
Sequential prefetch cache sizing

for maximal hit rate

Swapnil Bhatia∗

Computing Science Laboratory

Palo Alto Research Center

Palo Alto, CA 94304

sbhatia@parc.com

Elizabeth Varki
∗Department of Computer Science

University of New Hampshire

Durham, NH 03824

{sbhatia, varki}@cs.unh.edu

Arif Merchant

Storage Platforms Laboratory

Hewlett-Packard Laboratories

Palo Alto, CA 94304

arif merchant@hp.com

Abstract—We propose a prefetch cache sizing module for use
with any sequential prefetching scheme and evaluate its impact
on the hit rate. Disk array caches perform sequential prefetching
by loading data contiguous to I/O request data into the array
cache. If the I/O workload has sequential locality, then data
prefetched in response to sequential accesses in the workload
will receive hits. Different schemes prefetch different data, so the
prefetch cache size requirement varies. Moreover, the proportion
of sequential and random requests in the workload and their
interleaving pattern affects the size requirement. If the cache
is too small, then prefetched data would get evicted from the
cache before a request for the data arrives, thus lowering the
hit rate. If the cache is too large, then valuable cache space is
wasted. We present a simple sizing module that can be added to
any prefetching scheme to ensure that the prefetch cache size
is adequately matched to the requirement of the prefetching
scheme on a dynamic workload comprising multiple streams.
We analytically compute the maximal hit rate achievable by
popular prefetching schemes and through simulations, show that
our sizing module maintains the prefetch cache at a size that
nearly achieves this maximal hit rate.

I. INTRODUCTION

Disk arrays consist of several disks, an array controller, and

one or more array caches. In addition to increasing the capacity

and availability of storage systems, disk arrays improve the

speed of storage access by distributing the load across disks.

However, it still takes milli seconds to access data from the

disks, so the speed differential between host computers and

storage is substantial. The speed of disk array data access can

be improved significantly if data are already loaded in the

array caches when I/O requests for the data arrive. Unlike disk

caches which are small, array caches are large and are often

larger than file system caches. Unlike disk controllers that are

only capable of elementary operations, disk array controllers

are capable of performing complex tasks to speed data access.

The size of the array cache along with the power of the

array controller gives the disk array the hardware capability

of executing sophisticated caching and prefetching schemes

capable of speeding access to the data on the storage device.

Prefetching techniques speed up storage access by loading

data from the disks into the cache before I/O requests for

the data arrive. To determine the data to be prefetched into

the cache, a prefetching scheme must predict future data

needs of applications accessing the storage system. Several

applications may be accessing the storage system concurrently.

Each application may simultaneously have several files open

for reading, or may open a file more than once. Each open

command generates a stream of I/O requests to a single file

over a period of time. The operating system submits the out-

standing requests from various streams to the storage system.

An I/O request submitted to the storage system consists of the

request’s address (block number), whether the request is of

type read or write, and the number of blocks to be accessed.

The storage system is not provided any information about

the applications, streams or files; it does not know which

stream relates to an I/O request. A storage controller does

not know when a new stream starts and when an existing

stream closes. Therefore, a storage prefetching technique has

to infer the future data needs of applications using only I/O

block numbers.

This “narrow” I/O interface limits the prediction capa-

bilities of storage prefetching techniques [19]. Luckily, file

data are often read sequentially, and operating systems try to

store a file’s data contiguously on storage disks [10], [22].

Therefore, there is a non-zero probability that some of the

streams accessing storage are sequential or partly sequential.

Consequently, sequential prefetching is the most common

prefetching technique implemented in storage systems [11]–

[13], [18], [27]. A sequential prefetching technique generates

prefetch requests for data that are stored contiguously to I/O

request data. A central goal of a prefetching scheme is to

keep prefetched data in the cache until I/O requests for the

data arrive.

In addition to prefetched data, an array cache is used for

temporarily storing I/O write request data and I/O read request

data. While an array cache is large compared to a disk cache,

space is still scarce since the size of an array cache is just

0.1% to 1% of the storage capacity [10], [26]. One of the

issues that need to be addressed is the space requirement of a

prefetch cache. Prefetch data are brought in on the assumption

that requests for them will arrive eventually. If the prefetch

cache is too small, prefetched data may get ejected from the

cache before I/O requests for the data arrive. Ejecting useful

prefetched data results in a double whammy performance drop,

since the data have to be reloaded from the disks when I/O

requests corresponding to the ejected prefetched data arrive.

The performance of a storage system would improve if the

cache size is sufficiently large so that useful prefetched data

remain in the cache long enough to result in cache hits.

On the other hand, the prediction capabilities of a storage

prefetching technique are limited, so it is possible that some of

the prefetched data are wrongly prefetched and never receive

hits. This is especially true when the I/O workload contains

several random streams and a “blind” prefetching technique

like Prefetch-Always (that prefetches data contiguous to every

I/O request) is used. If the prefetch cache is too large, then a

lot of space is wasted storing wrongly prefetched data. Thus,

the size of a prefetch cache plays a key role in the performance

of a storage system.

Prefetching has been around since the dawn of computer

systems, so there are numerous papers in this area [2]. A

majority of the papers, however, focus on the specifics of

prefetching, namely, what to prefetch, when to prefetch, and

how much to prefetch. This paper does not develop a new

prefetching technique—we develop a prefetch cache sizing

module that can be incorporated into any storage prefetching

technique. The sizing module tracks the degree of sequential

locality in the dynamic workload and adapts the prefetch cache

to a size appropriate for the workload. The contributions of

this paper are the sizing module and the evaluation of the

impact of size on the performance of a sequential prefetching

technique. A key result proved here shows that under the

simplest workload assumptions, as the prefetch cache size

decreases below the minimum necessary for a prefetching

scheme, the loss in hit rate increases exponentially. We also

demonstrate the performance of the sizing module via simula-

tions using different workload models. We believe that this is

the first paper to systematically address storage prefetch cache

sizing and analyze the impact of sizing on prefetch hit rate for

various prefetching schemes.

The rest of the paper is organized as follows: Section II de-

scribes the I/O workload. Section III computes the maximum

prefetch hit rates of various prefetching schemes. Section V

presents our dynamic cache sizing technique, and Section VI

validates the efficiency of our technique. Related work is

outlined in Section VIII.

II. STREAMS

A prefetching technique prefetches data that it expects to

be requested in the near future. A cache contains data loaded

in response to on-demand requests and prefetch requests. We

logically partition the read cache into the on-demand cache and

the prefetch cache, each part storing data loaded as a result

of the respective type of request. When an on-demand request

arrives for prefetched data, we assume that the hit prefetched

data are served and removed from the prefetch cache. The

hit data could either be moved into the on-demand cache or

removed altogether from the read cache.

Sequential prefetching techniques generate prefetch requests

for data stored contiguously to on-demand request data. Se-

quential prefetching is common in file and storage systems

since applications typically read files sequentially and many

file systems try to store a file’s data contiguously [10], [22].

A stream is a sequence of I/O requests for a particular file’s

data and is denoted as 〈a1, a2, . . . , ai, ai+1, . . . , an〉. A new

stream starts when a file is opened for reading and the stream

stops when the file is closed.

Definition 1: Consider a stream 〈a1, . . . , an〉. Request ai+1

is said to be sequential iff its data are stored contiguously after

the data for ai on the storage device. Otherwise, ai+1 is said

to be random.

The first request of a stream is assumed to be random. A

sequential request in a stream is denoted by s, and a random

request, by r. Thus, a completely random stream will be

denoted by a string in 〈r(, r)⋆〉, a completely sequential

stream, by one in 〈r(, s)⋆〉, and a partly sequential stream

by one in 〈r(, r)⋆ ∪ (, s)⋆〉. A stream is called sequential

if it is completely or partly sequential. Every contiguous

subsequence of sequential requests in a stream is called a

sequential run. A run comprises all the requests between two

consecutive sequential runs, including those in the first one.

Random requests in a run form a random run. As per the

above definitions, the minimum length of a sequential run and

a random run is one.

III. SEQUENTIAL PREFETCHING SCHEMES

Sequential prefetching techniques decide which contiguous

blocks to prefetch based on past hits and misses. On this basis,

sequential techniques are broadly classified into the following:

Prefetch Always (PA), Prefetch On a Miss (PoM) and Prefetch

On a Hit (PoH). We discuss each of these below.

In the PA technique, each request, regardless of whether

it hits or misses in the read cache, results in the prefetch

of data contiguous to its data. The advantage of PA is that

since every sequential request from a stream is prefetched,

the hit rate obtained is high and is the highest among the

three techniques under ideal conditions. For random and partly

sequential streams, however, PA wastefully prefetches large

amounts of data that never receive prefetch hits.

In the PoM technique, each request that misses in the read

cache results in the prefetch of data contiguous to its data.

The advantage of PoM is that the prefetch request can be

piggybacked onto the on-demand request. This can result in

significant savings in response time when the system is heavily

utilized. However, PoM does not prefetch on hits and hence

loses about half the hits in a sequential run, while wastefully

prefetching all random requests which will never receive hits.

In the PoH technique, each request that hits in the prefetch

cache results in the prefetch of data contiguous to its data.

Every request that misses in the prefetch cache activates the

sequential access detection module which determines if the

missed request is a sequential request. The module searches

past request addresses for requests whose data are stored

contiguously preceding the data of the missed request. If such

an address is found, then PoH assumes that the missed request

is the start of a sequential run. Therefore, PoH prefetches

data contiguous to the missed request’s data by generating

a piggybacked request for the on-demand data and prefetch

data. PoH is the only technique that initiates a prefetch after

identifying that a request is part of a sequential run. The

prefetched data are stored in the prefetch cache while the on-

demand data are written into the on-demand cache.

The prefetch hit rate of a stream is the proportion of the

requests in the stream that hit in the prefetch cache. The

maximum prefetch hit rate of a stream is the proportion of

sequential requests in the stream. Since prefetching techniques

differ on their prefetching decision, not all of them can achieve

this maximum hit rate. The PA technique can achieve this

maximum hit rate as it prefetches data contiguous to every

on-demand request. The PoH technique detects a sequential

run only after the arrival of the first on-demand request in the

sequential run. Therefore, it cannot prefetch the first request in

each sequential run, but can prefetch the remaining sequential

requests in the run. The PoM technique can obtain hits for at

most half the requests in a sequential run.

IV. CACHE SIZE

We define the size of a cache as the number of lines in

the cache. For expositional clarity, we assume that each cache

line can hold data from a single prefetch request. To maximize

prefetch hit rate, the cache size should be large enough to

ensure that no prefetched sequential request is evicted from

the cache before the arrival of an on-demand request for it.

If the workload submitted to the storage system consists of

a single stream, then the prefetch cache only needs a single

cache line, regardless of the scheme. The following example

illustrates this point.

Example 1: Consider the partly sequential stream

〈1, 2, 3, 45, 67, 83, 11, 12, 13, 14, 32, 76, 98〉 submitted to

the storage device, where each number represents the single

block to be read from the storage device. The stream contains

two sequential runs: 〈1, 2, 3〉, and 〈11, 12, 13, 14〉. The blocks

prefetched by the PA technique are 2, 3, 4, 46, 68, 84, 12, 13,

14, 15, 33, 77, and 99. The blocks prefetched by PoM are 2,

4, 46, 68, 84, 12, 14, 33, 77, and 98. The blocks prefetched

by PoH are 3, 4, 13, 14, and 15. The cache size needed for

obtaining the maximal hit rate by each technique is one,

since prefetched blocks 4, 15, 46, 68, 84, 33, 77, and 98, can

be evicted from the cache without loss in hit rate, because

on-demand requests for these blocks will never arrive. The

maximum prefetch hit rate of this stream is 5/13. The hit rate

achievable by PA is 5/13, and that by PoM and PoH is 3/13.

An I/O workload consists of interleaved requests from vari-

ous streams. Let ai,j denote request ai from stream j. Consider
an I/O workload comprising requests from five streams. Since

requests from the five streams may be interleaved arbitrarily—

〈 a5,1, a2,3, a8,4, a9,4 a6,1, a19,2, . . . , a3,3 〉—consecutive

requests from a stream may be separated by several requests

from other streams. This arbitrary mixing of requests from

different streams impacts the sizing requirement of the prefetch

cache in the following way. A sequential run from a stream

may become embedded in a long sequence of requests from

other streams. If a prefetching technique prefetches a request

from this run, then it must ensure that the prefetched request

is preserved in the cache until it is hit. However, the inter-

leaved requests may themselves trigger prefetches and lead to

insertions into the cache. Therefore, the cache must be sized

to be large enough so that a prefetched request is preserved

in the cache until it is hit, with a high probability.

The cache replacement scheme must evict requests without

jeopardizing prefetched data that is yet to be hit. It must

preserve a unhit prefetched request in the cache as long as

possible allowing sufficient time for its on-demand request to

arrive in workload comprising an arbitrary number of streams.

It may however, evict hit prefetched requests immediately.

Thus, from the viewpoint of the replacement scheme, there

is no difference between two cache blocks other than the time

at which they were loaded into the cache. The First In First

Out (FIFO) replacement scheme is a good choice in this setting

because it evicts blocks based on their loading order. Note that

a scheme like Least Recently Used (LRU) is not valid in this

context because all hit blocks are evicted immediately from

the prefetch cache.

The workload characteristics that impact on the size of

a sequential prefetch cache are the number of streams, the

sequentiality of each stream, the arrival rates of the streams,

and the interleaving pattern of the streams. The size require-

ment of a prefetch cache not only depends on the workload

characteristics but also on the prefetching scheme itself. For

example, blind prefetching schemes like PA and PoM may

require larger cache sizes in order to achieve their maximum

hit rate than informed prefetching schemes such as PoH. An

off-line prefetching scheme that reserves a cache line for each

sequential stream in the workload can get the maximum hit

rate for the workload. The optimal cache size is the number of

sequential streams in a workload. The minimum cache size for

a scheme on a given workload is the cache size necessary for

the scheme to achieve its maximum hit ratio on that workload.

The next example illustrates some of the points stated here.

Example 2: Consider a workload comprising two partly

sequential— 〈 909, 910, 588, 592, 593, 736, 737 〉 〈 1659,
1769, 1749, 1750, 1808, 〉—and one random stream: 〈10, 12,
81, 36, 25, 46, 61, 89, 05, 01, 42, 19, 83, 16, 33, 13, 38, 74,

04〉 Suppose these streams are interleaved in the workload as

follows: 〈 10, 909, 82, 81, 1659, 36, 25, 46, 1769, 1749, 61,
89, 910, 1750, 05, 01, 1808, 588, 592, 593, 736, 42, 19, 83,

16, 737, 33, 13, 38, 74, 04〉 For clarity of exposition, let us

assume that the prefetch cache is sufficiently large and can

thus hold all loaded blocks without any evictions. The PA

technique will prefetch a contiguous block for every request

in the workload resulting in 31 total prefetches. The PoM

technique will prefetch 27 blocks—all but those contiguous

to its following four hits: 910, 1750, 593, 737. The PoH

technique will prefetch the following four blocks: 911, 1751,

594, 738. The maximum number of prefetch hits possible

for this workload is four. The number of hits achieved by

PA, PoM, and PoH on this workload is four, four, and zero,

respectively. The optimal cache size for this workload is two.

The cache size necessary for PA, PoM, and PoH to achieve

its maximal hit rates is 13, 11, and 0 respectively. None of

the schemes (except PoH, trivially) achieve their maximal hit

rate on this workload with a cache size of two: PA and PoM

both get a single hit (593). The only scheme that can achieve

the maximum hit rate with a cache size of two is an off-line

prefetching technique that assigns a cache line for each stream.

As this example shows, the cache size is critical to a prefetch-

ing technique achieving its maximal hit rate. Each of the

techniques prefetches a different number of requests so the

prefetch cache size requirement varies.

Unlike PoH, PA and PoM initiate a prefetch without identi-

fying whether the request is part of a sequential run. Therefore,

PA and PoM prefetch upon arrival of every request, random or

sequential, and subsequently need a larger cache to ensure that

prefetched blocks from sequential runs are not evicted early.

In the next section, we present a simple sizing module that

can be added on to any prefetching technique to ensure that

the cache is large enough.

V. ONLINE SIZING

Upon arrival of each I/O request, an online sizing module

must decide whether to increment, decrement, or leave un-

changed the size of the cache. The goal of the sizing module

is to determine the smallest size that ensures prefetched blocks

from sequential runs remain in the cache until the on-demand

requests for the prefetched blocks arrive. The sizing module

assumes no knowledge of file systems or streams. The cache

replacement scheme is FIFO, a reasonable scheme, given that

hit blocks are removed from the cache and that the only

difference between two cached blocks is their insertion time.

Since the focus of this paper is the sizing component, we

assume that all other parameters of the schemes are set to

basic values: each on-demand and prefetch request is for one

block, and each cache line holds one block of data. The sizing

module would be valid if the settings are changed, as long as

the module scales appropriately. For example, if several blocks

are prefetched at a time, then more cache lines would have to

be set aside for each prefetch, but cache lines relating to a

single prefetch would be treated as a set.

The details of such an online sizing scheme are listed in the

pseudo-code of Scheme 1. The sizing scheme has to determine

if the cache is large enough to hold prefetched blocks from

sequential runs until their on-demand requests arrive. A block

is loaded into the FIFO insertion end, and each time another

block is inserted, this block will move toward the eviction

end. In order to know if the prefetch cache is too small, we

move each request evicted from the prefetch cache into the on-

demand cache, and label the request as an evicted request. If

an on-demand request for this evicted prefetch request arrives,

then the prefetch cache is too small and the size of the prefetch

cache is incremented. Whenever a request hits in the prefetch

cache or misses in both the prefetch and the on-demand cache,

the sizing scheme leaves the prefetch cache size unchanged.

The sizing scheme must also determine if the prefetch cache

is too large. The number of cache lines needed is equal to the

maximum number of prefetch cache insertions that can occur

between the loading of a prefetched block and the arrival of its

Scheme 1 ONLINE PREFETCH CACHE SIZING

1: noEvictionEndHits ← true; noIncr ← true

2: for every request req do

3: if req is a prefetch cache miss then

4: if req is a non-rereference hit in the on-demand

cache then

5: Increment prefetch cache size by one line

6: noIncr ← false

7: end if

8: else if req is hit near the eviction end then

9: noEvictionEndHits ← false

10: end if

11: reqCount++

12: if reqCount == monitoringPeriod then

13: if noEvictionEndHits and noIncr then

14: Decrement cache size by one line

15: Move evicted request into the on-demand

cache

16: end if

17: reqCount← 0

18: noEvictionEndHits ← true; noIncr ← true

19: end if

20: end for

on-demand request. Since each insertion causes a prefetched

block to move toward the FIFO eviction end, one would expect

that the FIFO eviction end of a cache would receive hits

unless the cache is too large. The eviction end of a cache

is monitored, and the size of the cache is decremented if the

eviction end cache line does not receive any hits during the

monitoring period. For example, suppose the prefetch cache

size is set to ten cache lines whereas the workload contains

only two completely sequential streams. Requests from the

two streams will be loaded at the insertion end of the prefetch

cache. When these requests are hit, they will be evicted from

the prefetch cache and succeeding requests will be loaded

into cache lines at the insertion end of the prefetch cache.

Eventually, all hits and insertions will be confined to the

insertion end of the cache and the eviction end of the cache

will see no hits. The sizing scheme exploits the presence of

this “quiet zone” at the eviction end of an inflated cache. The

scheme monitors the eviction end of the cache for a sufficiently

long period (pseudo-code lines 12-16). During this period,

if the requests residing near the eviction end do not receive

any hits, then the scheme concludes that the cache is inflated

and decrements the cache size. The request that is evicted

as a result of the cache size reduction is loaded into the on-

demand cache. This provides the decrement decision a level

of self-correction: if an adequately sized cache is erroneously

decremented, then the evicted request will lead back to an

increment once the request for the evicted request arrives in

the workload. Any decision to decrement the cache size is

also ignored if the cache size has been incremented during the

monitoring period: this ensures that the decision to increment

trumps the decision to decrement because the former is likely

to be based on a more reliable indicator.

The monitoring period is set to the sum of current size of

the prefetch cache and the size of the on-demand cache. The

monitoring period is tracked by the variable reqCountwhich

is initialized to 0; is incremented when an I/O request arrives

(line 11); and reset to 0 when the value equals the monitoring

period (line 17). The larger the sum of the on-demand and

prefetch cache sizes, the longer is the monitoring period. A

longer monitoring period is advantageous because it reduces

the chance that an adequate prefetch cache size is erroneously

decremented. On the other hand, a long monitoring period also

delays the reduction of an inflated cache size to an economical

value.

VI. SIMULATION RESULTS

The performance of the proposed sizing scheme is validated

through simulations. We ran the simulations using the CMU

Disksim [5] simulator. The simulator was used in slave mode

by a caching and sizing module that implemented the PoM,

PoH, and PA prefetching schemes and the online sizing

scheme. The simulations were carried out using synthetically

generated SPC-2-like read workloads [1] and partly sequential

workloads. We tested the sizing scheme both under uniform

and nonuniform interleaving as well as under static and

dynamic workloads. We postpone comparison to other sizing

schemes [12], [17] to future work.

A. Performance under uniform interleaving

In this experiment, the workload contains a total of 100

streams, all of identical sequentiality interleaved uniformly

at random. The sequentiality is varied from zero (all streams

completely random) to one (all streams completely sequential).

The hit rate obtained by PA, PoH, and PoM is measured. The

maximum prefetch cache size set by each scheme during each

simulation run is recorded. Ten such runs are executed and the

average of the maximum prefetch cache sizes and the hit rates

obtained is computed. The results are plotted in Figure 1. The

bottom graph in Figure 1 shows the hit rates obtained by the

three schemes using the online sizing scheme (solid points)

and the maximum theoretical hit rates achievable by those

schemes (dashed lines). It is clear that the hit rate obtained by

each scheme is within a few percent of the hit rate achievable

by that prefetching scheme.

The top graph in Figure 1 shows the maximum prefetch

cache size set by the online sizing scheme when it is coupled

with each of the three prefetching schemes. The optimal

prefetch cache size (dashed horizontal line) is 100 when the

number of partly sequential schemes is 100 and zero when all

the streams are random (zero sequentiality). PA achieves the

highest hit rate of all the schemes but also requires the largest

prefetch cache size. This is because PA prefetches succeeding

requests blindly. When sequentiality is low, this results in a

large number of requests being prefetched into the prefetch

cache that are never hit. Nonetheless, these requests end up

nudging hitable prefetched requests out of the cache. Such

prehit evictions end up in the on-demand cache and hits to

them are detected by the sizing scheme which then correctly

increments the prefetch cache size. In effect, due to PA’s blind

prefetching policy, the sizing scheme is forced to maintain a

large prefetch cache.

The prefetch cache size set by the sizing scheme for PoM

is lower than PA although still close to that used by PA. Like

PA, PoM too uses a blind prefetching policy. Thus, for low

sequentiality workloads, it ends up paying a heavy price in

terms of prefetch cache space as seen in the left portion of

Figure 1. Moreover, because PoM only prefetches on misses,

it fails to obtain hits on almost half of all the hitable requests.

PoM makes up for this suboptimal performance in its reduced

prefetching cost. Since PoM piggybacks its prefetch request

onto the on-demand request that fetches the requested data,

it saves the disk system an additional seek that would have

resulted if a separate prefetch request were to be issued. This

can result in big savings when the disk is heavily utilized.

Figure 1 also shows that among the three prefetching

techniques, PoH, when coupled with the sizing scheme, is

able to use the prefetch cache most frugally. This feature is

attributable mainly to PoH’s detect-and-prefetch approach to

prefetching in contrast to PA and PoM’s blind prefetching.

B. Nonuniform interleaving

In the first experiment, all streams are of identical sequen-

tiality and contribute the same average number of requests

to the workload. In effect, the average number of intervening

requests from other streams between two requests from the

same stream, is identical for all streams. In this experiment, the

sizing scheme is subjected to a workload comprising streams

of different rates and sequentialities. The workload contains

a total of 100 streams. Of these, 50 streams are completely

random (sequentiality zero) and the remaining 50 streams are

of identical sequentiality. The sequentiality of these streams

is varied from zero to one. The arrival rates of the random

streams are identical and are set to be twice the arrival rates

of the partly sequential streams. The arrival rates of all the

partly sequential streams are also set to be identical.

Figure 2 shows the hit rates and cache sizes for each of

the three prefetching techniques when coupled with the online

sizing scheme. Comparing with Figure 1 reveals two striking

differences. First, the effect of sequentiality on the prefetch

cache size is weaker as seen by the relative flatness of the

cache size curves. This is readily explained by observing

that because half the streams in the workload are completely

random and arriving twice as fast as the sequential streams

in the workload, the total sequentiality of the workload in the

second experiment is much lower than in the first. As a result,

even when the sequential streams are completely sequential

(right end of the top graph in Figure 2), the prefetch cache

lines needed is larger than the number of sequential streams,

owing to the presence of the high intensity random streams.

Second, the hit rates obtained by each of the prefetching

schemes are substantially lower than those observed in the

first experiment due to the presence of the random streams.

The theoretical hit rate obtained by a prefetching scheme on a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e
a
n
 p

re
fe

tc
h
 h

it
 r

a
ti
o

Sequentiality

PoH
PA
PoM
maximum achievable hit ratio

 0

 100

 200

 300

 400

P
re

fe
tc

h
 c

a
c
h
e
 s

iz
e
 (

lin
e
s
)

PoH
PA
PoM
optimal

Fig. 1. The prefetch hit ratio obtained as a function of workload sequentiality with the online prefetch cache sizing scheme listed in Pseudo-code 1. The
workload contains M=Ms=100 streams of identical sequentiality (X axis).

workload comprising uniformly interleaved streams is defined

to be the average of the hit rates obtained by the scheme

on each constituent scheme in isolation. When the workload

comprises non-uniformly interleaved streams, however, the hit

rate of the workload must be generalized appropriately. In this

case, the hit rate of the workload is the hit rate obtained by

the prefetching scheme on each constituent stream, weighted

by its relative intensity.

Figure 2 shows that the high intensity random streams have

a significant impact on the cache size when the prefetching

scheme used is PA or PoM. Since these two schemes prefetch

blindly, the high intensity random streams result in a large

number of useless prefetches which in turn result in the

eviction of a large number of useful prefetches. This forces

the sizing scheme to inflate the prefetch cache to a size that

can accommodate the useless prefetching of random requests

without evicting hitable prefetched requests. In summary, the

online sizing scheme is able to deliver near-optimal hit rates

even under this relatively challenging workload.

C. Sizing under a dynamic workload

In this next experiment, a completely dynamic workload is

used. While arrival rates and sequentialities of the streams are

held constant, unlike experiments in the previous sections, the

number of active streams is allowed to vary arbitrarily. The

starting time of each new stream is chosen at random within

the experimental interval. A stream once opened remains

active for a fixed duration. Figure 3 shows example runs under

two such scenarios. In both scenarios, 150 random streams

open and persist throughout the duration of the experiment.

Another 150 streams are completely sequential in the first

scenario (Figure 3 left) and partly sequential with sequentiality

0.8 in the second scenario (Figure 3 right).

It is clear from Figure 3 that the online sizing scheme is

able to adjust the prefetch cache size in response to the chang-

ing workload. When coupled with an intelligent prefetching

scheme like PoH, the cache size maintained by the scheme is

within a small factor of the minimum necessary cache size.

As indicated in previous results, the hit rate obtained in both

scenarios is also within a few percentage of the maximum hit

rate achievable by each prefetching scheme.

VII. ANALYSIS OF HIT RATE AND CACHE SIZE

The online sizing scheme increases the size of the cache

whenever a sequential block is evicted before being hit.

A sequential block is evicted when the number of cache

insertions between two consecutive requests of a sequential

run exceeds the number of cache lines. As the cache size is

decreased, the likelihood of a sequential block being evicted

due to cache insertions increases, and consequently lowers the

 0

 0.1

 0.2

 0.3

 0.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e
a
n
 p

re
fe

tc
h
 h

it
 r

a
ti
o

Sequentiality

PoH
PA
PoM
maximum achievable hit ratio

 0

 100

 200

 300

 400

 500

 600

 700

P
re

fe
tc

h
 c

a
c
h
e
 s

iz
e
 (

lin
e
s
)

PoH
PA
PoM
optimal

Fig. 2. The prefetch hit ratio obtained as a function of workload sequentiality with the online prefetch cache sizing scheme listed in Pseudocode 1 under a
nonuniform workload. The workload contains 50 completely random and 50 streams of arbitrary (X axis) sequentiality. The arrival rate of the random streams
is twice that of the partly sequential streams.

achievable hit rate.

In this section, we quantify the change in hit rate in

relation to the cache size, analytically. We make the following

assumptions about the workload. The number of sequential

stream, Ms, and the number of random streams, Mr, in the

workload is given. The streams comprising the workload

are independent and interleaved uniformly at random. Each

request in a stream 〈r(, r)⋆ ∪ (, s)⋆〉 is generated independent

of other requests for the stream. The type of each request—

sequential or random—is decided by flipping a coin biased

with the sequentiality of the stream. (Synthetic I/O workloads

in storage system simulators like Disksim [5] are generated

using this assumption.) The sequentiality of the stream, S, is

the probability that the next request generated is sequential.

We let R = 1 − S. Thus, the subsequence 〈r, s〉 is ob-

tained with probability S, the subsequence 〈r, r, s〉 is obtained
with probability R× S, and the subsequence 〈r, r, ..., r

︸ ︷︷ ︸

l

, s〉 is

obtained with probability Rl−1 × S. This is the probability

mass function of the geometric random variable [21]. Thus,

viewing a stream as an independent sequence of sequential

and random requests, the length of a random (sequential) run

has a geometric distribution, and it follows that, the expected

(average) length of a sequential run is given by 1/R, the

expected length of a random run is given by 1/S, the expected

length of a run is given by 1/(S×R), and the expected number

of runs in a stream with n requests is n × S × R. We now

compute the maximum prefetch hit rate per stream, for each

of the prefetching schemes. Since PA prefetches every request,

HmaxPA = S.

The PoH technique only prefetches identified sequential re-

quests from all streams. All requests in a sequential run,

except for the first sequential request, hit in the cache. The

expected number of sequential runs in a stream with n requests

is n × S × R. Therefore, the expected maximum hit rate is

(S− S× R). Thus, for a given stream:

HmaxPoH = S
2.

The PoM technique prefetches on a cache miss. If a sequential

run consists of an even number of requests, then half the

requests hit in the cache. If a sequential run consists of an

odd number of requests, then the ceiling of half the requests

hit in the cache. Thus, the proportion of hits on even length

sequential runs is S/2, on odd length sequential runs is

S(1 + R)/2, and the probability of obtaining an odd length

sequential run is 1/(1 + S). Hence, the maximum mean hit

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360
R

e
q

u
e

s
t

a
d

d
re

s
s

In
s
ta

n
ta

n
e

o
u

s
 c

a
c
h

e
 s

iz
e

Time

PoM

PA

PoH
OPT

workload

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07 5e+07
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

R
e

q
u

e
s
t

a
d

d
re

s
s

In
s
ta

n
ta

n
e

o
u

s
 c

a
c
h

e
 s

iz
e

Time

OPT

PoH

PoM

PA
workload

Fig. 3. An example run of the online sizing scheme on a dynamic workload. Left: A total of 150 completely sequential streams open and close dynamically
while a background of 150 random streams persists. Right: A total of 150 streams of 80% sequentiality open and close dynamically while a background of
150 random streams persists.

rate for a stream under PoM is

HmaxPoM =
S

1 + S

An I/O workload contains interleaved streams, and the

maximum hit rate per stream can be achieved only if the

cache is large enough so that every prefetched block from

the sequential runs remain in the cache until the on-demand

request arrives. The next theorem states the achievable hit rate

for a prefetching technique if the number of cache lines is set

to some number L.
Theorem 1: Suppose there are M uniformly interleaved

streams in a workload, of which Ms streams are sequential or

partly sequential. In each (partly) sequential stream, assume

that with probability S, the next request is sequential to the

current request. For this workload, let Hmax represent the

maximum hit rate that can be achieved by a prefetching

technique for any stream i of the Ms streams.

Then, for a cache employing a FIFO replacement policy,

the hit rate for stream i that can be achieved using a cache

with L lines is at least Hmax

(

1−
(

M−1

M

)L
)

.

Proof: Suppose a sequential prefetch request si from

stream i is inserted into the cache at FIFO insertion end. We

analyze the scenario when the next on-demand request from

a stream j arrives.

With probability 1/M, i = j and this on-demand request

corresponds to prefetch si, so prefetch si hits in the prefetch

cache.

With probability M−1

M
, the on-demand request is from a

stream other than i. If this on-demand request results in a

prefetch cache insertion, then the cache line for si either

retains its position in the FIFO queue or moves 1 line closer

to the FIFO eviction end. If this on-demand request does not

impact the prefetch cache, then the cache line for si retains

its position in the FIFO queue.

Suppose the on-demand request corresponding to si does

not arrive during the (Ms−1) on-demand request arrivals after

loading si at the FIFO insertion end. Each arrival will result

in si either retaining its position in the FIFO cache or moving

1 line closer to the FIFO eviction end. Since the cache size is

L, prefetch request si is guaranteed to stay in the cache during

the next (L−1) on-demand request arrivals. In the worst case,

after (L − 1) arrivals, the cache line holding si would be at

the FIFO eviction end and would face eviction from the next

insertion from a newly identified sequential run.

Thus, for a cache size of L, with probability
(

1−
(

M−1

M

)L
)

,

a sequential request will hit in prefetch cache within the next

L insertions. If the maximum hit rate for the workload that

can be achieved by the prefetching technique is Hmax, then

with a cache of size L, the prefetching technique would get

the hit rate specified in the theorem.

The bound proved above is loose. Both PA and PoM blindly

prefetch requests from the M streams, therefore the mini-

mum cache size is M since requests from all M streams are

prefetched. On the other hand, PoH only prefetches identified

sequential requests from the Ms streams, so the minimum

prefetch cache size is Ms. This leads to a tighter bound.

Corollary 1: For a cache size of L lines, a lower bound on

the hit rate is given by:

HPoH ≥ HmaxPoH ×
(

1−
(

Ms − 1

Ms

)L
)

Hs ≥ Hmaxs
×
(

1−
(

M− 1

M

)L
)

, s ∈ {PoM, PA}

If the cache size L is set to k×M for PA and PoM and k×Ms

for PoH for some positive integer k, then, ((M− 1)/M)kM →
e−k and ((Ms− 1)/Ms)

kMs → e−k as M, Ms →∞. Thus, for

large M and Ms, the hit ratios are bounded as below:

Hs ≥ Hmaxs

(
1− e−k

)
, s ∈ {PoH, PoM, PA}

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140 160 180 200

L
o
s
s
 i
n
 h

it
 r

a
ti
o
 (

d
if
fe

re
n
c
e
 f

ro
m

 m
a
x
 a

c
h
ie

v
a
b
le

 h
it
 r

a
ti
o
)

Fixed cache size (lines)

PA
PA loss bound

PoM
PoM loss bound

PoH
PoH loss bound

Fig. 4. Effect of increasing cache size on the loss in hit rate for a workload
comprising 100 streams of sequentiality 0.5.

This leads to the following observation. As the prefetch

cache size is decreased from the minimum size necessary for

a prefetching scheme, the loss in hit rate could increase signif-

icantly. Figure 4 confirms this hypothesis. In this simulation,

the cache size was varied and the hit rate obtained by the

three techniques on a workload comprising 100 streams of

sequentiality 0.5 was measured. As the cache size is increased,

the loss in hit rate drops dramatically. In other words, a small

decrease in cache size can lead to a significant loss in hit rate.

Figure 5 shows the hit rate provided by the three techniques

for a cache size set to 2M for PA and PoM, and 2Ms for PoH.

Dashed lines indicate the maximum achievable hit rate for each

technique and the solid lines mark the loose lower bound from

the theorem above. The filled points show the hit rate measured

from simulations. From these results, one can conclude that the

three techniques can achieve nearly their maximal hit rate if the

cache size is maintained greater than about twice the optimal

size. However, the number of streams—which is necessary to

compute the optimal size—is typically unknown. Therefore,

our proposed online sizing scheme is useful in maintaining

the cache at a size that is adaptively matched to the workload

and the prefetching scheme.

VIII. RELATED WORK

Cache size has a significant effect on a caching/prefetching

technique’s performance, since it determines the hit rate. Most

studies have focused on on-demand caches where data are kept

for re-reference hits. The
√

2 rule follows from an empirical

observation that the cache miss rate decreases as a power

law of cache size [?], [20]. Hartstein et al. [14] proved this

rule both theoretically and through simulation. Jelenkovic et

al. showed the relationship between the cache miss rate and

the cache size for a LRU scheme with statistically dependent

request sequences [16]. Singh et al. [23] developed a mathe-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

fe
tc

h
 h

it
 r

a
te

Sequentiality

PA H
m

ax

PA lb
PoM Hmax

PoM lb

PoH H m
ax

PoH
 lb

PoH Hmax

PA Hmax

PoM Hmax

PA size 2M

PoH size 2Ms

PoM size 2M

PoH lower bound

PA lower bound

PoM lower bound

Fig. 5. Prefetch hit ratio obtained as a function of sequentiality with
the prefetch cache size set to 2M, where M=Ms=100 streams of identical
sequentiality (X axis).

matical model that computes the dependence of the miss rate

on the cache size.

There are some studies on web caching which focus

on minimal total cost of caching given a cache size. A

caching/paging algorithm called Greedy-Dual-Size is proposed

and its competitiveness against an offline optimal algorithm

is provided [6], [8], [28]. Curcio et al. [9] combined the

Greedy-Dual-Size caching scheme with a prefetching scheme

which needs information from the client user for determining

which file to prefetch. Teng and Gumaer [24] managed the

cache as multiple buffer pools and determined minimum and

maximum buffer sizes. Bruening and Amarasinghe [4],time

algorithm for dynamically bounding software code cache [4].

There are far fewer papers on prefetch cache sizing. Tse et

al. [25] concluded that performance of a prefetching technique

generally improves as the cache size increases. Baek and

Park [3] studied the effect of cache size on ASP, a prefetching

scheme they developed. They showed that ASP performs better

than other techniques for small sized caches by maximizing the

hit rate of both prefetched data and on-demand data. In these

studies, however, the prefetched data and on-demand data are

stored in the same cache and the cache size is fixed.

The separation of prefetched data from the rest of the

cache reduces the probability of eviction of prefetched data.

Li and Shen et al. [17] implemented a prefetch cache sizing

scheme based on a gradient descent-based greedy algorithm.

The SARC technique [12] manages storage prefetched data

and on-demand data by separating them into different LRU

lists and dynamically adjusting the size of the two lists based

on the sequentiality of the I/O workload. Sequential data are

placed in the SEQ list and random data are placed in the

RANDOM list. The sizes of these two lists are adjusted by

monitoring the miss rate of SEQ and hit rate of RANDOM .

The TaP technique [18] is a storage prefetching scheme that

uses a memory table for sequential pattern detection. The

prefetched data are saved in a prefetch cache, which can be

adjusted dynamically based on the sequentiality of the I/O

workload.

As the related work shows, there are very few papers that

discuss prefetch cache sizing [12], [17], [18]. In fact, these

papers focus on developing a prefetching technique, so sizing

is just a secondary focus. This is the first paper that presents

a systematic analysis of the impact of sizing on hit rate for

various prefetching techniques. This is also the first paper

to develop a sizing scheme that can be incorporated in the

standard sequential prefetching techniques.

IX. CONCLUSIONS

This paper tackles the space requirements of disk array

prefetch caches—an expensive and scarce resource. To our

knowledge, this is the first paper to systematically address the

issues and challenges in determining the adequate size of a

storage prefetch cache for dynamic I/O workloads. We explore

the tradeoff between sizing versus hit rate. We then compute

the hit rate achievable with a given prefetch cache size for

various sequential prefetching techniques. We propose an

online prefetch cache sizing scheme that is able to dynamically

maintain the cache size within a small factor of the minimum

size necessary while achieving hit rates of over 95% of the

maximum hit rate achievable by three popular prefetching

schemes. We validate our sizing scheme through simulations

with both uniformly and nonuniformly interleaved workloads

and static and completely dynamic workloads. Our simulations

show that the sizing scheme achieves near-maximal hit rates

under all the scenarios tested. The cache size maintained is

close to the minimum necessary with the PoH scheme and

within a small factor of the minimum with blind prefetching

schemes such as PoM and PA.

ACKNOWLEDGMENTS

The first author was supported in part by a grant from the

Office of Naval Research and by the UNH CEPS Teaching

Award when this work was underway at UNH. The authors

thank HP Labs for graciously providing funding for the pub-

lication of this paper at the MASCOTS 2010 conference. The

first author thanks Mingju Li for discussions and comments.

REFERENCES

[1] SPC Benchmark-2(SPC-2) Official Specification, version 1.2.1. Tech.

rep., Storage Performance Council, Effective 27 Sept. 2006. http://www.

storageperformance.org/specs.

[2] ANACKER, W., AND WANG, C. P. Performance evaluation of computing

systems with memory hierarchies. IEEE Transactions on Electronic

Computers 16, 6 (1967), 764–773.

[3] BAEK, S. H., AND PARK, K. H. Prefetching with adaptive cache culling

for striped disk arrays. In Proceedings of the USENIX Annual Technical

Conference (June,2008).

[4] BRUENING, D., AND AMARASINGHE, S. P. Maintaining consistency

and bounding capacity of software code caches. In Code Generation

and Optimization archive Proceedings of the international symposium

on Code generation and optimization (2005), pp. 74–85.

[5] BUCY, J. S., AND GANGER, G. R. The DiskSim simulation environment

version 4.0 reference manual. Tech. Rep. CMU-PDL-08-101, Carnegie

Mellon University, School of Computer Science, May 2008.

[6] CAO, P., CAO, P., IRANI, S., AND IRANI, S. Cost-aware www proxy

caching algorithms. In In Proceedings of the 1997 USENIX Symposium

on Internet Technology and Systems (1997), pp. 193–206.

[7] CHOW, C. K. Determination of cache’s capacity and its matching storage

hierarchy. IEEE Trans. Computers 25, 2 (1976), 157–164.

[8] COHEN, E., AND KAPLAN, H. Caching documents with varying sizes

and fetching costs: an LP-based approach. Algorithmica 32, 3 (2002),

459 – 466.

[9] CURCIO, M., LEONARDI, S., AND VITALETTI, A. Algorithm Engineer-

ing and Experiments. Springer Berlin / Heidelberg, 2002.

[10] FARLEY, M. Storage Networking Fundamentals: An Introduction to

Storage Devices, Subsystems, Applications, Management, and Filing

Systems. Cisco Press, 2004.

[11] GILL, B. S., AND BATHEN, L. A. D. AMP: Adaptive multi-stream

prefetching in a shared cache. In Proc. of USENIX 2007 Annual

Technical Conference (Feb 2007), 5th USENIX Conference on File and

Storage Technologies.

[12] GILL, B. S., AND MODHA, D. S. SARC: Sequential prefetching in

adaptive replacement cache. In Proc. of USENIX 2005 Annual Technical

Conference (2005), pp. 293–308.

[13] GRIMSRUD, K. S., ARCHIBALD, J. K., AND NELSON, B. E. Multiple

prefetch adaptive disk caching. IEEE Transactions on Knowledge and

Data Engineering 5, 1 (1993), 88–103.

[14] HARTSTEIN, A., SRINIVASAN, V., PUZAK, T. R., AND EMMA, P. G.

Cache miss behavior, is it
√

2? Proceedings of the 3rd conference on

computing frontiers (2006), 313 – 320.

[15] JELENKOVIC, P. R., AND RADOVANOVIC, A. Least-recently-used

caching with dependent requests. Theor. Comput. Sci. 326, 1-3 (2004),

293–327.

[16] JELENKOVIC, P. R., RADOVANOVIC, A., AND SQUILLANTE, M. S.

Critical sizing of LRU caches with dependent requests. Journal of

Applied Probability 43, 4 (2006), 1013–1027.

[17] LI, C., AND SHEN, K. Managing prefetch memory for data-intensive

online servers. In Proceedings of the 4th conference on USENIX

Conference on File and Storage Technologies (2005), vol. 4, pp. 253

– 266.

[18] LI, M., VARKI, E., BHATIA, S., AND MERCHANT, A. TaP: Table-based

prefetching for storage caches. In 6th USENIX Conference on File and

Storage Technologies (FAST ’08) (2008), pp. 81–97.

[19] LI, Z., CHEN, Z., SRINIVASAN, S. M., AND ZHOU, Y. C-miner: Mining

block correlations in storage systems. In Proceedings of the 3th USENIX

Conference on File and Storage Technologies (FAST) (2004), pp. 173–

186.

[20] PRZYBYLSKI, S. A., HOROWITZ, M., AND HENNESSY, J. L. Charac-

teristics of performance-optimal multi-level cache hierarchies. In ISCA

(1989), pp. 114–121.

[21] ROSS, S. M. Probability models for computer science. Academic Press,

San Diego, CA, 2002.

[22] RUEMMLER, C., AND WILKES, J. An introduction to disk drive

modeling. IEEE Computer 27, 3 (1994), 17–29.

[23] SINGH, J., STONE, H., AND THIEBAUT, D. A model of workloads and

its use in miss-rate prediction for fully associative caches. IEEE Trans.

on Computers 41, 7 (1992), 811–825.

[24] TENG, J. Z., AND GUMAER, R. A. Managing IBM database 2 buffers

to maximize performance. IBM System Journal 23, 2 (1984), 211 – 218.

[25] TSE, J., AND SMITH, A. J. Performance evaluation of cache prefetch

implementation. Tech. Rep. UCB-CSD-95-877, Computer Science

Division (EECS), University of California, Berkeley, June 1995.

[26] WONG, T. M., AND WILKES, J. My cache or yours? Making storage

more exclusive. In Proceedings of the General Track: 2002 USENIX

Annual Technical Conference (Berkeley, CA, USA, 2002), USENIX

Association, pp. 161–175.

[27] WORTHINGTON, B. L., GANGER, G. R., AND PATT, Y. N. Scheduling

algorithms for modern disk drives. In SIGMETRICS ’94: Proceedings of

the 1994 ACM SIGMETRICS conference on Measurement and modeling

of computer systems (1994), ACM Press, pp. 241–251.

[28] YOUNG, N. E. On-line file caching. In Proceedings of the ninth annual

ACM-SIAM symposium on Discrete algorithms (1998).

