TaP: Table-based Prefetching for Storage Caches

Mingju Li Elizabeth Varki
University of New Hampshire University of New Hampshire
mingjul @cs.unh.edu varki @cs.unh.edu
Swapnil Bhatia Arif Merchant
University of New Hampshire Hewlett-Packard Labs
sbhatia@cs.unh.edu arif@hpl.hp.com
Abstract to ensure that there is sufficient cache space for all write

TaP | ¢ h tial fetchi !j/O requests to be written to cache immediately.
cacﬁ'n Iie?:hf]'orag(teo C.I?nc rf) Zet?]lcjeerne:d-gﬁz:ae dcc;r::%ea?f The storage caching technique determines how the
Ny Iqu Improv torage cache space is allocated between read and write

rate and system response time. A unique feature of Ta request data. The read request data stored in a cache are

is the use of a table to detect sequential access patternsign o
the 1/0 workload and to dvnamically determine the opti urther classified as re-reference data, prefetch data, and
y y P 61g request data. The re-reference data are prior read

ular prefetching techniques, TaP gives a better hit ratg/O request data that are accessed often. The prefetch

and response time while using a read cache that is Of(_iata are prefetched from the disks into the cache by the
ten an order of magnitude smaller than that needed bcachlng technique before 1/O requests for these data ar-

! .) . ¥ive. The old request data are prior read /O request data
other techniques. TaP is especially efficient when theihat have not ygt been re—referpenced. The caghing tech-

.I/O workk_)ad_con5|sts of interleaved requests frgm .Var'nique makes decisions on how much space to allocate to
ious applications, where only some of the applications

. . . L_;a-reference, prefetch, and old request data.
are accessing their data sequentially. For example, Ta A kev fact derlving th ¢ fetchi
achieves the same hit rate as the other techniques with €y factor underlying the success ot a pretetching

a cache length that is 100 times smaller than the cach%eChniOIue is the effectiveness of the technique that iden-

needed by other techniques when the interleaved work.11es sequential streams in the /O workload, where a

load consists of 10% sequential application data and gocgtream refer§ tothe sequence of l/O request; correspond-
random application data ing to a particular application that are submitted by the

application over a period of time. A stream is said to

Index Terms: RAID, prefetch cache, sequential stream be sequential if the corresponding data are being read

detection, read caches, read-ahead hit rate, /0 perfosequentially. Sequential stream detection is a difficult
mance evaluation, disk array. task since a storage system has no knowledge of the file

systems or of the applications accessing its data. Con-

sequently, a storage system has to identify sequential
1 Introduction streams in its workload based solely on the addresses

of 1/0 requests. Unfortunately, I/O requests from vari-
Storage devices have evolved from disks directly at-ous streams are interleaved, so the outstanding I/O work-
tached to a host computer and controlled by the host'doad at any point in time shows little sequentiality, even
operating system into independent and self-managed d&vhen each stream accessing the storage device is sequen-
vices containing tens-to-hundreds of disks accessed b§al. As a result, a storage sequential stream detection
several computer systems via a network. Large and midtechnique must search past request addresses to see if an
size storage devices have sophisticated controllers thancoming I/O request is contiguous to any past I/O re-
control when and how disk data are stored, retrieved, anguest. Thus, in addition to enabling re-reference hits, old
transmitted. In addition to the disks and controllers,-stor I/O requests that remain in the cache facilitate sequential
age devices have high-speed cache memory. The mostream detection.
effective way of speeding up storage systems is to ensure The key disadvantage of using the cache to detect se-
that required data are already loaded in the cache fromquential streams is that valuable cache space must be
the disks when read I/O requests for this data arrive, andised to store old request data. Previous studies have

shown that only a small percentage of the total I/O work- the TaP technique would be able to identify sequen-

load displays a high degree of re-reference hits [33, 40] tial streams when the overall I/O workload contains

since storage caches are at the bottom of the cache hi- a mix of requests from several random and sequen-

erarchy in computer systems. However, even when the tial streams.

locality-of-reference in the workload is too low to justify

a large read cache, it is still needed to store the large 4. The TaP technique is simple but effective, and has

number of old I/O requests required to detect sequen- low implementation complexity—its simplicity is

tial streams. This is an inefficient use of scarce cache one of its strengths.

memory, which typically constitutes 0.1% to 0.3% of the

available disk space [16, 24]. Our simulation study shows that the TaP technique gives
We propose using a separate data structure, namely,t§e same or better hit rate and response time as the other

table of request addresses, to detect sequential strearR&efetching techniques used for comparison, while using

and to adapt the prefetch cache size efficiently based off Smaller read cache.

the 1/0 workload. We refer to the our proposed prefetch- The rest of the paper is organized as follows. Sec-

ing technique a$able-basedPrefetching (TaP). The TaP tion 2 presents a classification of existing cache prefetch

table is used to record request addresses and determitechniques and the related work. The motivation and de-

the optimum prefetch cache size for TaP. We define the sign of TaP technique are explained in Section 3. Sec-

optimum prefetch cache size of TaP as the cache size th&ion 4 presents the experimental evaluation of the TaP

is sufficient and necessary to obtain TaP’s best achievtechnique. Section 5 presents the conclusion.

able read-ahead hit rate for a given 1/0 workload. When

an arriving 1/0 request misses in the prefetch cache, the . . .

TaP technique searches the TaP table to check if this neg Sequential prefetching techniques and

request’s address is contiguous to any prior request ad- related work

dresses. If so, TaP flags this I/O request as belonging to a

sequential stream and activates prefetching, else the Taf® sequential prefetching technique consists of three

technique inserts the address of this request into the Tamodules. Thesequential detection module deals with

table. TaP dynamically adapts the size of the prefetcihe detection of sequential streams in the 1/0 workload,

cache depending on the fraction of sequential streams ithe prefetching module deals with data prefetching de-

the 1/0 workload. When the prefetch cache gets full andtails like how much data to prefetch and when to trigger

requests are thrown out, the request’s address is insertdhie prefetch; theeache management module deals with

into the TaP table. In addition, a flag is set in the cor-preserving useful prefetched data until I/O requests for

responding entry of the TaP table. This information isthe data arrive. It is the cache management module that

used by TaP to determine whether the size of the prefetcHetermines the size of the prefetch cache and the prefetch

cache is too small for the current workload. cache replacement policy.
The key advantages of the TaP technique are as fol-
lows: Sequential detection module: The sequential detec-

H’on module determines whether a missed I/O request
IS part of a sequential stream. It is an optional mod-
ule in prefetching techniques. Some prefetching tech-
2. Old I/O request data need not be stored, so th&iques use access patterns that are not based on sequen-
cache space can be judiciously shared between thé2lity to predict what data to prefetch [10, 17, 27, 41],
write data, the prefetched data, and the re-referenc¥hile <_Jther prefetchlngl techniques prefetch sequential
data. (Note that the TaP table could also be usedata withoutany analysis of access patterns [37, 38]. For
to identify missed re-references. This approach isexample, the Prgfetch—On-M|ss technique activates se-
not discussed here since it is not the focus of thisduential prefetching whenever an I/O request misses in
paper.) Having a larger prefetch cache can improvéhe read cache without checking for sequentiality [35].
the overall efficiency of a prefetching technique by If the sequential detection module is present in a
permitting more data to be prefetched with a lower prefetching technique, then it is activated when an 1/O

probability of the data getting evicted before being request misses in the cache. Most current prefetching
used. techniques use the cache to track addresses [18, 19] or

predict future accesses based on previous access pat-
3. The address tracking mechanism is not limited byterns [6, 12, 20] in the cache. Some techniques use of-
the size of the cache, so more of history can befline information [23, 25, 26] and need to know future
stored. As a result, there is a higher probability thatdata access patterns for prefetching. Every 1/O request

1. The optimum prefetch cache size can be determine
efficiently.

that misses in the cache activates the sequential detehow much data to prefetch. If data corresponding to sev-
tion module which searches the read cache for contigueral I/O requests are prefetched at a time, then prefetch-
ous data. If contiguous data are found in the cache, theimg is not triggered every time there is a hit. The prefetch-
a sequential stream is detected and prefetching is acting module determines when to trigger a prefetch. There-
vated for the detected stream. Henceforth, we shall refore, the prefetching module determines the efficiency of
fer to theseCache basedPrefetching techniques a€aP a cache prefetching technique once sequential streams
techniques. There are several variations of the CaP tectare detected. For example, it would be sufficient to
nigue. For example, instead of detecting a sequentigbrefetch only one request at a time for a sequential stream
stream the first time contiguous data are found in thewith a low arrival rate, but the technique would have to
cache on a miss, the detection technique could treat thprefetch more requests for a sequential stream with a
missed 1/O request as a potential start of a sequentidligh arrival rate. However, other factors must be con-
stream. In this case, prefetching is not triggered imme-sidered too. For example, if the traffic at the disks is
diately. Instead, a flag is set in the cache line where théiigh, then prefetching should be triggered early enough
missed 1/O request is loaded. If this flagged cache line idor the prefetched data to arrive at the cache in time to
found to be contiguous to yet another incoming missedesult in hits. Gill and Bathen [18] developed a tech-
request, a sequential stream is detected and prefetch mque that determines the prefetching trigger point and
triggered. the prefetching degree.€., amount of data to prefetch)
There is very limited prior work on table based se- based on the workload intensity and storage system load.
guential prefetching technigues in storage devices. A taSeveral other papers have analyzed the prefetching de-
ble has been used in main memory hardware caches tgree based on various factors [11, 13, 35, 37, 38].
keep track of data access patterns [8]. Mohan et al. [32]
developed an algorithm with a stream table for processotache management module:
caches which determines the spatial locality in an appli- The cache management module determines the cache
cation’s memory reference. The table saves stream inforr'eplacement policy and the prefetch cache size. Typi-
mation that has been detected. A table has been used jp&"y, the prefetch cache is managed along with the rest
disk caches to predict sequential accesses [21]. The & the read cache as a single unit. There is no separate
ble stores time stamps associated with each entry in th§pace or replacement policy allocated for the prefetch
cache and these time stamps are used in making prefetCRacne. Instead, prefetched data are loaded into the sin-
ing decisions. A prefetching technique for networkedg|e cache and treated just like regular data. When the
storage systems called STEP [29] has been proposed gyche s full, prefetched data are thrown out like the rest
a most recent study. It uses a table for sequential acyf the data depending on the cache replacement policy.
cess detection and prefetching. The table is maintainegeating prefetched data like the rest of cache data is not
as a balanced tree and each entry records information fqfecessarily a good idea. Patterson et al. [34] developed
a recognized sequential stream or a new stream. Whilg cache module which contains three partitions based
TaP also has a table, unlike these techniques, TaP usgs hint information from the applications. Pendse and
the table to store different_ information (for example, the Bhagavathula [35] divided the read cache into fixed-size
TaP table does not store time stamps and does not recoffefetch and random (including re-reference and old 1/0
information for recognized sequential streams). request data) caches, and analyzed the prefetch cache re-
While a lot of work has been done on workload predic- placement scheme.
tion and prefetching_ in numerous areas such as proces- ocMmge [4] and ARC [31] are two techniques that have
sors [8, 9], web architecture [15], databases [12, 36], an@jifferent replacement policies for different cache por-
file systems [7, 28], the characteristics of their workloadyjons, They use a virtual cache to manage their cache
are different from those of a storage system workload. Inygpjacement policies. ACME maintains data in caches as
addi_tion_, access pattern pr_ediction_in thos_e fields r_eqUireobjects and a set of virtual cachée(tables) is designed
application or file system information while such infor- , keep past object header information for the distributed
mation is not available to an independent storage systemyaches. Thus header information in each virtual cache
For example, ZFS uses semantic information about filgs ;sed to make decisions regarding replacement poli-

system to detect sequential streams [1]. cies for the corresponding real cache. ARC separates
the cache into two portions, one dedicated to the most
Prefetching module: recently-used and the other to the most frequently-used

The prefetching module of a prefetching technique isdata. A cache directory (or table) is used for tracking
activated when an I/O request hits in the prefetch cachéhe “recency” and “frequency” of past requests to change
or when the sequential detection module identifies a newthe size of both cache portions. The virtual caches in
sequential stream. The prefetching module determinethese two techniques are used neither for detection nor

prefetching of sequential streams. SARC [19] divides3 Design of the TaP technique
the read cache into prefetch and random cache lists and

compares the relative hits in the bottom of the two lists3.1 Motivation and goal

to adapt the size of the lists dynamically. However, their
sequential detection module is based on CaP, so the
store some old data (although in two lists) for sequen-
tial stream detection (and re-reference hits). Compared | There is little value in caching old request data be-
to the techniques above, TaP is designed to use a table ~5,se the proportion of this data that will be re-
for lower level storage sequential detection, prefetching referenced is small [33].

and cache sizing in low level storage.

he design of the TaP technique is motivated by the fol-
owing observations of lower levels of storage systems:

2. Most I/O workloads contain some sequential access
patterns because file systems and storage systems
try to manage data layout on disk devices such that
data that are sequential in the application and file
system space are also sequential in the disk address
space. However, individual sequential patterns are
interleaved with each other and therefore the aggre-
gate I/O workload displays little sequentiality.

2.1 Prefetching technique classification

As mentioned earlier, the sequential detection module is
an optional component of prefetching techniques. Based
on the existence or lack of the sequentiality detection

module and on when prefetching s triggered, the sequen-
tial prefetching techniques can be classified as follows.

1. Always Prefetch (AP): There is no sequential de- 3. Although current middle or large storage systems

tection module and this technique always triggers a
prefetch regardless of whether an 1/0 request hits or
misses in the cache.

. Never Prefetch (NP): There is no sequential detec-
tion module and this technique does no prefetching.

. Prefetch on Miss (PoM): There is no sequential de-
tection module and this technique prefetches every
time an I/O request misses in the read cache.

. Prefetch on Hit (PoH): Prefetch is triggered by a
cache miss with some detection schemes, and then
every I/O request that hits in the read cache causes
a prefetch. This is the only class of prefetch tech-
nigues that has a sequential detection module. If the
degree of prefetch is high.¢€., data equivalent to
several I/O requests are prefetched), then prefetch-
ing is not triggered upon every hit.

Based upon whether the sequential detection mod-
ule is cache based or table based, the PoH tech-
niques are further classified as follows.

(a) CaP: The set of prior I/0 request data stored in
the read cache are searched to identify the start
of a sequential stream. Most existing storage
system prefetch techniques belong to this cat-
egory.

(b) TaP: The set of prior I/O request addresses
stored in the TaP table are searched to identify
the start of a sequential stream and to deter-
mine the optimum prefetch cache size. Both
TaP in this paper and STEP [29] are newly
developed techniques that belong to this cat-

egory.

have big caches and powerful controllers, their
prefetching performance is poor. The study in [39]
shows that the prefetching technique does not ben-
efit the performance of the evaluated storage sys-
tem when there are more than four sequential /0O
streams since the prefetching technique does not
recognize the interleaved sequential pattern in the
workload. In addition, most well-studied prefetch-
ing techniques with advanced sequential detection
schemes are designed for higher levels of computer
systems. These are not suitable for storage systems
because they need information from file systems or
applications which is not available to storage sys-
tems.

4. Performance of a sequential prefetching technique

is degraded if it uses an inefficient sequential detec-
tion module because of the following reasons:

(a) False positive detection errors generate unnec-
essary /O traffic at the disks and increase the
response time by considering random data as
sequential. Moreover, valuable cache space
is used to store useless data, thereby displac-
ing correctly prefetched data that get evicted
from the prefetch cache before they are used.
The AP and PoM techniques are both likely
to cause this problem if the I/O workload
contains random streams or partly sequential
streams.

(b) False negative detection errors decrease the hit
rate and increase the response time by failing
to identify sequential streams in the workload.
The NP technique always faces this problem
since it never prefetches. The CaP technique

faces this problem when the workload consists
of a mix of random and sequential streams be-
cause, in this case, the history of request ad
dresses is too short to record sequential pat

Table 1: Important constants in TaP

| Variables/constants | Usage |

terns. prefetchDegree prefetch size
triggerOffset when to prefetch

(c) Correctly prefetched data from sequential| strideRange sequential stream detectign
streams could be evicted before the data can range
be used. This can occur if the prefetch cache jncrAmount how much to increase
gets full. For a given read cache size, AP, PoM prefetch cache size
and the CaP techniques are more susceptible gecrAmount how much to decreask
to this problem since either they prefetch too prefetch cache size
much useless data (as in AP and PoM) or they™measurementWindow | time window for hit rate
store data from past I/O requests (as in CaP). measurement

With the above observations in view, TaP is designed |, summary, an address that ends up in the table does

.to dgtect, prefetch, and cache only seque.ntial Streams, in one of exactly two ways. A request that misses in
into its prefetch cache. Consequently, TaP is capable ghe c4che and the table is inserted into the table. The
identifying the minimal amount of data that should be 5 4qress of a pre-hit eviction from the prefetch cache is

prefetched and cached, and can therefore maintain thgig, jnserted into the table. Data that are cached do not
cache size at an optimal level. We consider a workload, 5 e entries in the table

solely consisting of reads—the write workload is han-

dled by the write cache.
At the heart of the TaP technique is the TaP table.?"2 TaP pseudocode

TaP uses this table for two crucial functions: sequentialthe TaP pseudocode is listed in Figure 1. The important
stream detection and cache size management. The agonstants used in the pseudocode are listed in Table 1.
dress of a request that is not found in the prefetch cacheghe first three constants are the inputs to the TaP algo-
is searched in this table. If it is not found in the table rithm provided by the System administrator. These affect
either, then assuming that the address is part of a new sghe detection and the prefetching module. The variables
quential stream, the address of the next expected requegfefetchDegree andtrigOffset relate to the prefetching
in this stream is recorded in the table. If the assumptiormodule, and determine how much data to prefetch and
turns out to be correct, then the address recorded in th@hen to trigger a prefetch. The prefetching module is
table will be seen in the workload in the near future, andseparate from the Sequentia| detection module and is not
TaP will begin prefetching that stream when this occursthe focus of TaP, so the current version of TaP uses con-
As the table is populated with new addresses of potenstant values. However, a more versatile prefetching mod-
tially sequential streams, old addresses that have not legie can be incorporated into TaP and will improve the
to a stream detection so far, are evicted on a FIFO basigyerall performance of TaP. The constatrideRange
In this way, the table plays a key role in TaP’s ability to js used to specify the sequential stream detection range.
detect sequential streams. When the TaP Table is searched, a hit within a stride
The TaP table also plays a central role in maintainingrange is considered (TableHit(req, strideRange)). The
the prefetch cache size at an optimal level. In additiorreason for searching within a stride range is that operat-
to addresses of cache misses, addresses of requests thag systems sometimes submit requests out of sequence.
are evicted from the cache before they are hit are als@he last three parameters affect the cache management
inserted into the TaP table. These addresses are markeabdule. They should be chosen carefully by the ad-
with a special flagreplaceFlag, in the table. TaP ex- ministrator because they determine the tradeoff between
ploits the possibility that such pre-hit evictions may be performance and cache size economy. While the pseu-
the result of a smaller than optimal cache in the follow-docode implements the TaP table as a queue for ease
ing way. If such flagged, evicted streams are soon reef explanation, a hash table is a more appropriate data
detected by the detection method discussed above, thestructure for the table. In addition, the TaP table bound
TaP rightly concludes that the cache is undersized anderived below (Equation 4) justifies that the growth rate
initiates a cache size increment. This upward move-of the table size is sufficiently small. Therefore, the table
ment of the cache size is balanced by the TaP Decremestarch time is likely to be negligible. Moreover, the short
Module (discussed below), which maintains a downwardable search time also guarantees that the controller-CPU
pressure on the cache size to prevent cache inflation. cost is small since searching the TaP table is the CPU’s

Function TAPCacheManage (req)

Function HitRateStable

total Requests++;
if req € Cache then
L ProcessCacheHit(req);

W N =

total Hits++;

else
L ProcessCacheMiss(req);

7 if totalRequests % measurement Window == 0
then
L if HitRateStable() then

o o

©

L DecrCacheSize(decr Amount);

1 currHitRate «—

total Hits /measurementWindow;

if |curr HitRate — prevHitRate| < ¢ then
L stable «— TRUE;

w N

else
L stable «— FALSE;

[SL "N

(=]

prevHit Rate < currHitRate;
7 totalHits < 0;
8 return stable

Function Prefetch (startAddr, degree, trigOff)

Function ProcessCacheHit (req)

Serve req from Cache;

Evict req from Cache;

if req.prefetchTrigger == TRUE then
startAddr «— req.addr + 1 + triggerO f f set;
Prefetch(start Addr, prefetchDegree,
triggerO f fset);

oA W N

1 endAddr «— req.addr + degree — 1;

2 for all i € [startAddr, endAddr] do

3 if Cache is full then

4 evictedReq — FIFOEvict(Cache);

5 TableFIFOlnsert(evicted Req, TRUE);
6 Fetch data of ¢ from Disk;

7 Insert ¢ into Cache by FIFO;

8 trigReq.addr «— endAddr — trigOf f;

©

trigReq.prefetchTrigger «— TRUE

Function ProcessCacheMiss (req)

if ¢t — TableHit(req, strideRange) then
if t.replaceFlag == TRUE then
L IncrPrefetchCacheSize(iner Amount);

4 Prefetch(req.addr, prefetchDegree + 1,
| triggerOf fset);
5 else

Fetch req from Disk;
| TableFIFOInsert(reg + 1, FALSE);

Serve req from Cache;
Evict req from Cache

N =

© o

Function TableHit (req, strideRange)

1 for any r € [req.addr, req.addr + stride Range]
do
2 if r € TAPTable then
Remove r from TAPTable;
L return 7r;

[

5 return NULL

Function TableFIFOInsert(req, flag)

Function FIFOEvict (queue)

1 h < dequeue(queue.head);
2 return h

1 if TAPTable is full then
2 LFIFOEvict(TAPTable);

3 entry <« enqueue(TAPTable, req);
4 entry.replaceFlag < flag

Figure 1: TaP pseudocode

biggest cost. determining whether the prefetch cache size is too small
As shown in the pseudocode, when a new request affor the current workload. TheeplaceFlag field of an
rives, it is handled by the TaPCacheManage() functionentry in the TaP table is used for this purpose. The de-
The TaP cache manager decides whether the requestfsult value of thereplaceFlag variable is false. When
part of an already detected sequential stream or if ita prefetched request is evicted before a hit by the re-
should be recorded for future detection. placement scheme, the request’s address is inserted into
i . the TaP table with theeplaceFlag set to true. When-
ProcessCacheHit()If the request generates a cache_ hit, aver there is a table hit, threplaceFlag is checked. If
TaP SEIves the request_ from the cache. TaP Intery, o flag is true, then the prefetch cache size is increased.
p_rets this requ_est as being part of an already r€CO0thys, entries that are reinstated into the TaP table from
nized sequential stream and prefetches the next regq cache are used to detect whether the cache size is too
guest in the stream. The previous request is evicte mall.

from the cache. While reinstated entries are a reliable indicator of

ProcessCacheMiss()f the request is not found to be in ¢ache space scarcity, a perfect indicator of cache size

the cache, then its address is searched in the TaP t4iflation is not obvious. The TaP cache manager uses
ble. If the request's address is found in the table,@ “downward pressure” approach to cache size deflation

then this implies that two “consecutive” requests Using the measured short term hit rate. The basic idea
have been detected. TaP takes this as an indicds that whenever the TaP cache manager observes the hit
tion of the start of a sequential stream and begingate measured over some short term window of time to

prefetching this stream. In addition, if tneplace- ~ be stable iieasurementWindow), it (pessimistically)

Flag field of the request’s entry in the table is set, 8SSumes that the cache is slightly inflated and begins a
then this entry must be the result of a pre-hit evic- gradual decrease of the cache size. The decrease contin-
tion from the cache. Therefore, TaP increments thell€S S0 long as the hit rate remains stable. If the cache size
cache size bjncrAmount. (The Increment Module falls below the optimal value, then the hit rate changes
is discussed in further detail below.) If a request is @nd this change prevents the TaP cache manager from de-
not found to be in the table, then the address of thecreasing the cache size any further. Moreover, a smaller

expected succeeding request is recorded in the tabléan optimal cache size will lead to pre-hit evictions from
for detection in the future. the cache into the TaP table and re-insertions from the

TaP table into the cache, which will quickly trigger an in-

The TaP cache manager periodically monitors thecrease in the cache size back to the optimal value. Thus,
cache size for inflation. During every period of time as a result of the downward pressure from the decrement
where measurementWindow requests arrive, the TaP module, the cache size always rides close to the optimal
cache manager maintains a count of the total number ofg|ye.
cache hits accrued. While the cache size oscillates around the optimal
value when the workload is stable, the extent of these
oscillations is small as seen in Figure 3. For example, at
time 50000, the optimal value for the cache size is 50.
The TaP cache manager maintains the cache size close
to this value with an oscillation of less than five cache
) . lines independent of the optimal cache size. In addition,
dow. If the current and previous values are within these oscillations do not burden the CPU much, because

fr? me S?:a” additive cons;cadlﬁtof tehaihtr?thﬁ;' thtenh there are only a few more operations (such as increasing
€ cache€ manager conciudes that the hit rate hag, decreasing the cache size) added in each ofribe-
been fairly stable. It takes this as an indication that

. . . - surementWindows where the oscillations occur.
the cache is adequately sized and might even be in-

flated. Therefore, it decreases the cache size by a
preset amount equal to tikecrAmount. 3.4 Bounding cache and table size

HitRateStable() At the end of this measurement period,
the cache manager compares shert term hit rate
in the current window to its value in the previous
window. We define the short term hit rate as the
ratio of hits to total requests in a measurement win-

We next describe the rationale behind the TaP IncreThe table size T, refers to the number of request ad-
ment and Decrement modules. dresses that can be stored in the TaP table. The table
replacement scheme is a FIFO policy. When a request
address gets a hit, it is removed from the TaP table. The
cache sizeC, refers to the number of cache lines assum-
The degree of sequentiality of the 1/0O workload changesdng that exactly 1 prefetch request is stored in each line.
over a time period. The TaP table is a useful tool forWithout loss of generality, it is assumed that the prefetch

3.3 TaP cache size management modules

degree is 1 request and prefetch is triggered upon everggnized sequential streams and would hit in the cache.
hit in the prefetch cache. Therefore, the prefetches initiated by these requests
Below we derive a simple optimum bound for the would not need new insertions into the cache. The se-
cache size and simple pessimistic bounds for the cachguential arrivals that miss in the cache (and hit in the
and table size. The TaP technique initializes the prefetcfaP table) are the only arrivals that cause new insertions
cache size to the optimum bound, since TaP continuallynto the cache. Leinsertions# represent the number
adapts the size of the prefetch cache size to match thef requests that result in new insertions into the prefetch
sequential degree of the workload. The TaP table size isache between two arrivals from a stream Hence,
set to the pessimistic bound since the memory space usedsertions# < seqarrival#.
by a table could be orders of magnitude smaller than the Since the cache replacement scheme is a FIFO, a new
cache sizei(e, a cache line is an order of magnitude prefetched request is stored at location O of the cache.
larger than a table entry). For this prefetched data to be useful, its corresponding
The prefetch cache size must be large enough to holtfO request must arrive withi@ or fewer requests. The
prefetched data from each of the sequential streamgurobability that the number of cache insertions in the
Suppose there ar& sequential or partly sequential worst case are no more than can fit in the cache (with-
streams accessing the storage device. Then the cache sizet evicting the prefetched request) is:

must contain at leas lines. c—1 X
. . S—-1 1
Cc>S 1) Pr(insertions# < C) = Z <) %3
k=0
We now derive a pessimistic bound f& (and T). S_1\¢
For real storage systems, it is difficult to get informa- = 1- (T)

tion about the degree of sequentiality of each workload
stream or the variance in the inter-arrival rate of each Therefore,
stream. So, we derive worst-case bounds using only 5 _1\F€
the number of (sequential + random) workload streams Pr(insertions# > C) = <T> (2)
M and the number of sequential streagsThe bounds
are derived as a function of a parametavhich repre- Equation (2) provides the probability that a prefetched
sents the acceptable percentage of reduction in the reagequest is evicted from the cache before it is used. We
ahead hit rate. That is, if the acceptable percentage rdsound this probability of eviction to some small value
duction in the hit rate is given, then a pessimistic bounde > 0.
for C andT can be computed. (S B 1)c
< €

Consider a workload consisting dfl interleaved 3

streams. A prefetching technique tries to ensure that a

request prefetched for streansurvives in the cache un- This implies that the cache size

til the next 1/0O request from streamarrives. Between log(e€)

two requests from streaimthere can be several requests C= m- @)
from theM — 1 other streams. Of thedd — 1 streams, &\7s

there can be at moSt-1 sequential streams. A prefetch- Following an approach analogous to the one taken for the

ing technique should ensure that the request from streamgache size, we can obtain a bound on the TaP table size
1 IS not evicted from the cache due to cache insertions

resulting from these sequential stream arrivals. deet T> log(e)] (4)
garrival# represent the number of requests that arrive ~ log (%)

from other sequential streams between two requests from)

stream. Although these bounds are derived and used for syn-

Consider a synthetic workload in which (a) future re- thetic workloads, they are also a guide for evaluating

quest arrivals are independent of past arrivals, and (baP’s performance on real workloads. The bound in
there is equal probability that the next arrival is from any Eauation (4) allows us to choose the tradeoff between
of theM streams. Then maximizing the hit rate and minimizing the table size

in inverse relation to the value chosen for The CPU
costincurred by TaP is dominated by the size of the table
S—1\" 1 that is searched for hits. Since this cost is only loga-
(T) X3 rithmically related to the miss probability and inverse-
logarithmically related to the fraction of interleaving
Some of thessegarrival# arrivals could be from rec- streams, it is not prohibitively large.

Pr(seqarrival## =n) =

_ 4.1 TaP cache size manager in action
Table 2: Storage simulator setup

| The first experiment evaluates the performance of TaP’s

| Disksim parametet Value cache size manager as the workload changes. Figure 3

storage cache ling 8 blocks shows the result of a simulation of the TaP cache man-
prefetch cache replacement poligyFIFO ager when the synthetic workload illustrated in Figure 2
storage RAID organization RAID 5 is used. The workload starts with 10 streams with a se-
stripe unit size| 8 blocks quentiality of 10%. These short-lived streams can be
number of disks| 4 seen as a dense band of mostly random points from time
disk type | cheetah9LP 0 to 10000 in Figure 2. At time 8000, 50 completely
disk capacity] 17783240 blockg sequential streams arrive. These appear as almost hori-
mean disk read seek time5.4 msec zontal lines from time 8000 to time about 140000 in Fig-
maximum disk read seek time 10.63 msec ure 2. The TaP cache manager reacts to the influx of se-
disk revolutions per minute 10045 rpm guential streams by increasing the cache size. When the

10% sequential streams finish, the TaP cache manager
decrements the cache size, without opposition from the
4 Experimental evaluation increment module, until the optimal size of 50 is reached.
This size is optimal because there are only 50 sequential
streams in the workload at this point. Approximately at
We evaluate the TaP technique usingBheksi m 3. 0 time 80000, 100 completely sequential streams are added
simulator [5]. Table 2 gives the setup used for our exper+o the workload which prompts the TaP cache managerto
iments. We configured four Cheetah9LP 9GB disks asncrement the cache size to the new optimal value of 150.
a RAID-5 system. The cache is divided into cache linesat time 140000, the first 50 sequential streams finish.
of size 8 blocks with 512 bytes per block. The cacheAgain, the downward pressure meets no resistance and
size and the 1/O workload are varied in our experimentsthe cache size settles to the optimal value of 100. At time
We use both synthetic workloads and realistic workloads200000, 50 streams with sequentiality 70% arrive and the
The synthetic workload uses several possible combinacache size is incremented to accommodate them. The
tions of random and sequential streams in order to evalincrease is larger than 50 because more cache space is
uate the technique under different conditions. It ShOU|d’equired to get hits on streams with lower sequentiality:
be noted that due to memory and computing constraintshis is because of the single unavoidable extra prefetch
our simulation storage setup is much smaller than reaht the end of a sequential run in a partially sequential
storage systems, so the workload is also scaled down agtream. The sequential streams that arrived at time 80000
propriately. finish at time close to 220000 and the 50 streams with

We compare the TaP technique against the CaP, AF7,0% sequentiality finish a little after time 250000. Both
PoM, and NP techniques. The storage system’s mean r&f these events allow Fhe decrement module to gradua}lly
sponse time and the cache’s prefetch hit rate are me&g_ecrease the cache size. The workload changes again at
sured for the various prefetch techniques. Parameterdmes 250000 and 280000 when 10 streams with sequen-
such as prefetching degree and prefetching trigger are sé@lity 90% and 20 streams with sequentiality 100% are
at similar values for each of the techniques. The prefetchaddedv resp_ectwely. The cache is still inflated when these
ing degree is set at 1.6, only 1 request is prefetched), sFreams arrive, and S0 the gradual decrease of th_e cache
so prefetching is triggered upon every hit in the prefetchSiZe contlnl_Jes. At time 300000, the .cache stabilizes to
cache. The TaP table length is set at the upper limit fo@ Value optimal for the 90% sequential streams. When
the workload (Equation 4). The memory space utilizegthese end, the cache size finally decremgn_ts to the opti-
by TaP in our experiments is negligible compared to theMal value of around 20 for the last remaining 20 com-
cache size—the maximum space used by the TaP table pletely s_equent|al streams. Flg_ure 4 shoyvs that on aver-
all our experiments is 4KB. To ensure faimess, we com-29€, & hit rate close to the maximum achievable with the
pare the performances of the various techniques undé:(urrent workload, is maintained throughout the simula-
similar workloads and cache sizes. Note that the cachd0n-
size for compared techniques is set to the sum of the In summary, this experiment illustrates that the TaP
cache and table size used by TaP. Both TaP and CaP inittache manager is appropriately responsive to the changes
ate prefetch under similar conditions—for TaP, prefetchin a non-stationary workload. The increment module,
is initiated upon the first hit in the table, and for CaP, using the pre-hit eviction information from the table, is
prefetch is initiated when an incoming request is found tohighly effective in quickly incrementing the cache size
be contiguous to an old request stored in the read cachdo a value that is optimal for the current workload. The

1e+09 g

BT

9e+08

8e+08 0.8

7e+08

q 0.6

o o
©
+ o+
o o
© (s3]

ck address
.
Hit rate
[

o
S se+08 i

3e+08

2e+08

B 0.4
:
g 0.2 -4
Long term hit rate ——
Short term hit rate

0 L i L L 0
0 50000 100000 150000 200000 250000 300000 350000 400000 450000 0 50000 100000 150000 200000 250000 300000 350000 400000 450000
Time Time

le+08

Figure 2: A visualization of the workload used for the Figure 4: Short and long term hit rate obtained using the

TaP cache management simulation TaP cache manager
250
ic— 160 :
ITAP cache size % TapP
= \ CaP -
E 1401}
200 T\ g |
S 120+
2 |
: 100
= L
g™ he
» Q
g ER|
© (7]
8 o
100 & 60 |
Q
£
(\ S 4of
50 W, N
2 20
Q
———— ©
o o ; ; ! !
0 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 10 20 30 40 50
Time Number of sequential streams (out of 50)

Figure 3: A sample of the behavior of the TaP cache manFigure 5: A comparison of cache sizes required by TaP
ager and CaP to achieve matching hit rates as a function of the
number of sequential streams (from 1 to 50).

decrement module, by maintaining a downward pressure

on the cache size, prevents cache size inflation. Togethesind the hit rate achieved by TaP is recorded. Next, in
the two modules force the cache size to ride close to arder to find the cache size at which the CaP technique
value optimal for the current workload. achieves the same hit rate as TaP, a series of experiments
are conducted using the same workload as offered to TaP.
We define the hit rate achieved by CaP to be the same as
TaP when the relative difference between the two rates is
Figure 5 shows the results of a comparison of the TaP ando more than 5%.

CaP techniques on the basis of the cache size required by Clearly, the cache size required by CaP to achieve the
each to achieve the best possible hit rate on a given worksame hit rate as TaP is almost an order of magnitude
load. In this experiment, we generated a synthetic worklarger when the number of sequential streams is small.
load of the following type. The workload is composed This underscores the effectiveness of TaP’s table-based
of a total of 50 streams, each of which arrives at an in-techniques in two ways. First, it shows that TaP can de-
stant chosen uniformly at random in the simulation. Eachtect and exploit sequentiality with a small prefetch cache
stream in the workload is either completely sequential orsize even when the sequentiality is latent and interleaved
completely random and is of a fixed finite duration muchin a large amount of random data. This improvement
smaller than the length of the simulation. The number ofin detection provides a significant reduction in the re-
completely sequential streams is varied from 1 to 50 (Xsponse time for individual sequential streams, even when
axis of Figure 5), the remainder of the streams are ranthe average hit rate of the workload is arbitrarily low.
dom. First, the workload is run through a cache managed hus, TaP succeeds in “connecting the dots” while us-
by the TaP technique with a table length of 1000 entriesjng a minimal amount of cache resource. The additional

4.2 A comparison of TaP and CaP

resource used by TaP, the table, is only a fraction (2-1@atio as the total number of prefetched requests that re-
cache blocks) of the size of the cache. Second, as a reult in hits divided by the total number of prefetched
sult of the superior detection capability, the TaP cachaequests. CaP stores random data for sequentiality de-
manager’s table-based cache inadequacy indicator caection thereby increasing the probability that prefetthe
accurately and promptly respond to changes in a nondata are thrown out before being used. Therefore, CaP
stationary workload. has a lower useful prefetch ratio than TaP as shown in
Figure 6 (d). Overall, TaP has a higher hit rate and a
. lower response time (Figure 6 (a) and (b)) than CaP.

4.3 SPC2-like workload We now compare the TaP and the AP techniques. TaP

SPC2 [3, 18] is a popular benchmark that simulatesgnd AP perform similarly when the cache size is large
workloads generated by applications that access theffnough to store data from all the streams. As the num-
workload sequentially. Since we do not have access tder of streams increases, the performance of AP is worse
the official SPC2 workload generator, we generated théhan that of TaP (Figure 6 (a) and (b)), and the reason can
workload using SPC2 published specifications [3]. TheP€ seen by studying Figure 6 (c) and (d). As the number
SPC2 workload is an interleaved mixture of highly se- of streams increases relative to the cache size, AP contin-
guential streams. Hence, all prefetched data would everi€S to prefetch more than TaP. When a prefetched request
tually result in hits if the data remain in the cache un-IS thrown out by the replacement scheme, TaP treats the
til their corresponding 1/O requests arrive. In our ex- Next request from this stream as a random request and
perimental evaluation, we measure the mean hit rate and0o€s not prefetch. (The address of the replaced request is
the response time as a function of some control variabléOt inserted into the TaP table since the cache size is not
such as the number of sequential streams or the cacHdynamically increased in this experimental evaluation.)
size. However, in each experimental run, the cache siz&P Prefetches on hits/misses while TaP only prefetches
must be held constant for two reasons. First, the compe@n hits. When the cache is too small for the workload,

ing algorithms (AP, PoM, CaP) require a constant caché*\P’S useful prefetch ratio is much smaller than TaP’s
size. Second, we are interested in measuring pencoruseful ratio, and as a result AP performs worse than TaP.

mance given a fixed cache size. Therefore, TaP’s dy]'he comparison between AP and TaP shows the negative

namic cache sizing function is disabled for all the ex-iImpact of prefetching for this highly sequential workload
periments in the sequel. We compare the performance&hen the cache size is too small to hold data from all the
of the various techniques under similar workloads angSequential streams. Figure 7 underscores this point: here,
cache (+ table) sizes. A side-effect of turning off the the cache size is very small. Thg per_formance of AP is
prefetch cache sizing function is that theplaceFlag ~ comparable to CaP up to a certain point, but as the num-
has no impact. Thatis, when a prefetch request is throwiper of streams continues to increase, the performance

out of the prefetch cache by the replacement scheme, it@f AP becomes worse than NP. Thus, for really small
address is not put in the TaP table. caches, never prefetch is better than always prefetch even

In our experiments, the number of streams is var-when all the streams are highly sequen.tial. TaP Qutper—
ied from 1 to 500. Depending on the cache size andorms all the techniques evaluatgd for this cgche size and
prefetching technique, some of the prefetched data ma orkload. The mean response time for TaP is 20% lower
get thrown out before they are used. PoM and NP perthan that of the other techniques.
form far worse than the other techniques for obvious rea-
sons, so below we analyze the results for TaP, CaP, and 4 Mix of 100% sequential streams and
AP From Figure 6 (a) one can see that when there is suf- 100% random streams
ficient cache space to store at least one request from each
of the streams, the cache hit rate is close to 1 for AP, TaRn this set of experiments, a synthetic workload is used.
and CaP (while PoM has a hit rate of 0.5 and NP has &he cache size and the total number of streams is fixed.
hit rate of 0). As the number of sequential streams in-Figure 8 shows the performance of the various tech-
creases (beyond 40), the cache is no longer large enougtiques as the number of sequential streams is increased.
to hold data from all the streams. Therefore, the hit rateThe hit rate of all techniques (except NP) increases as
gradually decreases. the number of sequential streams increases. TaP con-

We first compare the TaP with the CaP technique asistently performs better than the other techniques and
the number of streams increases. TaP performs betteshows more improvement than the other techniques as
than CaP since the small cache size makes it difficult fothe number of sequential streams increases. CaP per-
CaP to identify sequential streams. As a result, the totaforms worse that TaP, AP, and PoM as the number of
number of prefetches for CaP are far fewer than for TaPsequential streams increases since CaP’s sequential de-
as shown in Figure 6 (c). We define thssful prefetch tection module is inefficient for this workload. AP and

1 10 T T T
08 5 8 - i
2 O
£ o
L ©
g 06 £
£
S S
[L Qo
g 0.4 g
=t
IS
Q
02t =
0
10000
8000
(%]
2
[3] S o
2 . B
2 6000 T, 1 <
5 . g
9] - <
Qo o
E 4000 ™~ : s
g 3
= o)
s]
2
2000 | (28 T 1
AP oo
PoM
NP o
0 . " " 0 . L L L
32 64 128 256 512 32 64 128 256 512
Total number of streams (c) Total number of streams (d)

Figure 6: Performance of prefetching techniques with a eaddMB, table of 4KB, and the SPC2-like workload.

1 10 : : : : :
0.8 1 ~ 8¢ o
[$)
Q
1%}
E
g o6t 1 2 1
£ 3
8 5
 04r 1 @]
= N 14
=t
8
02| 1 =
0
1

Total number of streams Total number of streams

Figure 7: Performance of prefetching techniques with a eaiftlR40KB, table less than 0.8KB, and the SPC2-like
workload.

08 PoM

©

Mean response time (msec)
[=2]
/ |
:

§o0-8 o T 00 Ra0RREeNNRERRR " 0T 00 o -0-00 5 06 34595 458 000RERO s

0.6

Mean Hit Rate

32 64 128 256
Total number of sequential streams Total number sequential of streams

Figure 8: Performance of prefetching techniques with a eaxt#MB, table of 4KB, on a workload consisting of 300
streams of whichn (X axis) are completely sequential and all others are cotalyieandom.

PoM have higher response time than NP when there ar&éMB, TaP’s hit rate is about 4 times higher than all other
few sequential streams, but this changes as the fractiotechniques; and to achieve a response time of 6ms, TaP
of sequential streams increases. uses only 1 MB while CaP uses 4MB.

4.5 Varying cache sizes 4.6 SPC1-like—read workload

This set of experiments demonstrates the efficient usgpcq [2, 22, 30] is a popular benchmark that simulates
of cache space by the TaP technique. In the first set ofyorkjoads generated by business applications. Since we
experiments (Figure 9), the workload is fixed at 20 ran-gg not have access to the official SPC1 workload genera-
dom streams and 60 sequential streams. Regardless gy, we use a freely available alternative SPC1 workload
the cache size, TaP consistently performs better than th&enerator [14]. We modified the workload by ignoring
other techniques because of TaP'’s efficient sequentiality| \yrite requests. Thus, the final workload is a SPC1-
detection module. In most cases, TaP uses less than hajfe_read workload. The number of Business Scaling
the cache space that CaP uses to get the same perfQinjts (BSUs) roughly corresponds to the number of users
mance. For example, Figure 9 (b) shows that in ordelyenerating the workload [14]. Therefore, the number of
to keep response time under 4ms, TaP needs only 2MBsys roughly corresponds to the number of workload
while CaP and AP need more than 4MB . (PoM and NPgtreams.
are never able to achieve a response time of 4ms in this \ye fix the cache size and then study the effect of in-
set of experiments.) _ _ creasing the number of BSUs. Figure 11 shows that the
In the second set of experiments (Figure 10), the workt rate of the cache is small even with 1 BSU (hit rate
load is fixed at 60 random streams and 20 sequential) 3)_ This implies that the SPC1 workload has low de-
streams ite,, the number of sequential streams is de-gee of sequentiality. As the number of BSUs increase,
creased making the workload more random). With justihe hit rate of all the prefetching strategies decreases.
25% of the workload consisting of sequential streamsiths jmplies that the cache is too small and that the de-
TaP is still able to detect the small degree of sequentia'$;ree of sequentiality per stream is low. Even for a work-

streams with very small cache sizes. Both AP and Cakoaq with such low sequentiality, TaP gives the best hit
perform poorly for different reasons: AP’s failure results 5ia and the lowest response time.

from prefetching both random and sequential stream data

into a small cache, so prefetched data from sequential

streams get thrown out before they result in hits. CaP's5 Conclusion

failure results from its dependence on the cache size for

sequentiality detection; the small cache fills quickly with The TaP technique belongs to the class of Prefetch-on-
random data, so sequential stream data are thrown oudit (PoH) techniques. Unlike existing PoH techniques
before they can be used for sequentiality detection. Thé¢hat use the read cache to detect sequential streams in the
efficient use of the cache by TaP is highlighted by this ex4/O workload, the TaP technique uses a table to detect
periment. For example, when the prefetch cache is abowgequential streams. The use of a table by TaP ensures

10
—~ 8
4 %,
2 39-0-009-610..6.00-0-06.0-0-015., O-0--6-90-0. 5.5 0056 9-0-0-0" %900 o6 -0~
h
Q % \l‘
s E 6 .
= ° .
£ 3
= g
c R
g i
= P | TaP —=ss
CapP =
AP oo
PoM
[NP o
0 0 .
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Cache size (KB) Cache size (KB)

Figure 9: Impact of the cache size on the performance of fmiefeg techniques, total 80 streams, 60 completely
sequential

1 T 10
TaP
CaP
AP -
L PoM g
038 NP e 5 8
2 ek e)
I N o
g o6t 1 2 6 Trmenes
£ 3
g s
S o4l 1 o 4
= N 14
=t
8
s 2 TaP]
Cap =
AP -
PoM
0 NP -
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Cache size (KB) Cache size (KB)

Figure 10: Impact of the cache size on the performance okfueing techniques, total 80 streams, 20 completely
sequential

1 T 10
TaP
CaP -
AP -
= PoM L |
0.8 i > 8
Q
[%]
£) §
] - — - . e .
® 0.6 1 -Oé]
£ 3
§ 5
S o4t 1 @ 1
= - 3
c
[
(5
= L, i
0
10 20 30 40 50 60
Number of BSUs Number of BSUs

Figure 11: Performance of prefetching techniques as thebeuwf BSUs (streams) in the SPC-1 workload is varied
with cache size of 240KB

that a longer history of request access patterns can bgs]
tracked by the sequential detection module. This feature
is very useful since I/0O workloads consist of interleaved
requests from various applications.

A unique feature of TaP is that the prefetch cache size[7
is adjusted dynamically based on cache usage informa-
tion from the TaP table. When the 1/0O workload has
few sequential streams, the prefetch cache size is de-
creased and vice-versa. Our evaluation shows that forl8]
most workloads, TaP performs better than the other tech-
nigues for the smallest sized prefetch cache. TaP is su-
perior to cache based PoH (CaP) techniques when thég]
workload intensity is high and there is a mixture of se-
quential, partly sequential, and random workloads. Atj;q
this point, the cache and disks are heavily utilized. The
CaP technique wastes valuable cache space storing old
data for sequential stream detection, particularly when
the re-reference rate is low, as is often the case. [11]

As future work, we plan to develop an integrated table-
based technique that extracts both re-reference and se-
guential stream information from the I/O workload. Cur-
rently, re-reference data are detected when old I/O refi2]
guest data in the cache are hit. Prior studies have shown
that most of the I/0O workload is not re-referenced. How-
ever, a small fraction of the 1/0 workload gets many re-
reference hits [33, 40]. The use of a table shows promiséle’]
in detecting this small fraction of highly re-referenced
data and managing the size of the re-reference cache.

[14]

Acknowledgments

We thank our anonymous reviewers for their helpful [15]
comments. We also thank Randal Burns, our shepherd,
for directing the camera-ready version of this paper. This
work was supported in part by the US National Science

Foundation under CAREER grant CCR-0093111. [16]

References
[1]

[17]

ZFS performance. online, 2007. http://ww.
sol ari sinternal s. conml w ki /i ndex. php/
ZFS Perfornance.

SPC Benchmark-1(SPC-1) Official Specification, revisiol0.1.
Tech. rep., Effective 27 Sept. 2006. htt p:// waw.
st or ageper f or mance. or g/ specs.

SPC Benchmark-2(SPC-2) Official Specification, vesiof.1l
Tech. rep., Effective 27 Sept. 2006. htt p:// waw.
st or ageper f or mance. or g/ specs.

ARI, I., AMER, A., GRAMACY, R., MILLER, E. L., BRANDT,
S. A.,AND LONG, D. D. E. ACME: adaptive caching using
multiple experts. IrProceedings of the 2002 Workshop on Dis-
tributed Data and Sructures (WDAS) (2002), Carleton Scientific.
Extended version of the WDAS 2002 workshop paper.

Bucy, J. S.,AND GANGER, G. R. The DiskSim simulation
environment version 3.0 reference manual. Tech. Rep. CNBJ-C [21]
03-102, Carnegie Mellon University, School of Computer-Sci
ence, January 2003.

g [19]

(4]
(20]

(5]

CA0, P., FELTEN, E. W., KARLIN, A. R.,AND LI, K. A study
of integrated prefetching and caching strategieS GMETRICS
'95/PERFORMANCE ’'95: Proceedings of the 1995 ACM S G-
METRICS Joint International Conference on Measurement and
Modeling of Computer Systems (1995), ACM Press, pp. 188-197.

] CAo, P., FELTEN, E. W., KARLIN, A. R.,AND L1, K. Imple-

mentation and performance of integrated application+otiet
file caching, prefetching, and disk schedulid§eM Transactions
on Computer Systems 14, 4 (1996), 311-343.

CHEN, T.-F.,AND BAER, J.-L. Effective hardware based data
prefetching for high-performance processof8EE Trans. com-
puters 44, 5 (1995), 609-623.

CHI, C.-H.,AND CHEUNG, C.-M. Hardware-driven prefetching
for pointer data references. Proceedings of the 12th interna-
tional conference on Supercomputing 1CS (1998), ACM.

CHRYSOS G. Z.,AND EMER, J. S. Memory dependence predic-
tion using store sets. IRroceedings of the 25th Annual Interna-
tional Symposium (1998), Computer Architecture, 1998, pp. 142—
153.

CORTES T., AND LABARTA, J. Linear aggressive prefetching:
A way to increase the performance of cooperative caches.
Proceedings of the Joint International Parallel Processing Sym-
posium and |IEEE Symposium on Parallel and Distributed Pro-
cessing (1999), pp. 45-54.

CUREWITZ, K. M., KRISHNAN, P.,AND VITTER, J. S. Practi-
cal prefetching via data compression.Rroceedings of the ACM

S GMOD (1993), International Conference on Management of
Data archive, pp. 257 — 266.

DAHLGREN, F., DuBOIS, M., AND STENSTROM, P. Fixed and
adaptive sequential prefetching in shared memory multgse
sors. InInternational Conference on Parallel Processing (1993),
IEEE Computer Society, pp. 56—63.

DANIEL, S.,AND FAITH, R. E. A portable, open-source imple-
mentation of the SPC-1 workload. Proceedings of the IEEE
International Workload Characterization (2005).

DOMENECH, J., S\HUQUILLO, J., GL, J. A.,AND PONT, A.
The impact of the web prefetching architecture on the liroits
reducing user's perceived latency. Rmoceedings of the 2006
IEEE/WIC/ACM International Conference on Web Intelligence
(2006), IEEE Computer Society, pp. 740-744.

FARLEY, M. Sorage Networking Fundamentals. An Introduc-
tion to Storage Devices, Subsystems, Applications, Management,
and Filing Systems. Cisco Press, 2004.

Fu, J. W. C.,AND PATEL, J. H. Data prefetching in multipro-
cessor vector cache memories.Aroceedings of the 18th annual
international symposium on computer architecture (1991), Com-
puter Architecture, pp. 54—63.

GILL, B. S.,AND BATHEN, L. A. D. AMP: Adaptive multi-
stream prefetching in a shared cache.Phoc. of USENIX 2007
Annual Technical Conference (Feb 2007), 5th USENIX Confer-
ence on File and Storage Technologies.

In

GILL, B. S.,AND MODHA, D. S. SARC: Sequential prefetching
in adaptive replacement cache.Rroc. of USENIX 2005 Annual
Technical Conference (2005), pp. 293-308.

GRIFFIOEN, J., AND APPLETON R. Reducing file system
latency using a predictive approach. Rroceedings of the
USENIX Summer 1994 Technical Conference on USENIX Sum-
mer 1994 Technical Conference (1994), vol. 1, USENIX Associ-
ation Berkeley, CA, USA, pp. 197-208.

GRIMSRUD, K. S., ARCHIBALD, J. K., AND NELSON, B. E.
Multiple prefetch adaptive disk cachinglEEE Trans. Knowl.
Data Eng. 5, 1 (1993), 88-103.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

JOHNSON, S., MCNUTT, B., AND REITH, R. The making of
a standard benchmark for open system storageJ. omput.
Resouce Management (Winter 2001), no. 101, pp. 26-32.

KALLAHALLA , M., AND VARMAN, P. J. Optimal prefetching
and caching for parallel I/O sytems. BPAA '01: Proceed-
ings of the Thirteenth Annual ACM Symposium on Parallel Al-
gorithms and Architectures (New York, NY, USA, 2001), ACM
Press, pp. 219-228.

KAREDLA, R., LOVE, J. S.,AND WHERRY, B. G. Caching
strategies to improve disk system performanGamputer 27, 3
(1994), 38-46.

KIMBREL, T., AND KARLIN, A. R. Near-optimal parallel
prefetching and caching. ®AM Journal on Computing Archive
(2000), vol. 29, Society for Industrial and Applied Matheios,
pp. 1051 — 1082.

KIMBREL, T., TOMKINS, A., PATTERSON, R. H., Cao, B.
B. P., FELTEN, E. W., GBSON, G. A., KARLIN, A. R., AND
L1, K. A trace-driven comparison of algorithms for parallel
prefetching and caching. MSENIX 2nd Symposium on OSDe-
sign and Implementation (OSDI *96) (1996), pp. 19-34.

LEE, R. L., YEW, P. C.,AND LAWRIE, D. H. Data prefetching
in shared memory multiprocessors. Imernational Conference
on Parallel Processing (1987), IEEE Computer Society, pp. 28—
31.

LEI, H., AND DucHAMP, D. An analytical approach to file
prefetching. InProceedings of the USENIX 1997 Annual Techni-
cal Conference (1997), pp. 275-288.

LIANG, S., JANG, S., AND ZHANG, X. STEP: Sequential-
ity and thrashing detection based prefetching to improvéope
mance of networked storage servers. Distributed Comput-
ing Systems, 2007. ICDCS’ 07. 27th International Conference on
(2007), pp. 64—.

McNuTT, B., AND JOHNSON, S. A standard test of I/O cache.
In Proceedings on Computer Measurement Group's 2001 Inter-
national Conference (2001).

MEGIDDO, N., AND MODHA, D. S. ARC: A self-tuning, low
overhead replacement cache.UBENIX Conference on File and
Sorage Technologies (FAST ' 03) (2003), pp. 115-130.

MOHAN, T., DE SUPINSKI, B. R., MCKEE, S. A., MUELLER,

F., AND YOO, A. A quantitative measure of memory reference
regularity. InInternational Parellel and Distributed Processing
Symposium (April 2002).

MuNTZz, D., AND HONEYMAN, P. Multi-level caching in dis-
tributed file systems - or - your cache ain’t nuthin’ but trash
Proceedings of the USENIX Winter 1992 Technical Conference
(San Fransisco, CA, USA, 1992), pp. 305-313.

PATTERSON, R. H., GBSON, G. A., GINTING, E., SroboL-
SKY, D., AND ZELENKA, J. Informed prefetching and caching.
In Proc. SOSP Conf. December, 1995.

PENDSE, R., AND BHAGAVATHULA , R. Pre-fetching with the
segmented LRU algorithm.Circuits and Systems, 1999. 42nd
Midwest Symposiumon 2, 3 (1999), 862—-865.

SMITH, A. J. Sequentiality and prefetching in database systems.
ACM Transactions on Database Systems 3, 3 (1978), 223-247.

SMITH, A. J. Cache memoriesACM Computing Surveys 14, 3
(1982), 473-530.

TCHEUN, M. K., YOON, H., AND MAENG, S. R. An adaptive
sequential prefetching scheme in shared-memory multgz-oc
sors. Ininternational Conference on Parallel Processing (1997),
IEEE Computer Society, pp. 306 — 313.

[39] VARKI, E., MERCHANT, A., XU, J.,AND QIU, X. Issues and

challenges in the performance analysis of real disk arrtyEE
Transactions on Parallel and Distributed Systems 15, 6 (2004),
559-574.

WONG, T. M., AND WILKES, J. My cache or yours? mak-
ing storage more exclusive. IRroceedings of the General
Track: 2002 USENIX Annual Technical Conference (Berkeley,
CA, USA, 2002), USENIX Association, pp. 161-175.

ZILLES, C., AND SOHI, G. Execution-based prediction using
speculative slices. |fProceedings of the 28th annual interna-
tional symposium on Computer architecture (2001), pp. 1-13.

