into memory-related performance issues if they are applied to very large objects.
3.5.1 Single attribute access
The application program can extract a single attribute value in any data type at a single point in
the IndexSpace or from all points in one operation as shown in the following examples.

3.5.2 Multiple attribute access
The application program can extract all the attribute values in any data type for either a single
point or for all the values in a DataCollection. The single point versions return all the attributes
at a specified location in a single array. Data conversion is performed if the internal data types do
not match the requested type.

The multiple point access methods can return the data in either point-order or attribute-order.
Point-order storage stores all of the attributes from a single point contiguously; whereas
attribute-order storage stores all the values for a single attribute for the entire data collection
contiguously. For example, given a data collection with attributes N, C, and O, point-order
storage appears in the array as “NCONCONCO …. NCO” and attribute-order appears as
“NN…NCC…COO…O”. Multiple point access examples are shown below.

DataCollection theData = … ;
float fValue = theData.getFloat(isid, attrIndex); // get a single value
int iValue = theData.getInt(isid, attrIndex);
short all[] = theData.getShorts(attrIndex); // return all vals of 1 attr

float fval = bb1.getFloatAttribute(isid, 0); // get attr 0 value at isid

int iValues[] = theData.getInts(isid);
double dValues[] = theData.getDoubles(isid);

float fValues[] = theData.getFloats(); // point order
int iValues[] = theData.getIntsByAttribute(); // attribute order

6
Last edited: 09/25/06

3.5.3 Values access
There is also a Granite class that encapsulates arbitrary type data as a one-dimensional array that
is accessible to the application. It may be convenient for the application to use this class for an
intermediate representation. [This cois especially true if we decide to make Values a more
powerful tool; for example, we could provide multidimensional access to the data values.] See

the Granite JavaDoc for details.

3.6 Attribute projections
It is often desirable for an application to extract only a subset of the attributes that are stored in a
data set. This is called an attribute projection. Attribute projections can be applied to Datum,
DataBlock, and DataSource access and can be specified by using RecordSpec object.
The RecordSpec class allows the application to select a subset of the attributes by providing a
simple integer array containing the indexes of the desired attributes. The attribute indexes do not
need to be listed in order, which allows the application to reorder as well as select attributes.

4 Iterators
In general scientific data processing relies heavily on some form of iteration over some or all of
the data under consideration. Very often the iteration pattern is known in advance of the
processing and can be specified in a concise form. This can be extremely important when
accessing huge data sets stored on disk since disk access is very slow. The caching and pre-
fetching facilities of Granite are most effective when the application code uses Granite iterators
to define the iteration pattern. Granite datasource functionality supports both datum iteration and
block iteration. Datum iteration is specified using an ISIterator object and block iteration is
defined using an ISBoundsIterator.
4.1 ISIterator and datum iteration
The ISIterator class extends IndexSpaceID so it also identifies a position in the index space. It is
instantiated with an ISBounds object that defines the set of IndexSpaceID values that the iterator
should visit. The values are visited in basic traversal through the axes with the right most index
varying most frequently and the left most index varying least frequently. There is a constructor
that accepts an AxisOrdering argument that can be used to modify the default ordering. The code
fragment below constructs an ISIterator and then uses it to access all the values in a datasource.

Values vals = theData.getValues(); // get internal Granite representation

RecordSpec rs = new RecordSpec(new int[]{2,3,0}); // select attrs 2,3,0
Datum datum = theData.createDatum(rs); // create Datum for the attr subset
theData.datum(datum, position, rs); // attributes 2,3,0 at position

7
Last edited: 09/25/06

The iterator is initialized on construction, so the invocation of iter.init() isn’t strictly necessary,
but the general format of this for loop specification is a good model and is very obvious code.
There is also a hasMoreElements() method that can be convenient for some iterations, but you
have to be careful. For example, in this case we cannot replace iter.valid() with
iter.hasMoreElements() since hasMoreElements() is false when the iterator is at the last element
of the bounds.

4.2 ISBoundsIterator and block iteration
The ISBoundsIterator supports block iteration over a datasource or a data block. The blocks in
the iteration can overlap with each other or can have gaps between them. The example below is a
simple iteration with non-overlapping blocks that “cover” the datasource (i.e., there are no gaps).

5 Cell Datasources

6 Caching and prefetching

7 Multisource datasources

8 Configuration

ISBounds dsBnds = ds2d.getBounds();
ISIterator iter = new ISIterator(dsBounds);
for (iter.init(); iter.valid(); iter.next())
{
 float nextValue = ds2d.datum(iter).getFloat(0);
 System.out.println(((IndexSpaceID)iter).toString() + “=” + nextValue);
}

ISBounds iterBlk = new ISBounds(new IntegerIndexSpaceID(2, 2)); // 2x2 block
ISBoundsIterator iter = new ISBoundsIterator(dsBounds, iterBlk);
BasicBlock bBlock = new BasicBlock(iterBlk); // make block of proper size
for (iter.init(); iter.valid(); iter.next())
{
 ds2d.subblock(bBlock, iter);
 // do something with the data in bBlock
}

8
Last edited: 09/25/06

9 RDB system notes
Note: points 1, 3, 4, 8, and 9 are all incorporated into point 10.

1. We need to move more “low-level” data access specifications “up” to the DataBlock
level. As we now have it defined, we are forcing the programmer to know a lot about the
internal representation of the data in order to extract data values as arrays of the primitive
types (getFloatAttributes, for example). I have to check what kind of block it is, and then
issue the appropriate call. Furthermore, if the data isn’t stored as a float array, but I need
it that way, I have to write special code for each situation. The system should be
providing that. We should probably implement some subset of all the BasicBlock features
that we require all DataBlock implementations to provide. Certainly getFloatAttribute(
isid, int attrib) and getFloatAttributes(int attrib). This would leave the
getFloatAttributes() for the “reference” version. See point 10.

2. What is the difference between BasicBlock.subblock and BasicBlock.subBasicBlock?
The javadoc implies that the difference is copy vs. reference: subBasicBlock copies,
whereas subblock is a reference. That’s much too subtle.

3. Both previous comments raise the specter of copy vs. reference methods – how much
overhaul do we need to clean that up?? See points 10 and 11.

4. “getIndexed” method names really should go – or at least we should deprecate them and
add alternative versions that work because of the parameter specifications. See point 10.

5. Should we implement getDouble and getInteger methods for Datum? very easy to do.
6. Should we implement DoubleDatum and IntegerDatum classes? should be easy to do.

7. Should we have convenience constructors for ISBounds for 1,2, and 3d similar to those
we have for IntegerIndexSpaceID?

8. Should we provide a convenience DataBlock method for returning each attribute as an
nD float array (in addition to our current 1-d array)? See point 10.

9. Semantics is a problem for some of the method names: getFloatAttribute really should be
getFloatValue. Standard terminology talks about Attribute/Value pairs – “attribute” refers
to the field (as in carbon or oxygen) that contains a “value” such as 4.5. Our methods are
returning values given an attribute (specified as an index). Perhaps we can shorten it even
more to getFloat or getShort as we do with Datum; or should we adopt the Java
conventions and go to floatValue and intValue? See point 10.

10. It would be nice to standardize the interfaces to the low level explicit data access and type
variation for Datum, DataBlock, DataSource, Lattice, etc. I first thought that we might
be able to define a single interface specification, but that doesn’t work. However, we
might be able to have an interface for Indexable or for Indexable plus Lattice. (Makes me
think that it would be nice to have a class name for Indexable that implies associated
data). I would envision methods like one of the 2 columns below (d => Datum, b =>
block, s => datasource, l => lattice). In all cases, these methods are intended to be usable
for all data formats, so that conversions are done if the internal storage format does not
match the requested type. There would have to be other methods specific to BasicBlock

9
Last edited: 09/25/06

and CompositeBlock that would return references to the raw arrays. I don’t know how
valuable it would be to follow the Java convention since we would have no methods that
exactly match Java’s floatValue() method; on the other hand, it might help to reinforce
the semantics that the returned values are not necessarily the same as the way the data is
stored.

For similar to current Granite convention Java convention

d float getFloat(int field); float floatValue(int field);

d int getInteger(int field); int intValue(int field);

b,s,l float getFloat(ISId, field); float floatValue(ISId, field);

b,s,l int getInteger(ISId, field); int intValue(ISId, field);

b,s,l float getFloat(int index1d, int field); float floatValue(index1d, field);

b,s,l int getInteger(int index1d, int field); int intValue(index1d, field);

b,s,l float[] getFloats(int field); float[] floatValues(int field);

b,s,l float[] getFloats(); // all fields, point order float[] floatValues();

b,s,l float[] getFloats(boolean attrOrder); float[] floatValues(boolean aOrder)

I’m not sure about the options below, but they might be useful

b,s,l float[][] getFloats2d(int field); float[][] floatValues2d(int field);

b,s,l float[][][] getFloats3d(int field); float [][][] floatValues3d(field);

b,s,l float[][][] getFloats2d(); float[][][] getFloats3d();

b,s,l n-d could be handled with nd array class?

11. I’m thinking a bit about the copy vs. reference issue, too. For this set of methods (and
maybe others), what if we say that “get” methods return references if possible, but may
end up being copies. We can then provide “copy” analogs (if we think that is desirable).
Alternatively, we could have versions of the “get” methods that pass in the arrays to be
returned; these would always be copy operations. The only problem with this is that it
would be nice to have convenient utility methods to allocate the correct size array. This
seems to work already for the 1d array cases:

float[] array = new float[block.size()]; // size() works for single attribute
block.getFloat(field, array);

float[] allFloats = new float[block.size()*block.numAttributes()];
block.getFloats(allFloats);

For the higher dimension arrays, it’s more complicated. Maybe we don’t bother with

10
Last edited: 09/25/06

those. Those versions always require copy operations anyway, so there isn’t much to be
gained by pre-allocating the arrays. Also, these operations are also already being applied
to (large?) collections of data values, so it’s not clear that there will be so many iterations
that we have to get too concerned about Java object creation overhead – at least not now.

