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Abstract

We solve a counting problem proposed by Balas and Connor [1] derived from
a game calledLook Up and Scream. Our solution applies to both variants of the
game and is based on counting matchings of every size in the constraints graph
of the game. We count such matchings directly in the unconstrained variant of
the game and use a counting technique discovered by J. P. McSorley [2]for the
constrained variant.

1 Look Up and Scream

Balas and Connor introduce a new game calledLook Up and Scream (LUaS)[1]. The
game involves2N participants standing in a circle. The game is played in rounds
where each round proceeds as follows: At the beginning of theround, every participant
looks down at the floor. Then, on cue, all the participants look up simultaneously, and
instantaneously choose to fix their gaze on another player. If any two players realize
that they have chosen to gaze at each other, they scream and the round ends with aloss
or failure. A new round is then played. The game ends if a round is silent,i.e., no
players choose to gaze at players who are gazing back at them.The rules as outlined
above describe the unconstrained variant of LUaS. In the constrained variant, a player
can only choose to gaze at either her neighboring players or the player situated at the
antipode of her location. Obviously, many other variants can be concieved, one for
each subset of players that any player is allowed to target. Balas and Connor wish to
determine the probability of winning in any round in a game ofLUaS. They present
numerical solutions for the problem obtained by exhaustivesearch but do not provide
any formula for determining the probability analytically.Further, the authors make the
following comment about the problem [1]:

“The approach of attempting to enumerate the number of gazesavailable to
each player is complicated by the non-local properties [. . .] At present, we
have discussed this problem with many mathematicians (bothrecreational
and otherwise) and have been unable to determine any generalmethod for
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Figure 1: An example of the constraints graph of the LUaS gamewith 6 players. The
labeled vertices indicate players and the edges indicate possible (bidirectional) gaze
choices for each player.

counting the number of winning gaze arrangements in a2N -player game
of LUaS. We invite the readers of this journal to contribute their talents
and their time to help us determine if such a method exists.”

In this note, we demonstrate a method for counting the numberof losing config-
urations for both the constrained and the unconstrained variant of LUaS, from which,
the number of winning configurations, and hence the winning probability, can be easily
obtained. Counting in the unconstrained variant is direct and straightforward. For the
constrained variant, we use a counting technique discovered by J. P. McSorley [2].

2 Approach

We denote the set of integers{1, . . . , k} by [k]. We defineLUaS(2N ; {s1, . . . , sm})
as a game of LUaS involving2N players labeled{0, . . . , 2N − 1} andsj ∈ [N ] with
each playeri having the choice to gaze at any other playerp ∈ {i± sj mod 2N}. We
restrict our discussion to the following two variants proposed in [1]: the constrained
variantLUaS(2N ; {1, N}) and the unconstrained variantLUaS(2N ; [N ]).

We observe that the rules of a particular LUaS game, i.e., constraints on the possible
gaze choices for any player, can be represented in the form ofa graph on2N vertices,
which we call theconstraints graphof that particular LUaS variant. The constraints
graph of a LUaS variantLUaS{2N ; {s1, . . . , sm}} is an undirected graphG(V,E) on
the set of verticesV = {0, . . . , 2N − 1} with the set of edges

E = {{i, j} : i, j ∈ V, i 6= j,∃k ∈ [m] (j = i± sk mod 2N)}. (1)

We denote byEd the directed version ofE, i.e., Ed = {(i, j) : {i, j} ∈ E}. Fig. 1
shows an example (N = 3) of the constraints graph of both LUaS variants. We refer
to the collection of2N gazes in a realization of a round of the LUaS game as aconfig-
uration. That is, a configuration is a set of pairsZ ⊆ Ed such that∀u ∈ V there exists
a uniquev ∈ V such that(u, v) ∈ Z. A sub-configurationis any subset of a configu-
ration. By definition of the LUaS game, alosing configurationZ is a configuration in
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Figure 2: Examples of winning and losing configurations.

which (u, v) ∈ Z and(v, u) ∈ Z. The pair{u, v} is called alosing pair. A winning
configurationis one with no losing pair. Fig. 2 shows an example of a winningand
losing configuration for each variant of the game. We consider synonymous any losing
pair {u, v} in a losing configurationZ and edge{u, v} ∈ E, which we call alosing
edge. A losing setis a set of losing edgesL ⊂ E such that{(u, v) : {u, v} ∈ L} is a
sub-configuration.L(Z) is the set of all losing edges of configurationZ. Given a losing
setL of sizes, suppose we wish to construct a configurationZ such thatL ⊆ L(Z).
We could achieve this using algorithmLosingPairs(L,G) (LP) outlined below:

ALGORITHM LosingPairs(L,G(V,E)):

1. Initialize configurationZ ← ∅ and setV ′ ← ∅.

2. For each given losing edgee = {u, v} ∈ L:

(a) Add(u, v) and(v, u) to Z.

(b) Add verticesu andv to V ′.

3. For each vertexx ∈ V \ V ′:

(a) Select an edge{x, y} ∈ E.

(b) Add (x, y) to Z.

We shall ignore the order of items inL and identify adistinct run of LPby its choice
of an edge in step (3a). (Again, order of edge selection will not matter.) It is easy to



verify that each distinct run of algorithm LP will produce a configurationZ such that
inputL ⊆ L(Z). All distinct runs (as defined above) of LP taken together will generate
all the different configurationsZ such thatL ⊆ L(Z). Now let Ci denote the set of
losing configurations in which thei-th edge ofG, denoted byei, is a losing pair. We
can generate all the configurations inCi by collecting the configurationZ from all the
distinct runs ofLosingPairs({ei}, G).

Let M(N, s) denote the number of ways to choose a setL of s losing edges and
let F (N, s) denote the number of ways in which step (3a) of the algorithm LP can be
performed (which is also the number of distinct executions of LP for a given input).
From the above discussion it is clear that:

∑

i

|Ci| = M(N, 1) · F (N, 1), (2)

sincei ∈ [M(N, 1)] and for each value ofi, LP can be executed inF (N, 1) = |Ci|
distinct ways. Similarly, executingLosingPairs({ei, ej}, G) shows:

∑

i,j

|Ci ∩ Cj | = M(N, 2) · F (N, 2), (3)

and in general, executingLosingPairs(∪j∈[s]{eij
}, G) shows:

∑
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Then, by the principle of Inclusion-Exclusion:
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 (5)

= |U(N)|+
∑

s∈[N ]

(−1)sM(N, s) · F (N, s). (6)

The set
⋂

i C̄i denotes the set of configurations in which no edge is a losing edge, i.e.,
the set of winning configurations. The ratio of the cardinality of this set to the total
number of configurations is the required probability of winning in any round of LUaS.
What remains is to measure the cardinality of each of the sets

∑

i |Ci| = M(N, 1) ·
F (N, 1),

∑

i,j |Ci ∩ Cj | = M(N, 2) · F (N, 2), and so on for the constrained and
unconstrained variants.

2.1 Gaze Choices andF (N, s)

Let Cu(2N) andCc(2N) denote the number of gaze choices available to a player in
the unconstrained and constrained variants of LUaS respectively. Then:

Cu(2N) = 2N − 1, and (7)

Cc(2N) = 3. (8)



Then, since the selection of an edge for each vertex in step (3) of LP is independent,
we can write:

Fu(N, s) = Cu(2N)(2N−2s), and (9)

Fc(N, s) = Cc(2N)(2N−2s). (10)

2.2 Matchings andM(N, s)

A matchingof an undirected graphG is a subset of its edges such that all edges are
pairwise disjoint. We define ans-matchingto be a matching with exactlys edges.
Observe that choosing a valid losing setL of sizes requires us to select ans-matching
of the constraints graphG. Thus, to calculateM(N, s), we must calculate the number
of s-matchings in the constraints graph of the LUaS variant under consideration.

2.3 Total Configurations U(N)

Let Uu(N) andUc(N) denote the set of all distinct configurations compatible with the
constraints graphs ofLUaS(2N ; [N ]) andLUaS(2N ; {1, N}) respectively. Clearly,

|Uu(N)| = Cu(2N)2N , and (11)

|Uc(N)| = Cc(2N)2N . (12)

3 Unconstrained LUaS:Mu(N, s)

We first consider the unconstrained variant,LUaS(2N ; [N ]), of the game. To construct
ans-matching, we use algorithmUnconstrainedMatching(N, s) (UM) below:

ALGORITHM UnconstrainedMatching(N, s):

1. InitializeV ← {0, . . . , 2N − 1} and matchingM ← ∅.

2. Repeat the following stepss times:

(a) Choose a pair of vertices{u, v} ∈ V and setM ←M ∪ {u, v}.
(b) UpdateV ← V \ {u, v}.

Each iteration of the loop in algorithm UM, adds one pair to the matching. The addition
step (2a) can be performed in

(

|V |
2

)

ways. Initially|V | = 2N and|V | decreases by 2 in
each iteration. However, since the order in which thes-matching is generated does not
matter, we must divide bys!. Hence, the total number of distincts-matchings generated
will be:

Mu(N, s) =

s
∏

k=1

1

k

(

2N − 2(k − 1)

2

)

=
(2N)!

(2N − 2s)! s! 2s
. (13)
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Figure 3: The constraints graph ofLUaS(2N ; {1, N}) is isomorphic to the
Möbius ladder of orderN . The constraints graph on the right illustrates the termi-
nology used to count matchings using McSorley’s technique [2].

Substituting (9), (11), and (13) in (6) and simplifying gives,
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Therefore, the probability of winning in any round ofLUaS(2N ; [N ]) is given by:

Pu
win =

N
∑

s=0

(−1)s

(2N − 1)2s
·
(

2N

2s

)

· (2s− 1)!!, (15)

wheren!! denotes the double-factorial function (with (-1)!! = 1).

4 Constrained LUaS:Mc(N, s)

A Möbius ladder is a graph on2N verticesV = [2N ] and can be visualized as a
pair of chains ofN vertices with an additional edge across each correspondingpair
of vertices, one from each chain (i.e., the “rungs of the ladder”). The two ends of
the ladder are connected like the ends of a Möbius strip. The constraints graph of
LUaS(2N ; {1, N}) is isomorphic to the M̈obius ladder, as illustrated by the mapping
for N = 4 in Fig. 3. Since we need to calculateMc(N, s), we need to count the
number ofs-matchings in the M̈obius ladder. In [2], McSorley provides a technique
for counting various structures in the M̈obius ladder, including the total number of
matchings. However, here we are required to count matchingsof a given sizes in a
Möbius ladder. Nonetheless, we are able to use McSorley’s technique provided we can
counts-matchings in a chain withr edges, which is straightforward.

We generally follow the notation in [2] and only describe it briefly here. (See
Fig. 3 for examples.) We call the2N edges forming the circle of the constraints graph
as outside edges and the remainingN edges as diagonals. In any subset of edges
of the Möbius ladder, vertices on a diagonal will be referred to as diagonal vertices.
The subgraph between two consecutive diagonal vertices (i.e., the chain of outside



edges) is known as ajoin. The size of the join is the maximum numberr of edges
in it. We denote ak-compositionof an integerN by x(k) = (x1, · · · , xk) where
x1 + · · · + xj + · · · + xk = N and∀j xj ≥ 1. Any subset ofk diagonals describes
a k-composition ofN where thex1, . . . , xk are the sizes of the induced joins. Let
δy(r) denote the generating function of the number ofi-matchings in a join of sizer.
Observe thatδy(0) = 0 · y0, δy(1) = 1 · y0, and

δy(r) = δy(r − 1) + y · δy(r − 2). (16)

Solving this recurrence gives:

δy(r) =
1√

1 + 4y
·
[(

1 +
√

1 + 4y

2

)r

−
(

1−√1 + 4y

2

)r]

(17)

Before we generate anys-matching in a M̈obius ladder, we first generate one compris-
ing k diagonals ands− k outside edges. Ifk = 0, then we are required to generate an
s-matching in the cycle of2N vertices, also known as anonconsecutive cyclic set. The
number of such matchings is [3]:

NCC(2N, s) =
2N

2N − s

(

2N − s

s

)

. (18)

For k > 0, we use the algorithmConstrainedMatchingk(N, s, k) (CMk) outlined
below to generate ans-matching withk diagonals:

ALGORITHM ConstrainedMatchingk(N, s, k):

1. Choose vertex 0 to be a diagonal vertex and place a diagonalat vertex 0.

2. Of the remainingN − 1 vertices, choosek − 1 vertices to be diagonal vertices
and place a diagonal at each of them.

3. Distribute the remainings− k edges as outside edges in the2k joins.

If we count the number of distinct executions of CMk, then we can obtain the
number ofs-matchings with exactlyk > 0 diagonals, with the first diagonal on vertex
0. We make a few useful observations. The diagonal placed in step (1) along with
thek − 1 diagonals placed in step (2) of CMk will describe ak-compositionx(k) =
(x1, . . . , xj , . . . , xk) of N . This will create joins of sizesxj over vertices{0, . . . , N −
1} as well as a second set of (antipodal) joins of sizesxj over vertices{N, . . . , 2N−1}.
The number of ways to distributei outside edges in a join of sizer (to obtain an
i-matching) is[yi]δy(r) where [yi]p denotes the coefficient ofyi in the polynomial
p. Therefore, the number of ways to distribute a total ofi outside edges over two
antipodal joins, each of sizexj , to obtain ani-matching is[yi]δy(xj)

2. Hence, the
number of ways to distributes−k outside edges overk pairs of antipodal joins of sizes
x(k) = (x1, . . . , xj , . . . , xk) to obtain ans− k-matching is

[ys−k]
∏

xj

δy(xj)
2, (19)
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which is therefore the number of ways to execute step (3) of CMk given a specific
choice of diagonals in step (2) of CMk. Summing over different k-compositionsx(k)
with a diagonal on vertex 1 will give the number of different executions of CMk. The
total number ofs-matchings can be obtained by multiplying (19) byyk to account for
thek diagonals that also add to the size of the matching. Furthermore, we can choose
the first diagonal vertex inN different ways. However, we will have counted eachk-
compositionk times if we were to use the CMk algorithm to generate thes-matching.
Thus, the final form of the generating function for the numberof matchings of sizes
in a Möbius ladder will be:

mc(N, s) = NCC(2N, s) + [ys]





s
∑

k=1

N
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yk
∑

x(k)

∏

xj

δy(xj)
2



 (20)

Using Theorem C (i) in [2], we can write:

∑

x(k)

k
∏

j=1

δ(xj)
2 = [zn](δ(1)2z + δ(2)2z2 + · · ·+ δ(N)2zN )k. (21)

Therefore, we can finally write:

Mc(N, s) = NCC(2N, s) + [ys]

[

s
∑

k=1

yk N

k
[zN ](δ(1)2z + · · ·+ δ(N)2zN )k

]

.

(22)
Substituting (10), (22) and (12) into (6) and dividing by|Uc| will give the required
probability. We used the Maple code listed in the Appendix tocalculate this probability
for specific values ofN . Fig. 4 shows the probability calculated forN ∈ [15] which
matches the results in [1].



5 Some Applications of LUaS

5.1 Capacity of directional wireless networks

A realization of the LUaS game occurs in a wireless network with directional anten-
nas. The scenario is as follows. Consider a wireless networkwith 2N ≥ 2 nodes each
equipped with an antenna that can receive from and transmit in exactly one direction
at any given time. Thus, communication between two nodes requires that both nodes
point their antennas towards each other and only one of them transmit. This situation
is clearly analogous to the LUaS game in that a successful communication occurs only
in a losing round. The probability of a losing round and the average number of losing
pairs of players in any round would provide an estimate of theaverage “concurrent”
capacity of such a network as defined by Balakrishnan et al. [4]. In their paper, a
notion of maximumconcurrentcapacity of a wireless network is defined as the max-
imum number of simultaneous transmissions that can occur inthe network which is
an estimate of the maximum capacity of the network. Balakrishnan et al. consider
a network of omni-directional antennas whereas the LUaS game model in this paper
applies to directional networks.LUaS(2N ; [N ]) corresponds to a wireless network
where any two nodes are within transmission range of each other. Other variants of the
game includingLUaS(2N ; {1, N}) correspond to a network scenario in which only
certain nodes may be able to transmit to each other. This may be realistic constraint in
a wireless network and could be used to model certain routingconditions or channel
impairments.

5.2 Peer-to-peer barter networks

The utility of peer-to-peer (P2P) systems such as Napster, KaZaA and Gnutella to its
users is diminished due to a large proportion offree-riders; these are self-centered
non-cooperative users who consume free resources providedby the P2P system but
do not contribute any of their own resources to the system. Anagnostakis and Green-
wald [5] propose a barter-based design of a P2P system. In their design, a peerpi

shares its resourceri with another peerpj if and only if peerpj has some resource
rj , which it is ready to offer topi, and which peerpi wishes to consume. Clearly, a
useful transaction occurs in this P2P system only under sucha double coincidence of
wants. Thus, the probability of such a double coincidence is an estimate of the num-
ber of rounds in which successful trades occur and the average number of such double
coincidences is the average number of successful transactions. In the context of the
LUaS game, a successful P2P transaction in a barter-based P2P system corresponds
to a losing game. Anagnostakis and Greenwald also allow fork-way barters which
correspond tok-cycles in the LUaS game.
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Appendix

The following Maple code generates the probability of winning inLUaS(2N ; {1, N}).

joinmatch := r → (1/2 + 1/2 ∗ sqrt(1 + 4 ∗ y))r/sqrt(1 + 4 ∗ y)
−(1/2− 1/2 ∗ sqrt(1 + 4 ∗ y))r/sqrt(1 + 4 ∗ y);
jm := r → joinmatch(r);
ThmC := (N, k)→ (sum(jm(r)2 ∗ zr, r = 1..N))k;
matchkdiag := (N, k)→ (N/k)∗
simplify(expand(yk ∗ coeff(ThmC(N, k), zN )));
Ncc := (N, s)→ 2 ∗N ∗ binomial(2 ∗N − s, s)/(2 ∗N − s);
matchings := (N, s)→ add(matchkdiag(N, q), q = 1..s);
Choices := (N, s)→ 32∗(N−s);
P := N → evalf((Choices(N, 0) + add((−1)s

∗Choices(N, s) ∗ (simplify(Ncc(N, s)) + coeff(matchings(N, s),
ys)), s = 1..N))/Choices(N, 0));


