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Abstract

We solve a counting problem proposed by Balas and Connor [1] dEftigen
a game called.ook Up and ScreamOur solution applies to both variants of the
game and is based on counting matchings of every size in the constraipts gr
of the game. We count such matchings directly in the unconstrained waifian
the game and use a counting technique discovered by J. P. McSorltyr f2p
constrained variant.

1 Look Up and Scream

Balas and Connor introduce a new game calledk Up and Scream (LUa$}]. The
game involve2N participants standing in a circle. The game is played in dsun
where each round proceeds as follows: At the beginning aftthied, every participant
looks down at the floor. Then, on cue, all the participant& lop simultaneously, and
instantaneously choose to fix their gaze on another playemyl two players realize
that they have chosen to gaze at each other, they screamearalitid ends with bss
or failure. A new round is then played. The game ends if a round is silen{,no
players choose to gaze at players who are gazing back at fhieerules as outlined
above describe the unconstrained variant of LUaS. In thetcained variant, a player
can only choose to gaze at either her neighboring playerseoplayer situated at the
antipode of her location. Obviously, many other variants ba concieved, one for
each subset of players that any player is allowed to targatasBand Connor wish to
determine the probability of winning in any round in a game_bfaS. They present
numerical solutions for the problem obtained by exhauste&rch but do not provide
any formula for determining the probability analyticaljurther, the authors make the
following comment about the problem [1]:

“The approach of attempting to enumerate the number of gazekable to
each player is complicated by the non-local propertied At present, we
have discussed this problem with many mathematicians (lectieational
and otherwise) and have been unable to determine any genetfabd for



© o > e
© e e e
e ©
possible gaze choice
LUaS(2N;[N])with N =3 LUaS(2N;{1,N})with N =3

Figure 1: An example of the constraints graph of the LUaS gatitte 6 players. The
labeled vertices indicate players and the edges indicadeilple (bidirectional) gaze
choices for each player.

counting the number of winning gaze arrangements 2ivaplayer game
of LUaS. We invite the readers of this journal to contributeit talents
and their time to help us determine if such a method exists.”

In this note, we demonstrate a method for counting the nurabkrsing config-
urations for both the constrained and the unconstrainedneaof LUaS, from which,
the number of winning configurations, and hence the winniogability, can be easily
obtained. Counting in the unconstrained variant is direct straightforward. For the
constrained variant, we use a counting technique discdueyd. P. McSorley [2].

2 Approach

We denote the set of integefs, ..., k} by [k]. We defineLUaS(2N;{s1,...,8m})
as a game of LUaS involvingV players labeledo0,...,2N — 1} ands; € [N] with
each playef having the choice to gaze at any other plgyer {i £s; mod 2N}. We
restrict our discussion to the following two variants prepd in [1]: the constrained
variantLUaS(2N; {1, N}) and the unconstrained variabh/a.S(2N; [N]).

We observe that the rules of a particular LUaS game, i.estcaints on the possible
gaze choices for any player, can be represented in the foagadiph or2 NV vertices,
which we call theconstraints graplof that particular LUaS variant. The constraints
graph of aLUaS variantUaS{2N; {s1, ..., smn }} is an undirected grap&(V, E) on
the set of vertice$” = {0,...,2N — 1} with the set of edges

E={{i,j}:i,jeV,i#j,Ike[m](j=i+ts; mod2N)}. (1)

We denote byE, the directed version of/, i.e., E; = {(i,j) : {i,j} € E}. Fig. 1
shows an example\ = 3) of the constraints graph of both LUaS variants. We refer
to the collection oR N gazes in a realization of a round of the LUaS game esrdig-
uration. That is, a configuration is a set of pai'sC E, such that’u € V' there exists

a uniquev € V such thatu,v) € Z. A sub-configurations any subset of a configu-
ration. By definition of the LUaS game lasing configurationZ is a configuration in
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A winning configuration

A losing configuration

< indicates a losing edge

Figure 2: Examples of winning and losing configurations.

which (u,v) € Z and(v,u) € Z. The pair{u,v} is called alosing pair. A winning
configurationis one with no losing pair. Fig. 2 shows an example of a winrang
losing configuration for each variant of the game. We comssgiaonymous any losing
pair {u, v} in a losing configuratior and edge{u,v} € E, which we call alosing
edge A losing setis a set of losing edges C E such that{(u,v) : {u,v} € L} isa
sub-configuration(7) is the set of all losing edges of configuratign Given alosing
setL of sizes, suppose we wish to construct a configuratidisuch thatl C £(Z).
We could achieve this using algorithbwsing Pairs(L, G) (LP) outlined below:

ALGORITHM LosingPairs(L,G(V, E)): ‘

1. Initialize configurationZ «+ () and setl’’ « (.
2. For each given losing edge= {u,v} € L:

(a) Add(u,v)and(v,u)to Z.
(b) Add verticesu andv to V.

3. Foreach vertex € V \ V':

(a) Select an edggr,y} € E.
(b) Add (z,y) to Z.

We shall ignore the order of items inand identify adistinct run of LPby its choice
of an edge in step (3a). (Again, order of edge selection waillmatter.) It is easy to



verify that each distinct run of algorithm LP will produce andigurationZ such that
inputL C L£(Z). All distinct runs (as defined above) of LP taken togethetgéherate
all the different configurationg such thatl, C £(Z). Now let C; denote the set of
losing configurations in which theth edge ofGG, denoted by;, is a losing pair. We
can generate all the configurations(ifiby collecting the configuratio® from all the
distinct runs ofLosingPairs({e;}, Q).

Let M (N, s) denote the number of ways to choose a&eif s losing edges and
let F(N, s) denote the number of ways in which step (3a) of the algoritiifrchn be
performed (which is also the number of distinct executioh&f® for a given input).
From the above discussion it is clear that:

Z'Ci|:M(N’1)'F(N71)’ 2

sincei € [M(N,1)] and for each value of, LP can be executed if(N,1) = |C;]
distinct ways. Similarly, executinfosingPairs({e;,e;}, G) shows:

Z\Omc|— M(N,2)- F(N,2), (3)

and in general, executinbosing Pairs(U;jes{es; }, G) shows:

>

11,02, 50s
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Then, by the principle of Inclusion-Exclusion:

= M(N,s)-F(N,s). 4)

= [UWN)|+ Z(—l)‘“( > 1N Clp) (5)
kE[N] 11,92, ik |pE([K]
= [UN)|+ > (-1)*M(N,s) - F(N,s). (6)

SE[N]

The sef), C; denotes the set of configurations in which no edge is a logige 6.e.,
the set of winning configurations. The ratio of the cardityadif this set to the total
number of configurations is the required probability of wirgnin any round of LUaS.
What remains is to measure the cardinality of each of thesetg”;| = M(N,1) -
F(N,1), 32, ;1€ 0 Cj| = M(N,2) - F(N,2), and so on for the constrained and
unconstrained variants.

2.1 Gaze Choices and’(N, s)

Let C,(2N) andC.(2N) denote the number of gaze choices available to a player in
the unconstrained and constrained variants of LUaS relspgctThen:

C.,(2N) = 2N -1, and @)
C.(2N) = 3. (8)



Then, since the selection of an edge for each vertex in sfepf (3P is independent,
we can write:
Fu(N,s) = Cu(2N)®N=2%) and €)
Fo(Nys) = Ce(2N)@N=2), (10)

2.2 Matchings andM (N, s)

A matchingof an undirected graply is a subset of its edges such that all edges are
pairwise disjoint. We define ag-matchingto be a matching with exactly edges.
Observe that choosing a valid losing getf sizes requires us to select anmatching

of the constraints grap@. Thus, to calculatd/ (N, s), we must calculate the number
of s-matchings in the constraints graph of the LUaS variant undesideration.

2.3 Total Configurations U(N)

LetU,(N) andU.(N) denote the set of all distinct configurations compatiblélie
constraints graphs diUaS(2N; [N]) andLUaS(2N; {1, N'}) respectively. Clearly,

U.(N)| = Cu(2N)*", and (11)
|U('(N)| = Cc(2N)2N~ (12)

3 Unconstrained LUaS: M, (N, s)

We first consider the unconstrained variaiit/a.S(2N; [ N]), of the game. To construct
ans-matching, we use algorithiinconstrained M atching(N, s) (UM) below:

’ ALGORITHM UnconstrainedM atching(N, s): ‘

1. Initialize V « {0,...,2N — 1} and matching\/ — 0.

2. Repeat the following stepstimes:
(a) Choose a pair of verticds:, v} € V and setM «— M U {u,v}.
(b) UpdateV « V \ {u,v}.

Each iteration of the loop in algorithm UM, adds one pair ®timatching. The addition
step (2a) can be performed @H;') ways. Initially|V| = 2N and|V| decreases by 2 in
each iteration. However, since the order in which ¢heatching is generated does not
matter, we must divide by!. Hence, the total number of distineimatchings generated

will be: ‘
o L/2N—2(k—1)\ (2N)!
M“(N’S)_l}:[lk( N
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Figure 3: The constraints graph atUaS(2N;{1,N}) is isomorphic to the

Mobius ladder of orderNV. The constraints graph on the right illustrates the termi-
nology used to count matchings using McSorley’s techni@lie [

Substituting (9), (11), and (13) in (6) and simplifying give

ne

N
i€[2N] o

= (2N - 1)V (1 +@NY 23(2<]\_;1_)81)23 ' 5!(2(]\,1_ S))!> . (14)

s=1

Therefore, the probability of winning in any round bt/aS(2N; [N]) is given by:

N

Py, Z@](V__l)l)z (ZJD (25 — DI, (15)

s=0

wheren!! denotes the double-factorial function (with (-1)!! = 1).

4 Constrained LUaS: M.(N, s)

A Mobius ladder is a graph oV verticesV = [2N] and can be visualized as a
pair of chains of N vertices with an additional edge across each correspornuhirg
of vertices, one from each chain (i.e., the “rungs of the &a)d The two ends of
the ladder are connected like the ends of abilis strip. The constraints graph of
LUaS(2N; {1, N}) is isomorphic to the Mbius ladder, as illustrated by the mapping
for N = 4 in Fig. 3. Since we need to calculald.(N, s), we need to count the
number ofs-matchings in the Ndbius ladder. In [2], McSorley provides a technique
for counting various structures in thedius ladder, including the total number of
matchings. However, here we are required to count matctongsgiven sizes in a
Mobius ladder. Nonetheless, we are able to use McSorleyiigae provided we can
counts-matchings in a chain with edges, which is straightforward.

We generally follow the notation in [2] and only describe fidfly here. (See
Fig. 3 for examples.) We call thi&V edges forming the circle of the constraints graph
as outside edges and the remainiNgedges as diagonals. In any subset of edges
of the Mdbius ladder, vertices on a diagonal will be referred to agdinal vertices.
The subgraph between two consecutive diagonal vertices the chain of outside



edges) is known as jgin. The size of the join is the maximum numbeof edges
in it. We denote a-compositionof an integerN by x(k) = (x1,---,x) where
z1 4+ +x;+---+ 2, = NandVj z; > 1. Any subset of diagonals describes
a k-composition of N where thex, ...,z are the sizes of the induced joins. Let
d,(r) denote the generating function of the numbei-afiatchings in a join of size.
Observe that, (0) =0y, 6,(1) =1-y°, and

Oy(r) = 0y(r — 1) +y - 6y(r —2). (16)
Solving this recurrence gives:
1 1+ T+4y\" 1—T+4y\"
dy(r) = : - —— a7
V1+4y 2 2

Before we generate anymatching in a Mbbius ladder, we first generate one compris-
ing k diagonals and — k outside edges. If = 0, then we are required to generate an
s-matching in the cycle a2V vertices, also known asreonconsecutive cyclic sethe
number of such matchings is [3]:

NCC(2N,s) = 5 ;Ji - <2NS S>. (18)

For k > 0, we use the algorithr@onstrainedMatchingk(N, s, k) (CMK) outlined
below to generate asrmatching withk diagonals:

ALGORITHM ConstrainedM atchingk(N, s, k): ‘

1. Choose vertex 0 to be a diagonal vertex and place a diagbmattex O.

2. Of the remainingV — 1 vertices, choosé — 1 vertices to be diagonal vertices
and place a diagonal at each of them.

3. Distribute the remaining — k edges as outside edges in ttigjoins.

If we count the number of distinct executions of CMkK, then ves ©btain the
number ofs-matchings with exactly: > 0 diagonals, with the first diagonal on vertex
0. We make a few useful observations. The diagonal placetem (4) along with
the k — 1 diagonals placed in step (2) of CMk will describé-aompositionz(k) =
(r1,...,2j,...,xx) of N. This will create joins of sizes; over vertices0, ..., N —
1} as well as a second set of (antipodal) joins of sizesver vertice§ N, ..., 2N —1}.
The number of ways to distribute outside edges in a join of size (to obtain an
i-matching) is[y']d, (r) where[y‘]p denotes the coefficient of’ in the polynomial
p. Therefore, the number of ways to distribute a totak afutside edges over two
antipodal joins, each of size;, to obtain ani-matching is[y’]6,(z;)?. Hence, the
number of ways to distribute— £ outside edges ovérpairs of antipodal joins of sizes
z(k) = (1,...,2j,...,2) to Obtain ans — k-matching is

il | EED R (19)
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Figure 4: Probability of winning in any round inLUaS(2N;[N]) and
LUaS(2N;{1,N}).

which is therefore the number of ways to execute step (3) ok@ien a specific
choice of diagonals in step (2) of CMk. Summing over différercompositionse(k)
with a diagonal on vertex 1 will give the number of differemeeutions of CMK. The
total number ofs-matchings can be obtained by multiplying (19)#dyto account for
the k diagonals that also add to the size of the matching. Furtbermwve can choose
the first diagonal vertex iV different ways. However, we will have counted edgch
compositionk times if we were to use the CMk algorithm to generatedimatching.
Thus, the final form of the generating function for the numbmatchings of size
in a Mobius ladder will be:

me(N,s) = NCC(2N,s) + [y°]

Z kZH‘Sy ;) ] (20)

k=1 z (k)
Using Theorem C (i) in [2], we can write:
> H5 27)? = [2"M(0(1)%2 + 6(2)%2% + - - + 5(N)22N)*. (21)
z(k)j=1
Therefore, we can finally write:

k=1

TN 4+ 5NN

(22)
Substituting (10), (22) and (12) into (6) and dividing Wy.| will give the required
probability. We used the Maple code listed in the Appendigaizulate this probability
for specific values ofV. Fig. 4 shows the probability calculated faf € [15] which
matches the results in [1].



5 Some Applications of LUaS

5.1 Capacity of directional wireless networks

A realization of the LUaS game occurs in a wireless networthwlirectional anten-
nas. The scenario is as follows. Consider a wireless netwirk2/N > 2 nodes each
equipped with an antenna that can receive from and transneixactly one direction
at any given time. Thus, communication between two nodesinegjthat both nodes
point their antennas towards each other and only one of themsrit. This situation
is clearly analogous to the LUaS game in that a successfulmegrnitation occurs only
in a losing round. The probability of a losing round and therage number of losing
pairs of players in any round would provide an estimate ofaherage “concurrent”
capacity of such a network as defined by Balakrishnan et gl. I their paper, a
notion of maximumconcurrentcapacity of a wireless network is defined as the max-
imum number of simultaneous transmissions that can occthiemetwork which is
an estimate of the maximum capacity of the network. Balakias et al. consider
a network of omni-directional antennas whereas the LUaSeganodel in this paper
applies to directional networksLU a.S(2N; [N]) corresponds to a wireless network
where any two nodes are within transmission range of eadr.ofither variants of the
game includingLUaS(2N; {1, N}) correspond to a network scenario in which only
certain nodes may be able to transmit to each other. This magdistic constraint in

a wireless network and could be used to model certain rowimglitions or channel
impairments.

5.2 Peer-to-peer barter networks

The utility of peer-to-peer (P2P) systems such as NapstZak and Gnutella to its
users is diminished due to a large proportionfrgfe-riders these are self-centered
non-cooperative users who consume free resources probgelde P2P system but
do not contribute any of their own resources to the systemaghnstakis and Green-
wald [5] propose a barter-based design of a P2P system. indbsign, a peep;
shares its resourcg with another peep; if and only if peerp; has some resource
r;j, which it is ready to offer tg;, and which peep, wishes to consume. Clearly, a
useful transaction occurs in this P2P system only under aulfuble coincidence of
wants Thus, the probability of such a double coincidence is aimegé of the num-
ber of rounds in which successful trades occur and the agaramber of such double
coincidences is the average number of successful transactin the context of the
LUaS game, a successful P2P transaction in a barter-basedy®fem corresponds
to a losing game. Anagnostakis and Greenwald also allow:feay barters which
correspond td-cycles in the LUaS game.
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Appendix
The following Maple code generates the probability of wirgnin LU aS(2N; {1, N }).

joinmatch :==r — (1/2 4+ 1/2 % sqrt(1 + 4 = y))" /sqrt(1 + 4 * y)
—(1/2 —1/2 % sqrt(1 +4xy))"/sqrt(l + 4 = y);

jm =1 — joinmatch(r);

ThmC = (N, k) — (sum(jm(r)? x 2", r = 1..N))¥;
matchkdiag := (N, k) — (N/k)x*

simpli fy(expand(y* * coef f(ThmC (N, k), 2N)));

Nce:=(N,s) — 2% N * binomial (2« N — s,8)/(2 * s);
matchings := (N, s) — add(matchkdiag(N,q),q = 1 )
Choices := (N, s) — 32*(N=s),

P := N — eval f((Choices(N,0) + add((—1)°

xChoices(N, s) * (simplify(Ncce(N,s)) + coef f(matchings(N, s),
y®)),s = 1..N))/Choices(N,0));



