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Abstract

In this short note, I argue against two commonly-
held biases. The first is that stochastic search is ap-
plicable only to improvement search over complete
solutions. On the contrary, many problems have ef-
fective greedy heuristics for constructing solutions,
making a tree-structured search space more appro-
priate. The second is that stochastic tree search
algorithms should explore the same space of deci-
sions as systematic methods. Constructing search
trees in the traditional manner, by choosing the de-
fault variable at the parent and valuing it differently
at each child, makes sense for efficient complete
search, but is not necessarily the best choice for in-
complete methods. In an empirical study using the
combinatorial optimization problem of number par-
titioning, I show that the opposite approach, choos-
ing a different variable at each child and giving it
the default value, can be a good choice for incom-
plete stochastic algorithms.

1 Stochastic Tree Search
A large number of papers have appeared in recent years (in-
cluding at AI conferences such as IJCAI and AAAI) devoted
to stochastic improvement search for optimization problems,
in which an algorithm attempts to improve a complete but po-
tentially suboptimal solution. Many of these ‘local search’
methods, such as tabu search or simulated annealing, are
completely general and use as their only source of problem-
specific information the ability to evaluate the objective func-
tion on a complete solution. Others, such as WalkSAT, take
advantage of heuristic guidance in the form of a function that
identifies variables that might be profitably changed. Im-
provement methods are often contrasted with complete search
methods, which use techniques such as branch-and-bound or
dynamic backtracking [Ginsberg, 1993] to systematically ex-
tend an empty solution in all possible ways, implicitly travers-
ing a tree containing all possible solutions. When run to com-
pletion, such methods guarantee an optimal solution. But it
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is easy to over-generalize and assume that stochastic search
is applicable only to improvement search. In fact, the call
for papers for this workshop exhibits this tendency. It sum-
marizes the field of interest as “stochastic local search algo-
rithms, as well as randomised systematic search methods,”
leaving the impression that stochastic search applies only to
local improvement and that tree-structured search spaces are
best left to systematic methods (perhaps suitably random-
ized). Such a bias is ill-founded for two reasons. First, there
are many problems for which heuristic guidance is available
when the problem is considered as a tree. And second, as I
will explain, trees provide an convenient avenue for attacking
one of the main research questions in stochastic search: how
to represent information learned during the search.

For many problems, effective heuristic guidance is avail-
able when viewing the problem as a tree search. This is evi-
denced by the fact that greedy constructive heuristics exist for
many problems. Such methods can be viewed as incomplete
tree searches that visit only a single leaf without backtrack-
ing [Korf, 1995]. Expanding a node in the tree corresponds to
extending a partial solution, and the leaves of the tree corre-
spond to complete solutions which can be evaluated accord-
ing to the objective function. The greedy algorithm provides a
way of choosing which component of the problem should be
set next (with analogy to CSPs, call this variable choice) and
what it should be set to (call this value choice). Systematic
algorithms such as depth-first search and limited discrepancy
search [Harvey and Ginsberg, 1995] can exploit this heuris-
tic knowledge, and the fact that such algorithms can perform
well on certain problems despite their fixed and non-adaptive
search order indicates that this heuristic guidance is powerful
indeed. Stochastic approaches are often inherently incom-
plete. But for large problems in which the complete tree can-
not be enumerated, there is no reason to think that stochastic
tree search algorithms could not do better than existing sys-
tematic methods.

Several stochastic tree searches have already been pro-
posed. Simple unguided random probing was found ef-
fective on scheduling benchmarks by Crawford and Baker
[1994]. Bresina’s [1996] Heuristic-Biased Stochastic Sam-
pling (HBSS) makes repeated probes into a tree, weight-
ing its choice of child according to the value-ordering func-
tion. The Greedy Randomized Adaptive Search Procedure
(GRASP) approach of Feo and Resende [1995] is actually



a combination of heuristically biased probing with improve-
ment search on the resulting leaf (see also Marchiori and
Steenbeek [1998]). Juillé and Pollack [1998] use random
tree probing as a value choice heuristic during a beam search
into a tree, and Abramson proposed similar methods for game
trees [1991].

Stochastic tree search provides an avenue for addressing
one of the important active research questions in stochas-
tic search: how to explicitly represent information learned
during the search so that it can be used to guide future ac-
tions? (The collection of papers edited by Boyan, Buntine,
and Jagota [2000] surveys current work in this area.) In lo-
cal search, it is difficult to formulate a representation that
can capture the past history of objective values because the
search space is so unstructured. Tabu search methods implic-
itly represent regions of the search space which should not
be explored. Boyan’s [2000] STAGE system requires user-
supplied subroutines that calculate features of solutions. It
then uses them to generalize about good regions from which
to start improvement search. Boese et al.’s [1994] Adaptive
Multi-Start (AMS) uses solutions themselves as stand-ins to
mark good regions of the search space, but this representation
again requires a user-supplied combining function to imple-
ment generalization. Baluja’s [1997] Population-Based In-
cremental Learning (PBIL) works only with binary problems,
and hence can use a probability vector to represent learned in-
formation about which variables should be 0 or 1.

But in tree-based stochastic search, the tree itself can
provide the geometry of the search space. As the work
on discrepancy search shows [Harvey and Ginsberg, 1995;
Korf, 1996; Walsh, 1997], one can usefully generalize across
levels of the tree. I have been working on adaptive probing
algorithms [Ruml, 2001] that learn at what depths of the tree
one can trust the given child-ordering function. A stochas-
tic framework is employed that chooses the heuristically-
preferred child at each level according to the estimated prob-
ability that it is in fact the better choice. This varies accord-
ing to the number of probes that have been performed and
the data obtained. The ability to generalize about the child-
ordering heuristic across the breadth of the tree provides a
concise representation of the learned probing bias. (Adaptive
probing may also help provide a principled grounding for al-
gorithms such as HBSS, GRASP, and the Ant Colony Opti-
mization work of [Dorigo and Gambardella, 1997], in which
‘pheremone’ accumulates to represent the combined informa-
tion gathered by multiple search trials.)

The Squeaky Wheel Optimization (SWO) method of Joslin
and Clements [1998] is another adaptive tree search method.
In SWO, a greedy algorithm is used to construct solutions
given an order in which to consider the variables. A vari-
able choice function (similar to those used in improvement
search) identifies variables that are poorly set in the resulting
complete solution. Those variables are moved earlier in the
ordering, usually resulting in their being handled better by the
greedy heuristic. One can think of this technique as adapting
the given variable choice heuristic.

Unlike many improvement search methods, stochastic tree
search is not necessarily ‘local’—it might visit very differ-
ent solutions on consecutive iterations. But like improve-

ment methods, this flexibility comes at the cost of incom-
pleteness, and one must be alert to the possibility of expend-
ing redundant effort in the same part of the search space (a
generalization of the ‘local minima’ of improvement search).
Given the relative abundance of heuristic information in a
tree-structured search space, and the way that the clear ge-
ometry of the tree provides a convenient form for represent-
ing learned information during search, stochastic tree search
seems ripe for research attention.

2 Alternative Tree-Structured Search Spaces
One of the most fundamental questions in tree search is how
to trade-off the information provided by the variable-choice
heuristic and the value-choice heuristic. More simply put,
what is the best way to structure the search? Complete sys-
tematic search methods typically trust the variable-choice
heuristic completely. Children of a node vary in the value
they assign to that variable; they can be ordered according
to the value-choice heuristic. This results in a depth n tree
with the branching factor depending on the number of val-
ues per variable. (Typically, the number of values is smaller
than the number of variables.) This represents the smallest
tree that completely enumerates the possibilities (size bn).
But efficiently enumerating all solutions is already out of the
question for many real-world problems. In the context of
incomplete search, it may in fact be more productive to ac-
knowledge that the variable choice function could be fallible
too. For some problems, it may be useful to consider an al-
ternative tree representation in which one searches not over
the value assignments but over the variable choices. Each
child of a node would represent the choice of a different vari-
able, which would be assigned the value chosen by the value
choice heuristic. The children could be ordered according to
the variable choice heuristic. From a conventional point of
view, searching this tree is ludicrous. It is much larger than
the conventional one, as it has a branching factor of O(n), as
well as depth n, for a size of n!, and it does not necessarily
even include all possible solutions. But the solutions that it
does contain may be of a higher quality, depending on the
accuracy of the value choice heuristic. It is important to rec-
ognize that the choice of search space representation is not
pre-ordained—the bias towards conventional representation
may be inappropriate for incomplete methods.

2.1 Empirical Investigation
To demonstrate the relevance of this question, I have per-
formed some experiments with the combinatorial optimiza-
tion problem of number partitioning. The objective in a num-
ber partitioning problem is to divide a given set of numbers
into two disjoint groups such that the difference between the
sums of the two groups is as small as possible. It was used by
Johnson et al. to evaluate simulated annealing [1991], Korf
to evaluate his improvement to limited discrepancy search
(ILDS) [1996], and Walsh to evaluate depth-bounded discrep-
ancy search (DDS) [1997]. When the numbers are chosen
uniformly over an interval, the difficulty of the problem de-
pends on the relation between the number of digits in the
numbers and the number of numbers. With few digits and
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Figure 1: Searching the greedy spaces using random sam-
pling.

many numbers, the probability of a partitioning with a dif-
ference of 0 and 1 increases [Karmarkar et al., 1986]. This
makes the tree search easier, as the search can terminate once
such a partitioning is found. To encourage difficult search
trees by reducing the chance of encountering a perfectly even
partitioning [Karmarkar et al., 1986], I used instances with
64 25-digit numbers or 128 44 digits numbers.1 (Common
Lisp, which provides arbitrary precision integer arithmetic,
was used to implement the algorithms.) Results were nor-
malized as if the original numbers had been between 0 and
1.

The Greedy Representation
We present results using two different representations of the
problem. The first is a straightforward greedy encoding in
which each variable specifies the partition to which a partic-
ular number will be assigned (either 0 or 1). Variable choice
corresponds to choosing which number to assign, and the
usual heuristic is to choose the largest remaining number. The
usual value choice heuristic is to choose the currently smaller
partition, as adding to the larger one merely exacerbates the
partition difference. So the standard search space is one in
which the largest remaining number is selected to be added
to a partition and the smaller partition is tried first. The less-
preferred option at each decision point is to add the selected
number to the larger partition. The particular search algo-
rithm used will determine when the less-preferred option will
be chosen. The alternative search space always adds to the
smaller partition, but all remaining numbers can be selected,
with the options sorted from largest to smallest.

The easiest way to get a sense of the usefulness of a search
space is to assess the average quality of the solutions. Fig-
ure 1 shows the performance of random probing when parti-
tioning 128 numbers. This should give an overall impression
of the distribution of solution quality in the search spaces.
The vertical axis represents the partition difference, which the

1These sizes also fall near the hardness peak for number parti-
tioning [Gent and Walsh, 1996], which specifies log
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Figure 2: Searching the greedy spaces using HBSS.
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Figure 3: Searching the greedy spaces using adaptive prob-
ing.

algorithms are attempting to minimize. The solutions that are
found in the standard value-choice search space are very sim-
ilar to those found when searching over variable choices. (Er-
ror bars indicate 95% confidence intervals around the mean,
derived using 20 instances.) Because the variable-choice
search space always places numbers in the smaller partition,
forcing some degree of balance, there are many poor solutions
which exist in the standard search space but cannot be found
in the variable-choice space. However, it seems that adding a
random number to the smallest available bin is not much of
an improvement over putting the largest number in a random
bin. One can imagine restricting the range of generable solu-
tions even more. A restricted version of the variable-choice
space was also tested, in which only the largest two numbers
were available. This tree should be roughly the same size
as the standard value-choice search space. As Figure 1 in-
dicates, this space is much richer in good solutions than the
other two. These results show that the standard search space
is not necessarily superior at all. In fact, a search space based
on variable-choice is skewed toward better solutions.

Just because high quality solutions are more frequent
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Figure 4: Searching the greedy spaces using DFS.

doesn’t necessarily mean that search algorithms will be able
to find them any more easily. But Figure 2 shows that the
HBSS heuristic-biased sampling algorithm is in fact more ef-
fective in the variable-choice spaces. Preliminary results for
adaptive probing are shown in Figure 3. The algorithm has
trouble learning the large number of parameters necessary
to model the full variable-choice space. But when the size
of the tree is controlled for, we see that the variable-choice
space is clearly superior. Both stochastic tree search algo-
rithms can perform better when allowed to search over the
variable choice rather than the value choice.

This did not seem to hold for systematic search algorithms.
Figure 4 shows results using depth-first search. (This is
the most effective search strategy I know of for the stan-
dard space.) The standard space was clearly superior to the
variable-choice spaces. Similar results were obtained with
ILDS and DDS. This reinforces the idea that assumptions de-
rived from long experience with systematic tree algorithms
should be revisited when using stochastic algorithms.

The KK Representation
A more sophisticated representation for number partitioning
was suggested by Korf [1995], based on the heuristic of Kar-
markar and Karp [1982]. The essential idea is to postpone
the assignment of numbers to particular partitions and merely
constrain pairs of number to lie in either different bins or the
same bin. Constrained numbers are reinserted in the list ac-
cording to the remaining difference they represent. For in-
stance, the numbers 4 and 5 might be constrained to be in
different bins, leaving a remaining value of 1 to be accounted
for later in the algorithm. At each node, variable choice cor-
responds to which numbers are chosen and value choice cor-
responds to whether they are constrained to be together or
apart. The standard variable choice heuristic is to choose the
two largest numbers and the standard value choice heuristic
is to constrain them to different bins. (To avoid having n2

children at a node, the largest number is always used and the
decision is considered to be the choice of the second number
to constrain it with.) This formulation creates a very different
set of search spaces from the greedy heuristic.

Nevertheless, we find a similar pattern of results. Figure 5

L
og

10
(D

if
fe

re
nc

e)

-2

-4

-6

-8

Nodes Generated
500,000400,000300,000200,000100,000

Standard
Variable Choice

2-Variable Choice

Figure 5: Searching the KK spaces using random sampling.
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Figure 6: Searching the KK spaces using DDS.

shows the performance of random sampling (these instances
contained 64 numbers). The variable-choice search space is
even richer, relative to the standard value-choice, than in the
greedy formulation. The KK differencing heuristic is very ef-
fective, even when the numbers to be differenced are not nec-
essarily the two largest. Results similar to those on the greedy
space were obtained using HBSS and adaptive probing.

Depth-first search and ILDS performed worse in the
variable-choice KK spaces, as one would have expected from
the greedy results. However, DDS showed a different pat-
tern. Its performance is presented in Figure 6. Although it is
difficult to assess the significance of the differences between
adjacent pairs, it seems safe to conclude that DDS performs
better in the restricted variable choice search space than in
the standard value-choice space. This result suggests that re-
search on appropriate spaces for incomplete stochastic search
algorithms may well inform use of systematic methods.

3 Conclusions
I have argued against two prevailing assumptions in research
on stochastic search. The first is that stochastic search is suit-



able only for improvement search and that tree search should
be left to complete methods. There is no reason why incom-
plete stochastic search is inappropriate for trees and I briefly
reviewed some algorithms that have been proposed. In fact,
a tree-structured search space provides exactly the kind of
structure that facilitates representation of information learned
during search, a difficult task in an improvement search set-
ting. The second assumption is that stochastic tree search
should use the same search space as systematic methods. I
presented evidence from two different formulations of num-
ber partitioning that suggests that such a conclusion is prema-
ture, if not downright incorrect.
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