
TaP: Table-based Prefetching for Storage Caches

Mingju Li
University of New Hampshire

mingjul@cs.unh.edu

Elizabeth Varki
University of New Hampshire

varki@cs.unh.edu

Swapnil Bhatia
University of New Hampshire

sbhatia@cs.unh.edu

Arif Merchant
Hewlett-Packard Labs

arif@hpl.hp.com

Abstract

TaP is a storage cache sequential prefetching and
caching technique to improve the read-ahead cache hit
rate and system response time. A unique feature of TaP
is the use of a table to detect sequential access patterns in
the I/O workload and to dynamically determine the opti-
mum prefetch cache size. When compared to some pop-
ular prefetching techniques, TaP gives a better hit rate
and response time while using a read cache that is of-
ten an order of magnitude smaller than that needed by
other techniques. TaP is especially efficient when the
I/O workload consists of interleaved requests from var-
ious applications, where only some of the applications
are accessing their data sequentially. For example, TaP
achieves the same hit rate as the other techniques with
a cache length that is 100 times smaller than the cache
needed by other techniques when the interleaved work-
load consists of 10% sequential application data and 90%
random application data.

Index Terms: RAID, prefetch cache, sequential stream
detection, read caches, read-ahead hit rate, I/O perfor-
mance evaluation, disk array.

1 Introduction

Storage devices have evolved from disks directly at-
tached to a host computer and controlled by the host’s
operating system into independent and self-managed de-
vices containing tens-to-hundreds of disks accessed by
several computer systems via a network. Large and mid-
size storage devices have sophisticated controllers that
control when and how disk data are stored, retrieved, and
transmitted. In addition to the disks and controllers, stor-
age devices have high-speed cache memory. The most
effective way of speeding up storage systems is to ensure
that required data are already loaded in the cache from
the disks when read I/O requests for this data arrive, and

to ensure that there is sufficient cache space for all write
I/O requests to be written to cache immediately.

The storage caching technique determines how the
storage cache space is allocated between read and write
request data. The read request data stored in a cache are
further classified as re-reference data, prefetch data, and
old request data. The re-reference data are prior read
I/O request data that are accessed often. The prefetch
data are prefetched from the disks into the cache by the
caching technique before I/O requests for these data ar-
rive. The old request data are prior read I/O request data
that have not yet been re-referenced. The caching tech-
nique makes decisions on how much space to allocate to
re-reference, prefetch, and old request data.

A key factor underlying the success of a prefetching
technique is the effectiveness of the technique that iden-
tifies sequential streams in the I/O workload, where a
stream refers to the sequence of I/O requests correspond-
ing to a particular application that are submitted by the
application over a period of time. A stream is said to
be sequential if the corresponding data are being read
sequentially. Sequential stream detection is a difficult
task since a storage system has no knowledge of the file
systems or of the applications accessing its data. Con-
sequently, a storage system has to identify sequential
streams in its workload based solely on the addresses
of I/O requests. Unfortunately, I/O requests from vari-
ous streams are interleaved, so the outstanding I/O work-
load at any point in time shows little sequentiality, even
when each stream accessing the storage device is sequen-
tial. As a result, a storage sequential stream detection
technique must search past request addresses to see if an
incoming I/O request is contiguous to any past I/O re-
quest. Thus, in addition to enabling re-reference hits, old
I/O requests that remain in the cache facilitate sequential
stream detection.

The key disadvantage of using the cache to detect se-
quential streams is that valuable cache space must be
used to store old request data. Previous studies have

shown that only a small percentage of the total I/O work-
load displays a high degree of re-reference hits [33, 40]
since storage caches are at the bottom of the cache hi-
erarchy in computer systems. However, even when the
locality-of-reference in the workload is too low to justify
a large read cache, it is still needed to store the large
number of old I/O requests required to detect sequen-
tial streams. This is an inefficient use of scarce cache
memory, which typically constitutes 0.1% to 0.3% of the
available disk space [16, 24].

We propose using a separate data structure, namely, a
table of request addresses, to detect sequential streams
and to adapt the prefetch cache size efficiently based on
the I/O workload. We refer to the our proposed prefetch-
ing technique asTable-basedPrefetching (TaP). The TaP
table is used to record request addresses and determine
the optimum prefetch cache size for TaP. We define the
optimum prefetch cache size of TaP as the cache size that
is sufficient and necessary to obtain TaP’s best achiev-
able read-ahead hit rate for a given I/O workload. When
an arriving I/O request misses in the prefetch cache, the
TaP technique searches the TaP table to check if this new
request’s address is contiguous to any prior request ad-
dresses. If so, TaP flags this I/O request as belonging to a
sequential stream and activates prefetching, else the TaP
technique inserts the address of this request into the TaP
table. TaP dynamically adapts the size of the prefetch
cache depending on the fraction of sequential streams in
the I/O workload. When the prefetch cache gets full and
requests are thrown out, the request’s address is inserted
into the TaP table. In addition, a flag is set in the cor-
responding entry of the TaP table. This information is
used by TaP to determine whether the size of the prefetch
cache is too small for the current workload.

The key advantages of the TaP technique are as fol-
lows:

1. The optimum prefetch cache size can be determined
efficiently.

2. Old I/O request data need not be stored, so the
cache space can be judiciously shared between the
write data, the prefetched data, and the re-reference
data. (Note that the TaP table could also be used
to identify missed re-references. This approach is
not discussed here since it is not the focus of this
paper.) Having a larger prefetch cache can improve
the overall efficiency of a prefetching technique by
permitting more data to be prefetched with a lower
probability of the data getting evicted before being
used.

3. The address tracking mechanism is not limited by
the size of the cache, so more of history can be
stored. As a result, there is a higher probability that

the TaP technique would be able to identify sequen-
tial streams when the overall I/O workload contains
a mix of requests from several random and sequen-
tial streams.

4. The TaP technique is simple but effective, and has
low implementation complexity—its simplicity is
one of its strengths.

Our simulation study shows that the TaP technique gives
the same or better hit rate and response time as the other
prefetching techniques used for comparison, while using
a smaller read cache.

The rest of the paper is organized as follows. Sec-
tion 2 presents a classification of existing cache prefetch
techniques and the related work. The motivation and de-
sign of TaP technique are explained in Section 3. Sec-
tion 4 presents the experimental evaluation of the TaP
technique. Section 5 presents the conclusion.

2 Sequential prefetching techniques and
related work

A sequential prefetching technique consists of three
modules. Thesequential detection module deals with
the detection of sequential streams in the I/O workload;
the prefetching module deals with data prefetching de-
tails like how much data to prefetch and when to trigger
the prefetch; thecache management module deals with
preserving useful prefetched data until I/O requests for
the data arrive. It is the cache management module that
determines the size of the prefetch cache and the prefetch
cache replacement policy.

Sequential detection module: The sequential detec-
tion module determines whether a missed I/O request
is part of a sequential stream. It is an optional mod-
ule in prefetching techniques. Some prefetching tech-
niques use access patterns that are not based on sequen-
tiality to predict what data to prefetch [10, 17, 27, 41],
while other prefetching techniques prefetch sequential
data without any analysis of access patterns [37, 38]. For
example, the Prefetch-On-Miss technique activates se-
quential prefetching whenever an I/O request misses in
the read cache without checking for sequentiality [35].

If the sequential detection module is present in a
prefetching technique, then it is activated when an I/O
request misses in the cache. Most current prefetching
techniques use the cache to track addresses [18, 19] or
predict future accesses based on previous access pat-
terns [6, 12, 20] in the cache. Some techniques use of-
fline information [23, 25, 26] and need to know future
data access patterns for prefetching. Every I/O request

that misses in the cache activates the sequential detec-
tion module which searches the read cache for contigu-
ous data. If contiguous data are found in the cache, then
a sequential stream is detected and prefetching is acti-
vated for the detected stream. Henceforth, we shall re-
fer to theseCache basedPrefetching techniques asCaP
techniques. There are several variations of the CaP tech-
nique. For example, instead of detecting a sequential
stream the first time contiguous data are found in the
cache on a miss, the detection technique could treat the
missed I/O request as a potential start of a sequential
stream. In this case, prefetching is not triggered imme-
diately. Instead, a flag is set in the cache line where the
missed I/O request is loaded. If this flagged cache line is
found to be contiguous to yet another incoming missed
request, a sequential stream is detected and prefetch is
triggered.

There is very limited prior work on table based se-
quential prefetching techniques in storage devices. A ta-
ble has been used in main memory hardware caches to
keep track of data access patterns [8]. Mohan et al. [32]
developed an algorithm with a stream table for processor
caches which determines the spatial locality in an appli-
cation’s memory reference. The table saves stream infor-
mation that has been detected. A table has been used in
disk caches to predict sequential accesses [21]. The ta-
ble stores time stamps associated with each entry in the
cache and these time stamps are used in making prefetch-
ing decisions. A prefetching technique for networked
storage systems called STEP [29] has been proposed in
a most recent study. It uses a table for sequential ac-
cess detection and prefetching. The table is maintained
as a balanced tree and each entry records information for
a recognized sequential stream or a new stream. While
TaP also has a table, unlike these techniques, TaP uses
the table to store different information (for example, the
TaP table does not store time stamps and does not record
information for recognized sequential streams).

While a lot of work has been done on workload predic-
tion and prefetching in numerous areas such as proces-
sors [8, 9], web architecture [15], databases [12, 36], and
file systems [7, 28], the characteristics of their workload
are different from those of a storage system workload. In
addition, access pattern prediction in those fields requires
application or file system information while such infor-
mation is not available to an independent storage system.
For example, ZFS uses semantic information about file
system to detect sequential streams [1].

Prefetching module:
The prefetching module of a prefetching technique is

activated when an I/O request hits in the prefetch cache
or when the sequential detection module identifies a new
sequential stream. The prefetching module determines

how much data to prefetch. If data corresponding to sev-
eral I/O requests are prefetched at a time, then prefetch-
ing is not triggered every time there is a hit. The prefetch-
ing module determines when to trigger a prefetch. There-
fore, the prefetching module determines the efficiency of
a cache prefetching technique once sequential streams
are detected. For example, it would be sufficient to
prefetch only one request at a time for a sequential stream
with a low arrival rate, but the technique would have to
prefetch more requests for a sequential stream with a
high arrival rate. However, other factors must be con-
sidered too. For example, if the traffic at the disks is
high, then prefetching should be triggered early enough
for the prefetched data to arrive at the cache in time to
result in hits. Gill and Bathen [18] developed a tech-
nique that determines the prefetching trigger point and
the prefetching degree (i.e., amount of data to prefetch)
based on the workload intensity and storage system load.
Several other papers have analyzed the prefetching de-
gree based on various factors [11, 13, 35, 37, 38].

Cache management module:
The cache management module determines the cache

replacement policy and the prefetch cache size. Typi-
cally, the prefetch cache is managed along with the rest
of the read cache as a single unit. There is no separate
space or replacement policy allocated for the prefetch
cache. Instead, prefetched data are loaded into the sin-
gle cache and treated just like regular data. When the
cache is full, prefetched data are thrown out like the rest
of the data depending on the cache replacement policy.
Treating prefetched data like the rest of cache data is not
necessarily a good idea. Patterson et al. [34] developed
a cache module which contains three partitions based
on hint information from the applications. Pendse and
Bhagavathula [35] divided the read cache into fixed-size
prefetch and random (including re-reference and old I/O
request data) caches, and analyzed the prefetch cache re-
placement scheme.

ACME [4] and ARC [31] are two techniques that have
different replacement policies for different cache por-
tions. They use a virtual cache to manage their cache
replacement policies. ACME maintains data in caches as
objects and a set of virtual caches (i.e., tables) is designed
to keep past object header information for the distributed
caches. Thus header information in each virtual cache
is used to make decisions regarding replacement poli-
cies for the corresponding real cache. ARC separates
the cache into two portions, one dedicated to the most
recently-used and the other to the most frequently-used
data. A cache directory (or table) is used for tracking
the “recency” and “frequency” of past requests to change
the size of both cache portions. The virtual caches in
these two techniques are used neither for detection nor

prefetching of sequential streams. SARC [19] divides
the read cache into prefetch and random cache lists and
compares the relative hits in the bottom of the two lists
to adapt the size of the lists dynamically. However, their
sequential detection module is based on CaP, so they
store some old data (although in two lists) for sequen-
tial stream detection (and re-reference hits). Compared
to the techniques above, TaP is designed to use a table
for lower level storage sequential detection, prefetching,
and cache sizing in low level storage.

2.1 Prefetching technique classification

As mentioned earlier, the sequential detection module is
an optional component of prefetching techniques. Based
on the existence or lack of the sequentiality detection
module and on when prefetching is triggered, the sequen-
tial prefetching techniques can be classified as follows.

1. Always Prefetch (AP): There is no sequential de-
tection module and this technique always triggers a
prefetch regardless of whether an I/O request hits or
misses in the cache.

2. Never Prefetch (NP): There is no sequential detec-
tion module and this technique does no prefetching.

3. Prefetch on M iss (PoM): There is no sequential de-
tection module and this technique prefetches every
time an I/O request misses in the read cache.

4. Prefetch on Hit (PoH): Prefetch is triggered by a
cache miss with some detection schemes, and then
every I/O request that hits in the read cache causes
a prefetch. This is the only class of prefetch tech-
niques that has a sequential detection module. If the
degree of prefetch is high (i.e., data equivalent to
several I/O requests are prefetched), then prefetch-
ing is not triggered upon every hit.

Based upon whether the sequential detection mod-
ule is cache based or table based, the PoH tech-
niques are further classified as follows.

(a) CaP: The set of prior I/O request data stored in
the read cache are searched to identify the start
of a sequential stream. Most existing storage
system prefetch techniques belong to this cat-
egory.

(b) TaP: The set of prior I/O request addresses
stored in the TaP table are searched to identify
the start of a sequential stream and to deter-
mine the optimum prefetch cache size. Both
TaP in this paper and STEP [29] are newly
developed techniques that belong to this cat-
egory.

3 Design of the TaP technique

3.1 Motivation and goal

The design of the TaP technique is motivated by the fol-
lowing observations of lower levels of storage systems:

1. There is little value in caching old request data be-
cause the proportion of this data that will be re-
referenced is small [33].

2. Most I/O workloads contain some sequential access
patterns because file systems and storage systems
try to manage data layout on disk devices such that
data that are sequential in the application and file
system space are also sequential in the disk address
space. However, individual sequential patterns are
interleaved with each other and therefore the aggre-
gate I/O workload displays little sequentiality.

3. Although current middle or large storage systems
have big caches and powerful controllers, their
prefetching performance is poor. The study in [39]
shows that the prefetching technique does not ben-
efit the performance of the evaluated storage sys-
tem when there are more than four sequential I/O
streams since the prefetching technique does not
recognize the interleaved sequential pattern in the
workload. In addition, most well-studied prefetch-
ing techniques with advanced sequential detection
schemes are designed for higher levels of computer
systems. These are not suitable for storage systems
because they need information from file systems or
applications which is not available to storage sys-
tems.

4. Performance of a sequential prefetching technique
is degraded if it uses an inefficient sequential detec-
tion module because of the following reasons:

(a) False positive detection errors generate unnec-
essary I/O traffic at the disks and increase the
response time by considering random data as
sequential. Moreover, valuable cache space
is used to store useless data, thereby displac-
ing correctly prefetched data that get evicted
from the prefetch cache before they are used.
The AP and PoM techniques are both likely
to cause this problem if the I/O workload
contains random streams or partly sequential
streams.

(b) False negative detection errors decrease the hit
rate and increase the response time by failing
to identify sequential streams in the workload.
The NP technique always faces this problem
since it never prefetches. The CaP technique

faces this problem when the workload consists
of a mix of random and sequential streams be-
cause, in this case, the history of request ad-
dresses is too short to record sequential pat-
terns.

(c) Correctly prefetched data from sequential
streams could be evicted before the data can
be used. This can occur if the prefetch cache
gets full. For a given read cache size, AP, PoM
and the CaP techniques are more susceptible
to this problem since either they prefetch too
much useless data (as in AP and PoM) or they
store data from past I/O requests (as in CaP).

With the above observations in view, TaP is designed
to detect, prefetch, and cache only sequential streams
into its prefetch cache. Consequently, TaP is capable of
identifying the minimal amount of data that should be
prefetched and cached, and can therefore maintain the
cache size at an optimal level. We consider a workload
solely consisting of reads—the write workload is han-
dled by the write cache.

At the heart of the TaP technique is the TaP table.
TaP uses this table for two crucial functions: sequential
stream detection and cache size management. The ad-
dress of a request that is not found in the prefetch cache,
is searched in this table. If it is not found in the table
either, then assuming that the address is part of a new se-
quential stream, the address of the next expected request
in this stream is recorded in the table. If the assumption
turns out to be correct, then the address recorded in the
table will be seen in the workload in the near future, and
TaP will begin prefetching that stream when this occurs.
As the table is populated with new addresses of poten-
tially sequential streams, old addresses that have not led
to a stream detection so far, are evicted on a FIFO basis.
In this way, the table plays a key role in TaP’s ability to
detect sequential streams.

The TaP table also plays a central role in maintaining
the prefetch cache size at an optimal level. In addition
to addresses of cache misses, addresses of requests that
are evicted from the cache before they are hit are also
inserted into the TaP table. These addresses are marked
with a special flag,replaceFlag, in the table. TaP ex-
ploits the possibility that such pre-hit evictions may be
the result of a smaller than optimal cache in the follow-
ing way. If such flagged, evicted streams are soon re-
detected by the detection method discussed above, then
TaP rightly concludes that the cache is undersized and
initiates a cache size increment. This upward move-
ment of the cache size is balanced by the TaP Decrement
Module (discussed below), which maintains a downward
pressure on the cache size to prevent cache inflation.

Table 1: Important constants in TaP

Variables/constants Usage

prefetchDegree prefetch size
triggerOffset when to prefetch
strideRange sequential stream detection

range
incrAmount how much to increase

prefetch cache size
decrAmount how much to decrease

prefetch cache size
measurementWindow time window for hit rate

measurement

In summary, an address that ends up in the table does
so in one of exactly two ways. A request that misses in
the cache and the table is inserted into the table. The
address of a pre-hit eviction from the prefetch cache is
also inserted into the table. Data that are cached do not
have entries in the table.

3.2 TaP pseudocode

The TaP pseudocode is listed in Figure 1. The important
constants used in the pseudocode are listed in Table 1.
The first three constants are the inputs to the TaP algo-
rithm provided by the system administrator. These affect
the detection and the prefetching module. The variables
prefetchDegree andtrigOffset relate to the prefetching
module, and determine how much data to prefetch and
when to trigger a prefetch. The prefetching module is
separate from the sequential detection module and is not
the focus of TaP, so the current version of TaP uses con-
stant values. However, a more versatile prefetching mod-
ule can be incorporated into TaP and will improve the
overall performance of TaP. The constantstrideRange
is used to specify the sequential stream detection range.
When the TaP Table is searched, a hit within a stride
range is considered (TableHit(req, strideRange)). The
reason for searching within a stride range is that operat-
ing systems sometimes submit requests out of sequence.
The last three parameters affect the cache management
module. They should be chosen carefully by the ad-
ministrator because they determine the tradeoff between
performance and cache size economy. While the pseu-
docode implements the TaP table as a queue for ease
of explanation, a hash table is a more appropriate data
structure for the table. In addition, the TaP table bound
derived below (Equation 4) justifies that the growth rate
of the table size is sufficiently small. Therefore, the table
search time is likely to be negligible. Moreover, the short
table search time also guarantees that the controller-CPU
cost is small since searching the TaP table is the CPU’s

Function TAPCacheManage(req)

totalRequests++;1

if req ∈ Cache then2

ProcessCacheHit(req);3

totalHits++;4

else5

ProcessCacheMiss(req);6

if totalRequests % measurementWindow == 07

then

if HitRateStable() then8

DecrCacheSize(decrAmount);9

Function ProcessCacheHit(req)

Serve req from Cache;1

Evict req from Cache;2

if req.prefetchTrigger == True then3

startAddr ← req.addr + 1 + triggerOffset;4

Prefetch(startAddr, prefetchDegree,5

triggerOffset);

Function ProcessCacheMiss(req)

if t ← TableHit(req, strideRange) then1

if t.replaceF lag == True then2

IncrPrefetchCacheSize(incrAmount);3

Prefetch(req.addr, prefetchDegree + 1,4

triggerOffset);

else5

Fetch req from Disk;6

TableFIFOInsert(req + 1, False);7

Serve req from Cache;8

Evict req from Cache9

Function FIFOEvict(queue)

h← dequeue(queue.head);1

return h2

Function HitRateStable

currHitRate←1

totalHits/measurementWindow;
if |currHitRate− prevHitRate| ≤ δ then2

stable ← True;3

else4

stable ← False;5

prevHitRate← currHitRate;6

totalHits← 0;7

return stable8

Function Prefetch(startAddr, degree, trigOff)

endAddr ← req.addr + degree− 1;1

for all i ∈ [startAddr, endAddr] do2

if Cache is full then3

evictedReq ← FIFOEvict(Cache);4

TableFIFOInsert(evictedReq, True);5

Fetch data of i from Disk;6

Insert i into Cache by FIFO;7

trigReq.addr ← endAddr − trigOff ;8

trigReq.prefetchTrigger ← True9

Function TableHit(req, strideRange)

for any r ∈ [req.addr, req.addr + strideRange]1

do

if r ∈ TAPTable then2

Remove r from TAPTable;3

return r;4

return Null5

Function TableFIFOInsert(req, flag)

if TAPTable is full then1

FIFOEvict(TAPTable);2

entry ← enqueue(TAPTable, req);3

entry.replaceF lag ← flag4

Figure 1: TaP pseudocode

biggest cost.
As shown in the pseudocode, when a new request ar-

rives, it is handled by the TaPCacheManage() function.
The TaP cache manager decides whether the request is
part of an already detected sequential stream or if it
should be recorded for future detection.

ProcessCacheHit()If the request generates a cache hit,
TaP serves the request from the cache. TaP inter-
prets this request as being part of an already recog-
nized sequential stream and prefetches the next re-
quest in the stream. The previous request is evicted
from the cache.

ProcessCacheMiss()If the request is not found to be in
the cache, then its address is searched in the TaP ta-
ble. If the request’s address is found in the table,
then this implies that two “consecutive” requests
have been detected. TaP takes this as an indica-
tion of the start of a sequential stream and begins
prefetching this stream. In addition, if thereplace-
Flag field of the request’s entry in the table is set,
then this entry must be the result of a pre-hit evic-
tion from the cache. Therefore, TaP increments the
cache size byincrAmount. (The Increment Module
is discussed in further detail below.) If a request is
not found to be in the table, then the address of the
expected succeeding request is recorded in the table
for detection in the future.

The TaP cache manager periodically monitors the
cache size for inflation. During every period of time
wheremeasurementWindow requests arrive, the TaP
cache manager maintains a count of the total number of
cache hits accrued.

HitRateStable() At the end of this measurement period,
the cache manager compares theshort term hit rate
in the current window to its value in the previous
window. We define the short term hit rate as the
ratio of hits to total requests in a measurement win-
dow. If the current and previous values are within
some small additive constantδ of each other, then
the cache manager concludes that the hit rate has
been fairly stable. It takes this as an indication that
the cache is adequately sized and might even be in-
flated. Therefore, it decreases the cache size by a
preset amount equal to thedecrAmount.

We next describe the rationale behind the TaP Incre-
ment and Decrement modules.

3.3 TaP cache size management modules

The degree of sequentiality of the I/O workload changes
over a time period. The TaP table is a useful tool for

determining whether the prefetch cache size is too small
for the current workload. ThereplaceFlag field of an
entry in the TaP table is used for this purpose. The de-
fault value of thereplaceFlag variable is false. When
a prefetched request is evicted before a hit by the re-
placement scheme, the request’s address is inserted into
the TaP table with thereplaceFlag set to true. When-
ever there is a table hit, thereplaceFlag is checked. If
the flag is true, then the prefetch cache size is increased.
Thus, entries that are reinstated into the TaP table from
the cache are used to detect whether the cache size is too
small.

While reinstated entries are a reliable indicator of
cache space scarcity, a perfect indicator of cache size
inflation is not obvious. The TaP cache manager uses
a “downward pressure” approach to cache size deflation
using the measured short term hit rate. The basic idea
is that whenever the TaP cache manager observes the hit
rate measured over some short term window of time to
be stable (measurementWindow), it (pessimistically)
assumes that the cache is slightly inflated and begins a
gradual decrease of the cache size. The decrease contin-
ues so long as the hit rate remains stable. If the cache size
falls below the optimal value, then the hit rate changes
and this change prevents the TaP cache manager from de-
creasing the cache size any further. Moreover, a smaller
than optimal cache size will lead to pre-hit evictions from
the cache into the TaP table and re-insertions from the
TaP table into the cache, which will quickly trigger an in-
crease in the cache size back to the optimal value. Thus,
as a result of the downward pressure from the decrement
module, the cache size always rides close to the optimal
value.

While the cache size oscillates around the optimal
value when the workload is stable, the extent of these
oscillations is small as seen in Figure 3. For example, at
time 50000, the optimal value for the cache size is 50.
The TaP cache manager maintains the cache size close
to this value with an oscillation of less than five cache
lines independent of the optimal cache size. In addition,
these oscillations do not burden the CPU much, because
there are only a few more operations (such as increasing
or decreasing the cache size) added in each of themea-
surementWindows where the oscillations occur.

3.4 Bounding cache and table size

The table size,T, refers to the number of request ad-
dresses that can be stored in the TaP table. The table
replacement scheme is a FIFO policy. When a request
address gets a hit, it is removed from the TaP table. The
cache size,C, refers to the number of cache lines assum-
ing that exactly 1 prefetch request is stored in each line.
Without loss of generality, it is assumed that the prefetch

degree is 1 request and prefetch is triggered upon every
hit in the prefetch cache.

Below we derive a simple optimum bound for the
cache size and simple pessimistic bounds for the cache
and table size. The TaP technique initializes the prefetch
cache size to the optimum bound, since TaP continually
adapts the size of the prefetch cache size to match the
sequential degree of the workload. The TaP table size is
set to the pessimistic bound since the memory space used
by a table could be orders of magnitude smaller than the
cache size (i.e., a cache line is an order of magnitude
larger than a table entry).

The prefetch cache size must be large enough to hold
prefetched data from each of the sequential streams.
Suppose there areS sequential or partly sequential
streams accessing the storage device. Then the cache size
must contain at leastS lines.

C ≥ S (1)

We now derive a pessimistic bound forC (and T).
For real storage systems, it is difficult to get informa-
tion about the degree of sequentiality of each workload
stream or the variance in the inter-arrival rate of each
stream. So, we derive worst-case bounds using only
the number of (sequential + random) workload streams
M and the number of sequential streamsS. The bounds
are derived as a function of a parameterǫ which repre-
sents the acceptable percentage of reduction in the read-
ahead hit rate. That is, if the acceptable percentage re-
duction in the hit rate is given, then a pessimistic bound
for C andT can be computed.

Consider a workload consisting ofM interleaved
streams. A prefetching technique tries to ensure that a
request prefetched for streami survives in the cache un-
til the next I/O request from streami arrives. Between
two requests from streami, there can be several requests
from theM − 1 other streams. Of theseM − 1 streams,
there can be at mostS−1 sequential streams. A prefetch-
ing technique should ensure that the request from stream
i is not evicted from the cache due to cache insertions
resulting from these sequential stream arrivals. Letse-
qarrival# represent the number of requests that arrive
from other sequential streams between two requests from
streami.

Consider a synthetic workload in which (a) future re-
quest arrivals are independent of past arrivals, and (b)
there is equal probability that the next arrival is from any
of theM streams. Then,

Pr(seqarrival# = n) =

(

S− 1

S

)n

×
1

S

Some of theseseqarrival# arrivals could be from rec-

ognized sequential streams and would hit in the cache.
Therefore, the prefetches initiated by these requests
would not need new insertions into the cache. The se-
quential arrivals that miss in the cache (and hit in the
TaP table) are the only arrivals that cause new insertions
into the cache. Letinsertions# represent the number
of requests that result in new insertions into the prefetch
cache between two arrivals from a streami. Hence,
insertions# ≤ seqarrival#.

Since the cache replacement scheme is a FIFO, a new
prefetched request is stored at location 0 of the cache.
For this prefetched data to be useful, its corresponding
I/O request must arrive withinC or fewer requests. The
probability that the number of cache insertions in the
worst case are no more than can fit in the cache (with-
out evicting the prefetched request) is:

Pr(insertions# < C) =

C−1
∑

k=0

(

S− 1

S

)k

×
1

S

= 1−

(

S− 1

S

)C

Therefore,

Pr(insertions# ≥ C) =

(

S− 1

S

)C

(2)

Equation (2) provides the probability that a prefetched
request is evicted from the cache before it is used. We
bound this probability of eviction to some small value
ǫ > 0.

(

S− 1

S

)C

≤ ǫ.

This implies that the cache size

C ≥
log(ǫ)

log
(

S−1

S

) . (3)

Following an approach analogous to the one taken for the
cache size, we can obtain a bound on the TaP table size

T ≥
log(ǫ)

log
(

M−1

M

) . (4)

Although these bounds are derived and used for syn-
thetic workloads, they are also a guide for evaluating
TaP’s performance on real workloads. The bound in
Equation (4) allows us to choose the tradeoff between
maximizing the hit rate and minimizing the table size
in inverse relation to the value chosen forǫ. The CPU
cost incurred by TaP is dominated by the size of the table
that is searched for hits. Since this cost is only loga-
rithmically related to the miss probability and inverse-
logarithmically related to the fraction of interleaving
streams, it is not prohibitively large.

Table 2: Storage simulator setup

Disksim parameter Value

storage cache line 8 blocks
prefetch cache replacement policyFIFO

storage RAID organization RAID 5
stripe unit size 8 blocks

number of disks 4
disk type cheetah9LP

disk capacity 17783240 blocks
mean disk read seek time5.4 msec

maximum disk read seek time10.63 msec
disk revolutions per minute 10045 rpm

4 Experimental evaluation

We evaluate the TaP technique using theDisksim 3.0
simulator [5]. Table 2 gives the setup used for our exper-
iments. We configured four Cheetah9LP 9GB disks as
a RAID-5 system. The cache is divided into cache lines
of size 8 blocks with 512 bytes per block. The cache
size and the I/O workload are varied in our experiments.
We use both synthetic workloads and realistic workloads.
The synthetic workload uses several possible combina-
tions of random and sequential streams in order to eval-
uate the technique under different conditions. It should
be noted that due to memory and computing constraints,
our simulation storage setup is much smaller than real
storage systems, so the workload is also scaled down ap-
propriately.

We compare the TaP technique against the CaP, AP,
PoM, and NP techniques. The storage system’s mean re-
sponse time and the cache’s prefetch hit rate are mea-
sured for the various prefetch techniques. Parameters
such as prefetching degree and prefetching trigger are set
at similar values for each of the techniques. The prefetch-
ing degree is set at 1 (i.e., only 1 request is prefetched),
so prefetching is triggered upon every hit in the prefetch
cache. The TaP table length is set at the upper limit for
the workload (Equation 4). The memory space utilized
by TaP in our experiments is negligible compared to the
cache size—the maximum space used by the TaP table in
all our experiments is 4KB. To ensure fairness, we com-
pare the performances of the various techniques under
similar workloads and cache sizes. Note that the cache
size for compared techniques is set to the sum of the
cache and table size used by TaP. Both TaP and CaP initi-
ate prefetch under similar conditions—for TaP, prefetch
is initiated upon the first hit in the table, and for CaP,
prefetch is initiated when an incoming request is found to
be contiguous to an old request stored in the read cache.

4.1 TaP cache size manager in action

The first experiment evaluates the performance of TaP’s
cache size manager as the workload changes. Figure 3
shows the result of a simulation of the TaP cache man-
ager when the synthetic workload illustrated in Figure 2
is used. The workload starts with 10 streams with a se-
quentiality of 10%. These short-lived streams can be
seen as a dense band of mostly random points from time
0 to 10000 in Figure 2. At time 8000, 50 completely
sequential streams arrive. These appear as almost hori-
zontal lines from time 8000 to time about 140000 in Fig-
ure 2. The TaP cache manager reacts to the influx of se-
quential streams by increasing the cache size. When the
10% sequential streams finish, the TaP cache manager
decrements the cache size, without opposition from the
increment module, until the optimal size of 50 is reached.
This size is optimal because there are only 50 sequential
streams in the workload at this point. Approximately at
time 80000, 100 completely sequential streams are added
to the workload which prompts the TaP cache manager to
increment the cache size to the new optimal value of 150.
At time 140000, the first 50 sequential streams finish.
Again, the downward pressure meets no resistance and
the cache size settles to the optimal value of 100. At time
200000, 50 streams with sequentiality 70% arrive and the
cache size is incremented to accommodate them. The
increase is larger than 50 because more cache space is
required to get hits on streams with lower sequentiality:
this is because of the single unavoidable extra prefetch
at the end of a sequential run in a partially sequential
stream. The sequential streams that arrived at time 80000
finish at time close to 220000 and the 50 streams with
70% sequentiality finish a little after time 250000. Both
of these events allow the decrement module to gradually
decrease the cache size. The workload changes again at
times 250000 and 280000 when 10 streams with sequen-
tiality 90% and 20 streams with sequentiality 100% are
added, respectively. The cache is still inflated when these
streams arrive, and so the gradual decrease of the cache
size continues. At time 300000, the cache stabilizes to
a value optimal for the 90% sequential streams. When
these end, the cache size finally decrements to the opti-
mal value of around 20 for the last remaining 20 com-
pletely sequential streams. Figure 4 shows that on aver-
age, a hit rate close to the maximum achievable with the
current workload, is maintained throughout the simula-
tion.

In summary, this experiment illustrates that the TaP
cache manager is appropriately responsive to the changes
in a non-stationary workload. The increment module,
using the pre-hit eviction information from the table, is
highly effective in quickly incrementing the cache size
to a value that is optimal for the current workload. The

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

B
lo

ck
 a

dd
re

ss

Time

Figure 2: A visualization of the workload used for the
TaP cache management simulation

 0

 50

 100

 150

 200

 250

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

C
ac

he
 s

iz
e

Time

TAP cache size

Figure 3: A sample of the behavior of the TaP cache man-
ager

decrement module, by maintaining a downward pressure
on the cache size, prevents cache size inflation. Together,
the two modules force the cache size to ride close to a
value optimal for the current workload.

4.2 A comparison of TaP and CaP

Figure 5 shows the results of a comparison of the TaP and
CaP techniques on the basis of the cache size required by
each to achieve the best possible hit rate on a given work-
load. In this experiment, we generated a synthetic work-
load of the following type. The workload is composed
of a total of 50 streams, each of which arrives at an in-
stant chosen uniformly at random in the simulation. Each
stream in the workload is either completely sequential or
completely random and is of a fixed finite duration much
smaller than the length of the simulation. The number of
completely sequential streams is varied from 1 to 50 (X
axis of Figure 5), the remainder of the streams are ran-
dom. First, the workload is run through a cache managed
by the TaP technique with a table length of 1000 entries,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

H
it

ra
te

Time

Long term hit rate
Short term hit rate

Figure 4: Short and long term hit rate obtained using the
TaP cache manager

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50

C
ac

he
 s

iz
e

(li
ne

s)
 r

eq
ui

re
d

fo
r

m
at

ch
in

g
hi

t r
at

e

Number of sequential streams (out of 50)

TaP
CaP

Figure 5: A comparison of cache sizes required by TaP
and CaP to achieve matching hit rates as a function of the
number of sequential streams (from 1 to 50).

and the hit rate achieved by TaP is recorded. Next, in
order to find the cache size at which the CaP technique
achieves the same hit rate as TaP, a series of experiments
are conducted using the same workload as offered to TaP.
We define the hit rate achieved by CaP to be the same as
TaP when the relative difference between the two rates is
no more than 5%.

Clearly, the cache size required by CaP to achieve the
same hit rate as TaP is almost an order of magnitude
larger when the number of sequential streams is small.
This underscores the effectiveness of TaP’s table-based
techniques in two ways. First, it shows that TaP can de-
tect and exploit sequentiality with a small prefetch cache
size even when the sequentiality is latent and interleaved
in a large amount of random data. This improvement
in detection provides a significant reduction in the re-
sponse time for individual sequential streams, even when
the average hit rate of the workload is arbitrarily low.
Thus, TaP succeeds in “connecting the dots” while us-
ing a minimal amount of cache resource. The additional

resource used by TaP, the table, is only a fraction (2-10
cache blocks) of the size of the cache. Second, as a re-
sult of the superior detection capability, the TaP cache
manager’s table-based cache inadequacy indicator can
accurately and promptly respond to changes in a non-
stationary workload.

4.3 SPC2-like workload

SPC2 [3, 18] is a popular benchmark that simulates
workloads generated by applications that access their
workload sequentially. Since we do not have access to
the official SPC2 workload generator, we generated the
workload using SPC2 published specifications [3]. The
SPC2 workload is an interleaved mixture of highly se-
quential streams. Hence, all prefetched data would even-
tually result in hits if the data remain in the cache un-
til their corresponding I/O requests arrive. In our ex-
perimental evaluation, we measure the mean hit rate and
the response time as a function of some control variable
such as the number of sequential streams or the cache
size. However, in each experimental run, the cache size
must be held constant for two reasons. First, the compet-
ing algorithms (AP, PoM, CaP) require a constant cache
size. Second, we are interested in measuring perfor-
mance given a fixed cache size. Therefore, TaP’s dy-
namic cache sizing function is disabled for all the ex-
periments in the sequel. We compare the performances
of the various techniques under similar workloads and
cache (+ table) sizes. A side-effect of turning off the
prefetch cache sizing function is that thereplaceFlag
has no impact. That is, when a prefetch request is thrown
out of the prefetch cache by the replacement scheme, its
address is not put in the TaP table.

In our experiments, the number of streams is var-
ied from 1 to 500. Depending on the cache size and
prefetching technique, some of the prefetched data may
get thrown out before they are used. PoM and NP per-
form far worse than the other techniques for obvious rea-
sons, so below we analyze the results for TaP, CaP, and
AP. From Figure 6 (a) one can see that when there is suf-
ficient cache space to store at least one request from each
of the streams, the cache hit rate is close to 1 for AP, TaP,
and CaP (while PoM has a hit rate of 0.5 and NP has a
hit rate of 0). As the number of sequential streams in-
creases (beyond 40), the cache is no longer large enough
to hold data from all the streams. Therefore, the hit rate
gradually decreases.

We first compare the TaP with the CaP technique as
the number of streams increases. TaP performs better
than CaP since the small cache size makes it difficult for
CaP to identify sequential streams. As a result, the total
number of prefetches for CaP are far fewer than for TaP
as shown in Figure 6 (c). We define theuseful prefetch

ratio as the total number of prefetched requests that re-
sult in hits divided by the total number of prefetched
requests. CaP stores random data for sequentiality de-
tection thereby increasing the probability that prefetched
data are thrown out before being used. Therefore, CaP
has a lower useful prefetch ratio than TaP as shown in
Figure 6 (d). Overall, TaP has a higher hit rate and a
lower response time (Figure 6 (a) and (b)) than CaP.

We now compare the TaP and the AP techniques. TaP
and AP perform similarly when the cache size is large
enough to store data from all the streams. As the num-
ber of streams increases, the performance of AP is worse
than that of TaP (Figure 6 (a) and (b)), and the reason can
be seen by studying Figure 6 (c) and (d). As the number
of streams increases relative to the cache size, AP contin-
ues to prefetch more than TaP. When a prefetched request
is thrown out by the replacement scheme, TaP treats the
next request from this stream as a random request and
does not prefetch. (The address of the replaced request is
not inserted into the TaP table since the cache size is not
dynamically increased in this experimental evaluation.)
AP prefetches on hits/misses while TaP only prefetches
on hits. When the cache is too small for the workload,
AP’s useful prefetch ratio is much smaller than TaP’s
useful ratio, and as a result AP performs worse than TaP.
The comparison between AP and TaP shows the negative
impact of prefetching for this highly sequential workload
when the cache size is too small to hold data from all the
sequential streams. Figure 7 underscores this point: here,
the cache size is very small. The performance of AP is
comparable to CaP up to a certain point, but as the num-
ber of streams continues to increase, the performance
of AP becomes worse than NP. Thus, for really small
caches, never prefetch is better than always prefetch even
when all the streams are highly sequential. TaP outper-
forms all the techniques evaluated for this cache size and
workload. The mean response time for TaP is 20% lower
than that of the other techniques.

4.4 Mix of 100% sequential streams and
100% random streams

In this set of experiments, a synthetic workload is used.
The cache size and the total number of streams is fixed.
Figure 8 shows the performance of the various tech-
niques as the number of sequential streams is increased.
The hit rate of all techniques (except NP) increases as
the number of sequential streams increases. TaP con-
sistently performs better than the other techniques and
shows more improvement than the other techniques as
the number of sequential streams increases. CaP per-
forms worse that TaP, AP, and PoM as the number of
sequential streams increases since CaP’s sequential de-
tection module is inefficient for this workload. AP and

 0

 0.2

 0.4

 0.6

 0.8

 1

 32 64 128 256 512

M
ea

n
H

it
R

at
e

Total number of streams (a)

TaP
CaP

AP
PoM

NP

 0

 2

 4

 6

 8

 10

 32 64 128 256 512

M
ea

n
re

sp
on

se
 ti

m
e

(m
se

c)

Total number of streams (b)

TaP
CaP

AP
PoM

NP

 0

 2000

 4000

 6000

 8000

 10000

 32 64 128 256 512

T
ot

al
 n

um
be

r
of

 p
re

fe
tc

he
s

Total number of streams (c)

TaP
CaP
AP
PoM
NP

 0

 0.2

 0.4

 0.6

 0.8

 1

 32 64 128 256 512

U
se

fu
l p

re
fe

tc
h

ra
tio

Total number of streams (d)

TaP
CaP

AP
PoM

NP

Figure 6: Performance of prefetching techniques with a cache of 4MB, table of 4KB, and the SPC2-like workload.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

M
ea

n
hi

t r
at

e

Total number of streams

TaP
CaP

AP
PoM

NP

 0

 2

 4

 6

 8

 10

 1 2 4 8 16 32 64

M
ea

n
re

sp
on

se
 ti

m
e

(m
se

c)

Total number of streams

TaP
CaP

AP
PoM

NP

Figure 7: Performance of prefetching techniques with a cache of 240KB, table less than 0.8KB, and the SPC2-like
workload.

 0

 0.2

 0.4

 0.6

 0.8

 1

 32 64 128 256

M
ea

n
H

it
R

at
e

Total number of sequential streams

TaP
CaP

AP
PoM

NP

 0

 2

 4

 6

 8

 10

 32 64 128 256

M
ea

n
re

sp
on

se
 ti

m
e

(m
se

c)

Total number sequential of streams

TaP
CaP

AP
PoM

NP

Figure 8: Performance of prefetching techniques with a cache of 4MB, table of 4KB, on a workload consisting of 300
streams of whichm (X axis) are completely sequential and all others are completely random.

PoM have higher response time than NP when there are
few sequential streams, but this changes as the fraction
of sequential streams increases.

4.5 Varying cache sizes

This set of experiments demonstrates the efficient use
of cache space by the TaP technique. In the first set of
experiments (Figure 9), the workload is fixed at 20 ran-
dom streams and 60 sequential streams. Regardless of
the cache size, TaP consistently performs better than the
other techniques because of TaP’s efficient sequentiality
detection module. In most cases, TaP uses less than half
the cache space that CaP uses to get the same perfor-
mance. For example, Figure 9 (b) shows that in order
to keep response time under 4ms, TaP needs only 2MB
while CaP and AP need more than 4MB . (PoM and NP
are never able to achieve a response time of 4ms in this
set of experiments.)

In the second set of experiments (Figure 10), the work-
load is fixed at 60 random streams and 20 sequential
streams (i.e., the number of sequential streams is de-
creased making the workload more random). With just
25% of the workload consisting of sequential streams,
TaP is still able to detect the small degree of sequential
streams with very small cache sizes. Both AP and CaP
perform poorly for different reasons: AP’s failure results
from prefetching both random and sequential stream data
into a small cache, so prefetched data from sequential
streams get thrown out before they result in hits. CaP’s
failure results from its dependence on the cache size for
sequentiality detection; the small cache fills quickly with
random data, so sequential stream data are thrown out
before they can be used for sequentiality detection. The
efficient use of the cache by TaP is highlighted by this ex-
periment. For example, when the prefetch cache is about

1MB, TaP’s hit rate is about 4 times higher than all other
techniques; and to achieve a response time of 6ms, TaP
uses only 1 MB while CaP uses 4MB.

4.6 SPC1-like–read workload

SPC1 [2, 22, 30] is a popular benchmark that simulates
workloads generated by business applications. Since we
do not have access to the official SPC1 workload genera-
tor, we use a freely available alternative SPC1 workload
generator [14]. We modified the workload by ignoring
all write requests. Thus, the final workload is a SPC1-
like–read workload. The number of Business Scaling
Units (BSUs) roughly corresponds to the number of users
generating the workload [14]. Therefore, the number of
BSUs roughly corresponds to the number of workload
streams.

We fix the cache size and then study the effect of in-
creasing the number of BSUs. Figure 11 shows that the
hit rate of the cache is small even with 1 BSU (hit rate
< 0.3). This implies that the SPC1 workload has low de-
gree of sequentiality. As the number of BSUs increase,
the hit rate of all the prefetching strategies decreases.
This implies that the cache is too small and that the de-
gree of sequentiality per stream is low. Even for a work-
load with such low sequentiality, TaP gives the best hit
rate and the lowest response time.

5 Conclusion

The TaP technique belongs to the class of Prefetch-on-
Hit (PoH) techniques. Unlike existing PoH techniques
that use the read cache to detect sequential streams in the
I/O workload, the TaP technique uses a table to detect
sequential streams. The use of a table by TaP ensures

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000 4000 6000 8000 10000

M
ea

n
hi

t r
at

e

Cache size (KB)

TaP
CaP

AP
PoM

NP

 0

 2

 4

 6

 8

 10

 2000 4000 6000 8000 10000

M
ea

n
re

sp
on

se
 ti

m
e

(m
se

c)

Cache size (KB)

TaP
CaP
AP
PoM
NP

Figure 9: Impact of the cache size on the performance of prefetching techniques, total 80 streams, 60 completely
sequential

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 2000 3000 4000 5000

M
ea

n
hi

t r
at

e

Cache size (KB)

TaP
CaP

AP
PoM

NP

 0

 2

 4

 6

 8

 10

 1000 2000 3000 4000 5000

M
ea

n
re

sp
on

se
 ti

m
e

(m
se

c)

Cache size (KB)

TaP
CaP

AP
PoM

NP

Figure 10: Impact of the cache size on the performance of prefetching techniques, total 80 streams, 20 completely
sequential

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60

M
ea

n
hi

t r
at

e

Number of BSUs

TaP
CaP

AP
PoM

NP

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60

M
ea

n
re

sp
on

se
 ti

m
e

(m
se

c)

Number of BSUs

TaP
CaP

AP
PoM

NP

Figure 11: Performance of prefetching techniques as the number of BSUs (streams) in the SPC-1 workload is varied
with cache size of 240KB

that a longer history of request access patterns can be
tracked by the sequential detection module. This feature
is very useful since I/O workloads consist of interleaved
requests from various applications.

A unique feature of TaP is that the prefetch cache size
is adjusted dynamically based on cache usage informa-
tion from the TaP table. When the I/O workload has
few sequential streams, the prefetch cache size is de-
creased and vice-versa. Our evaluation shows that for
most workloads, TaP performs better than the other tech-
niques for the smallest sized prefetch cache. TaP is su-
perior to cache based PoH (CaP) techniques when the
workload intensity is high and there is a mixture of se-
quential, partly sequential, and random workloads. At
this point, the cache and disks are heavily utilized. The
CaP technique wastes valuable cache space storing old
data for sequential stream detection, particularly when
the re-reference rate is low, as is often the case.

As future work, we plan to develop an integrated table-
based technique that extracts both re-reference and se-
quential stream information from the I/O workload. Cur-
rently, re-reference data are detected when old I/O re-
quest data in the cache are hit. Prior studies have shown
that most of the I/O workload is not re-referenced. How-
ever, a small fraction of the I/O workload gets many re-
reference hits [33, 40]. The use of a table shows promise
in detecting this small fraction of highly re-referenced
data and managing the size of the re-reference cache.

Acknowledgments

We thank our anonymous reviewers for their helpful
comments. We also thank Randal Burns, our shepherd,
for directing the camera-ready version of this paper. This
work was supported in part by the US National Science
Foundation under CAREER grant CCR-0093111.

References

[1] ZFS performance. online, 2007. http://www.
solarisinternals.com/wiki/index.php/
ZFS_Performance.

[2] SPC Benchmark-1(SPC-1) Official Specification, revision 1.10.1.
Tech. rep., Effective 27 Sept. 2006. http://www.
storageperformance.org/specs.

[3] SPC Benchmark-2(SPC-2) Official Specification, vesion 1.2.1.
Tech. rep., Effective 27 Sept. 2006. http://www.
storageperformance.org/specs.

[4] A RI, I., AMER, A., GRAMACY, R., MILLER , E. L., BRANDT,
S. A., AND LONG, D. D. E. ACME: adaptive caching using
multiple experts. InProceedings of the 2002 Workshop on Dis-
tributed Data and Structures (WDAS) (2002), Carleton Scientific.
Extended version of the WDAS 2002 workshop paper.

[5] BUCY, J. S.,AND GANGER, G. R. The DiskSim simulation
environment version 3.0 reference manual. Tech. Rep. CMU-CS-
03-102, Carnegie Mellon University, School of Computer Sci-
ence, January 2003.

[6] CAO, P., FELTEN, E. W., KARLIN , A. R., AND L I , K. A study
of integrated prefetching and caching strategies. InSIGMETRICS
’95/PERFORMANCE ’95: Proceedings of the 1995 ACM SIG-
METRICS Joint International Conference on Measurement and
Modeling of Computer Systems (1995), ACM Press, pp. 188–197.

[7] CAO, P., FELTEN, E. W., KARLIN , A. R., AND L I , K. Imple-
mentation and performance of integrated application-controlled
file caching, prefetching, and disk scheduling.ACM Transactions
on Computer Systems 14, 4 (1996), 311–343.

[8] CHEN, T.-F., AND BAER, J.-L. Effective hardware based data
prefetching for high-performance processors.IEEE Trans. com-
puters 44, 5 (1995), 609–623.

[9] CHI , C.-H.,AND CHEUNG, C.-M. Hardware-driven prefetching
for pointer data references. InProceedings of the 12th interna-
tional conference on Supercomputing ICS (1998), ACM.

[10] CHRYSOS, G. Z.,AND EMER, J. S. Memory dependence predic-
tion using store sets. InProceedings of the 25th Annual Interna-
tional Symposium (1998), Computer Architecture, 1998, pp. 142–
153.

[11] CORTES, T., AND LABARTA , J. Linear aggressive prefetching:
A way to increase the performance of cooperative caches. In
Proceedings of the Joint International Parallel Processing Sym-
posium and IEEE Symposium on Parallel and Distributed Pro-
cessing (1999), pp. 45–54.

[12] CUREWITZ, K. M., KRISHNAN, P.,AND V ITTER, J. S. Practi-
cal prefetching via data compression. InProceedings of the ACM
SIGMOD (1993), International Conference on Management of
Data archive, pp. 257 – 266.

[13] DAHLGREN, F., DUBOIS, M., AND STENSTROM, P. Fixed and
adaptive sequential prefetching in shared memory multiproces-
sors. InInternational Conference on Parallel Processing (1993),
IEEE Computer Society, pp. 56–63.

[14] DANIEL , S.,AND FAITH , R. E. A portable, open-source imple-
mentation of the SPC-1 workload. InProceedings of the IEEE
International Workload Characterization (2005).

[15] DOMENECH, J., SAHUQUILLO , J., GIL , J. A., AND PONT, A.
The impact of the web prefetching architecture on the limitsof
reducing user’s perceived latency. InProceedings of the 2006
IEEE/WIC/ACM International Conference on Web Intelligence
(2006), IEEE Computer Society, pp. 740–744.

[16] FARLEY, M. Storage Networking Fundamentals: An Introduc-
tion to Storage Devices, Subsystems, Applications, Management,
and Filing Systems. Cisco Press, 2004.

[17] FU, J. W. C.,AND PATEL , J. H. Data prefetching in multipro-
cessor vector cache memories. InProceedings of the 18th annual
international symposium on computer architecture (1991), Com-
puter Architecture, pp. 54–63.

[18] GILL , B. S., AND BATHEN, L. A. D. AMP: Adaptive multi-
stream prefetching in a shared cache. InProc. of USENIX 2007
Annual Technical Conference (Feb 2007), 5th USENIX Confer-
ence on File and Storage Technologies.

[19] GILL , B. S.,AND MODHA, D. S. SARC: Sequential prefetching
in adaptive replacement cache. InProc. of USENIX 2005 Annual
Technical Conference (2005), pp. 293–308.

[20] GRIFFIOEN, J., AND APPLETON, R. Reducing file system
latency using a predictive approach. InProceedings of the
USENIX Summer 1994 Technical Conference on USENIX Sum-
mer 1994 Technical Conference (1994), vol. 1, USENIX Associ-
ation Berkeley, CA, USA, pp. 197–208.

[21] GRIMSRUD, K. S., ARCHIBALD, J. K., AND NELSON, B. E.
Multiple prefetch adaptive disk caching.IEEE Trans. Knowl.
Data Eng. 5, 1 (1993), 88–103.

[22] JOHNSON, S., MCNUTT, B., AND REITH, R. The making of
a standard benchmark for open system storage. InJ. Comput.
Resouce Management (Winter 2001), no. 101, pp. 26–32.

[23] KALLAHALLA , M., AND VARMAN , P. J. Optimal prefetching
and caching for parallel I/O sytems. InSPAA ’01: Proceed-
ings of the Thirteenth Annual ACM Symposium on Parallel Al-
gorithms and Architectures (New York, NY, USA, 2001), ACM
Press, pp. 219–228.

[24] KAREDLA , R., LOVE, J. S.,AND WHERRY, B. G. Caching
strategies to improve disk system performance.Computer 27, 3
(1994), 38–46.

[25] K IMBREL, T., AND KARLIN , A. R. Near-optimal parallel
prefetching and caching. InSIAM Journal on Computing Archive
(2000), vol. 29, Society for Industrial and Applied Mathematics,
pp. 1051 – 1082.

[26] K IMBREL, T., TOMKINS, A., PATTERSON, R. H., CAO, B.
B. P., FELTEN, E. W., GIBSON, G. A., KARLIN , A. R., AND

L I , K. A trace-driven comparison of algorithms for parallel
prefetching and caching. InUSENIX 2nd Symposium on OS De-
sign and Implementation (OSDI ’96) (1996), pp. 19–34.

[27] LEE, R. L., YEW, P. C.,AND LAWRIE, D. H. Data prefetching
in shared memory multiprocessors. InInternational Conference
on Parallel Processing (1987), IEEE Computer Society, pp. 28–
31.

[28] LEI, H., AND DUCHAMP, D. An analytical approach to file
prefetching. InProceedings of the USENIX 1997 Annual Techni-
cal Conference (1997), pp. 275–288.

[29] L IANG , S., JIANG , S., AND ZHANG, X. STEP: Sequential-
ity and thrashing detection based prefetching to improve perfor-
mance of networked storage servers. InDistributed Comput-
ing Systems, 2007. ICDCS ’07. 27th International Conference on
(2007), pp. 64–.

[30] MCNUTT, B., AND JOHNSON, S. A standard test of I/O cache.
In Proceedings on Computer Measurement Group’s 2001 Inter-
national Conference (2001).

[31] MEGIDDO, N., AND MODHA, D. S. ARC: A self-tuning, low
overhead replacement cache. InUSENIX Conference on File and
Storage Technologies (FAST ’03) (2003), pp. 115–130.

[32] MOHAN, T., DE SUPINSKI, B. R., MCKEE, S. A., MUELLER,
F., AND YOO, A. A quantitative measure of memory reference
regularity. InInternational Parellel and Distributed Processing
Symposium (April 2002).

[33] MUNTZ, D., AND HONEYMAN , P. Multi-level caching in dis-
tributed file systems - or - your cache ain’t nuthin’ but trash. In
Proceedings of the USENIX Winter 1992 Technical Conference
(San Fransisco, CA, USA, 1992), pp. 305–313.

[34] PATTERSON, R. H., GIBSON, G. A., GINTING , E., STODOL-
SKY, D., AND ZELENKA, J. Informed prefetching and caching.
In Proc. SOSP Conf. December, 1995.

[35] PENDSE, R., AND BHAGAVATHULA , R. Pre-fetching with the
segmented LRU algorithm.Circuits and Systems, 1999. 42nd
Midwest Symposium on 2, 3 (1999), 862–865.

[36] SMITH , A. J. Sequentiality and prefetching in database systems.
ACM Transactions on Database Systems 3, 3 (1978), 223–247.

[37] SMITH , A. J. Cache memories.ACM Computing Surveys 14, 3
(1982), 473–530.

[38] TCHEUN, M. K., YOON, H., AND MAENG, S. R. An adaptive
sequential prefetching scheme in shared-memory multiproces-
sors. InInternational Conference on Parallel Processing (1997),
IEEE Computer Society, pp. 306 – 313.

[39] VARKI , E., MERCHANT, A., XU, J., AND QIU , X. Issues and
challenges in the performance analysis of real disk arrays.IEEE
Transactions on Parallel and Distributed Systems 15, 6 (2004),
559–574.

[40] WONG, T. M., AND WILKES, J. My cache or yours? mak-
ing storage more exclusive. InProceedings of the General
Track: 2002 USENIX Annual Technical Conference (Berkeley,
CA, USA, 2002), USENIX Association, pp. 161–175.

[41] ZILLES, C., AND SOHI, G. Execution-based prediction using
speculative slices. InProceedings of the 28th annual interna-
tional symposium on Computer architecture (2001), pp. 1–13.

