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Abstract

A robot task planner must be able to tolerate uncertainty
in the durations of commanded actions and uncertainty
in the time of occurrence of exogenous events. Sophis-
ticated temporal reasoning techniques have been pro-
posed to deal with such issues, although few existing
planners support them. In this paper, we demonstrate
the capabilities of a much simpler technique, hindsight
optimization, in which uncertainty is handled by us-
ing sampling to generate deterministic planning prob-
lems that can be solved quickly. We find that sophisti-
cated temporal reasoning is not required to handle many
simple tasks. In comparison with a traditional tempo-
ral planner architecture, hindsight optimization is much
simpler to implement while staying closely integrated
with execution. It serves as a flexible baseline against
which more complex methods can be compared.

Introduction

In many real-world domains, such as robotics, a planning
agent does not have complete knowledge of the world state
or precise control over action outcomes of actors and pro-
cesses. Incomplete world knowledge, stochastic actions and
exogenous events are obstacles a planning agent must tackle
in many useful robotic applications.

Many planners make the assumption that an action, such
as pickup, will have a deterministic outcome and duration.
This is a fine assumption that makes planning much easier to
reason about. However when the resulting plan is executed,
actions can fail or take longer than anticipated.

Consider the domain of a robot office assistant. When
issuing the simple task of picking up a set of keys from
your desk, the planner will quite quickly emit the plan:
pickup(keys). When this plan is executed, the pickup action
might fail. If the action fails, then the execution certainly
will not result in a goal state. The ability to reason about
action outcome uncertainty becomes very important when a
plan will is intended to be executed.

Perhaps the goal state is slightly more interesting and the
agent should pickup your keys and give them to you when
you leave to go home. The other half of the assumption
about actions that many planners make is that their duration
is a known constant. However, depending on the starting
pose of the robot office assistant or the position of the keys,
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this simple pickup can have a varying range of execution du-
rations. If it could take anywhere between 1 minute and 10
minutes for your keys to be picked up, you might appreciate
a planner that can take this range into consideration, instead
of causing you to be 10 minutes late going home. If a plan-
ner only assumes the best case for action durations, it is easy
to see that the agent could be late to a rendezvous. On the
other hand, if the planner only assumes the worst case for
action durations, the agent may spend time waiting at a ren-
dezvous point unnecessarily. It could instead be performing
more productive tasks with this time. The ability to han-
dle action duration uncertainty becomes very important if a
productive and punctual agent is desired.

An even more realistic situation for a robot office assistant
to face is the task of retrieving your keys from a set of pos-
sible locations. It is not uncommon to forget exactly where
you left your keys. Many planners however, require that the
exact location of the keys be known when planning begins.
If you need to manually search out your keys to simply set
the initial state for your planner you might as well skip us-
ing your planner because you have already found your keys.
It is important for a planner to be able to handle location
uncertainty if the exact state of the world is not known.

As hinted at in the previous example scenarios, the agent
may not be the only entity in its world. Other agents may ex-
ist, such as yourself, and interaction with these other agents
is only natural. These other agents are not necessarily under
the control of the same planner as your robot office assis-
tant. The world can be affected and changed outside of the
control of the planner. Maybe you found your keys while
trying to fully annotate an initial state for your planner and
those are no longer a goal for the agent. Let’s consider a new
goal, before you leave the office you would like your robot
office assistant to give you a coffee for the trip home. The
coffee is not essential for you to get home, but it makes the
trip significantly more pleasant. As such, you are willing to
wait for 10 minutes before you depart without your coffee.
As a human, your timing is not always exact so you might
leave sometime between 5pm and 5:30pm. If you would
like to get your coffee frequently before you leave the office
it is important for a planner to be able to reason about the
temporal uncertainty associated with interactions involving
other agents and events exogenous to the planner.

Adding a single one of these three aspects of uncertainty



to a domain renders many planners inapplicable. Adding
all three types of uncertainty further reduces the number of
applicable planners. Those algorithms previously proposed
to handle these uncertainties are complicated and can rely
complex data-structures such as a Simple Temporal Network
With Uncertainty (STNU) (Morris, Muscettola, and Vidal
2001). Many of them also require reasoning about all of the
unknown factors at once requiring complex world represen-
tations.

In this paper we introduce the Temporal-Uncertainty
Hindsight Optimization Planner (TU-HOP), a simple and
straightforward approach that extends previous work on
hindsight optimization. Instead of trying to manage the vari-
ous uncertainties directly, we employ a basic sampling strat-
egy and a deterministic planner. TU-HOP begins with a
set of beliefs about the initial world state. This belief state
manages certain and uncertain information about locations,
arrivals and departures of objects and agents and expected
action outcomes and durations. Given the current belief, a
set of deterministic world samples consistent with the be-
lief state are generated and then solved by the deterministic
planner. Using the resulting solutions, the next action is cho-
sen based on solutions maximizing overall expected reward.
This action is executed, the belief about the world is updated
based on the action’s result and the process starts again.

We show that TU-HOP is simple to understand and im-
plement. We also show that TU-HOP is very capable of
solving problems containing uncertain action outcomes and
durations, uncertain object and agent locations as well as
exogenous events. Its simplicity and capability make it a
flexible baseline against which future temporal uncertainty
planning research can be compared.

Previous Work

There is wealth of literature on deterministic domain de-
pendent and independent planners. We are able to leverage
this previous work, as others have, to incorporate well re-
searched deterministic planning ideas and concepts into a
larger framework (Yoon, Fern, and Givan 2007; Shani and
Brafman 2011).

Yoon, Fern, and Givan (2007) incorporate a classical do-
main independent planner called FF (Hoffmann and Nebel
2001) into their planning framework called FF-Replan to
solve problems with uncertain action effects. FF-Replan
uses FF to find a plan to carefully constructed deterministic
version of the problem. It then executes actions according to
the plan until the executed action has an unexpected effect or
the goal is achieved. If an unexpected effect is observed be-
fore achieving the goal, FF is called once again to construct
a new plan from the current state.

Temporal Planning and Execution

EUROPA (Barreiro et al. 2012) is class library and tool set
for building planners within a temporal planning paradigm.
It is a complicated architecture that handles time and re-
sources and constructs plans offline. It is able to handle
many temporal events using its modeling language NDDL.
It relies on many handcoded internal modules and does not

directly handle the uncertainties of object locations or action
outcomes.

IxTeT (Ghallab and Laruelle 1994; Laborie and Ghallab
1995) is an complex offline planning and scheduling sys-
tem that can handle time and resources by constructing par-
tial order plans and resolving threats to the achievement of
goals during planning. It strives to find a balance between
the planning (what to do) and the scheduling (in what order
to do it) addressing many domains in the intermediate spec-
trum between planning and scheduling. It however does not
take into account the uncertainties that become evident dur-
ing execution of plans.

Procedural Reasoning System (PRS) (Ingrand et al. 1996)
is a system for supervision and control of autonomous mo-
bile robots. This system is explicitly able to monitor plan
execution and provide feedback on action execution to an
underlying planning system. However, PRS still relies on
a high level planner to provide the high level actions for it
to execute. Integration of TU-HOP with PRS is a promising
avenue for future research.

IxTeT-EXEC (Lemai and Ingrand 2003) is complex sys-
tem that allows for execution control, plan repair and replan-
ning. IxXTeT-EXEC is an extension of the IxTeT planner in-
tegrated with PRS (and several other layers). IxXTeT-EXEC
is able to handle temporal constraints (inherited from IxTeT)
as well as action failures and unpredicted action outcomes as
reported by PRS. However, this is a very complicated sys-
tem that is non-trivial to implement and does not address the
aspects of temporal uncertainty of interest in this paper.

Simple Temporal Network with Uncertainty (STNU)
(Morris, Muscettola, and Vidal 2001) are an extension of
Simple Temporal Networks (STN) (Dechter, Meiri, and
Pearl 1991). In many cases of interest in planning, an STNU
would be used to determine dynamic controllability. If an
STNU is dynamically controllable, then we can be assured
that from the current state, the actions we plan to execute
will not cause us to violate any future temporal constraints
regardless of their outcome durations. Computing dynamic
controllability, however, is N 3 in the general case.

Hindsight Optimization

Hindsight Optimization was originally developed for
scheduling and networking problems (Chong, Givan, and
Chang 2000; Mercier and van Hentenryck 2007; Wu,
Chong, and Givan 2002) and has been used in a probabilis-
tic planning setting (Yoon et al. 2008; 2010). In these previ-
ous applications, sampling was used to resolve uncertainty
in the outcome of actions. Burns et al. (2012) used hindsight
optimization to solve a problem where exogenous goals are
arriving, which requires the agent to plan ahead and antici-
pate these arrival events. Most recently, hindsight optimiza-
tion was applied to open world planning where sampling
was used to resolve uncertainty in object existence and loca-
tion as well as uncertainty in navigation graph connectivity
(Kiesel et al. 2013).

Similar to most sampling techniques, the samples of gen-
erated possible worlds used in this paper are intentionally
not exhaustive. They are intended to provide useful relative
judgments on the expected value of actions. In hindsight



optimization, given a current world state, we are faced with
the choice between all applicable actions. The first step in
hindsight optimization is to generate possible world samples
that could be true according to the current world belief state.
Then in order to estimate the value of an action, we apply
that action in each of the sampled possible worlds, find de-
terministic plans from each of the resulting states, and av-
erage over the resulting reward yielded by each plan. The
action with the highest average plan reward over the sam-
pled worlds is chosen to be executed.

More formally, we define the value of being in a state s; as
the maximum expected reward over plans that extend from
s1. That is, the maximum reward over all possible future
action sequences of the total reward over all possible future
states:
|A|

R(Si, ai)

i=1

V*(s1) = max E

where R(s,a) represents the reward of performing action
a in state s. Given our expectations about the uncertain-
ties in the world, we would like to find the action sequence
A = (a1, ...,a4|) that maximizes the expected sum of ac-
tion rewards. To compute V* exactly, we would need to
compute the expectation for each of exponentially many
plans.

In hindsight optimization, we approximate the value func-
tion by exchanging expectation and maximization, so that
we are taking the expected value of maximum-reward plans
instead of the maximum over expected-reward plans:

|A|
R(Si, ai)

=1

V(s1)= E max

(52,83,...) | A=(a1,...,a14))

The expectation in this approximation of V*(s) can be ap-
proximated using sampling and fixed values for each of the
uncertainties in each maximization. As in other applications
of hindsight optimization, the stochastic elements have been
reduced to known values by sampling. For each possible
value that an uncertainty could take on in the expectation,
the problem is to maximize reward given a known world,
i.e., standard, deterministic, reward-maximizing planning.
As the underlying deterministic problem becomes more dif-
ficult to solve with a standard deterministic planner, TU-
HopP can employ a limited horizon planner. A limited hori-
zon planner uses a time horizon which is simply a temporal
value by which search depth is bounded. Setting this bound
to infinity results an informed, full solution to the maximiza-
tion problem, decreasing the horizon results in greedier be-
havior, only considering more immediate reward.

We define the ()-value to be the cumulative expected re-
ward of taking an action a; in state sy:

[Al+1

Q(s1,a1) = R(s1,a1)+ E max

(s2,83,...) | A=(az2,..,aja|41) i—2
From this, we estimate the best action choice in s as
max, Q(s,a). Using this technique, we are said to be per-
forming optimization with the benefit of ‘hindsight’ knowl-
edge about how future uncertainty will be resolved. It is

Z R(Si, ai)

Tu-Hop(W, N, H)

1. while true

for ¢ from 1 to IV do

3 w; < sample_world(W)
4.  foreach action a

5. s« al(s)

6. r < (D>, solve(s’,w;, H))/N
7.

8

9

1

N

Q(s,a) + R(s,a) +r
Qpest < Argmacr, Q(Sa a)
. res =execute(apest)
0. update(W, apest, res)

Figure 1: The TU-HOP planner.

important to point out that this action choice strategy is an
unsound reasoning technique (Yoon et al. 2010).

After the best action is executed, hindsight optimization
updates its current belief state based on the outcome of its
action and how it has affected the world. This newly updated
belief state will be used in the next planning step.

Approach

In this paper, we extend the line of work on hindsight op-
timization to handle the three types of uncertainties previ-
ously discussed; uncertain action outcomes and durations,
uncertain object and agent locations and exogenous events.
Tu-HoOP is an online planner that interleaves search and ex-
ecution, emitting single actions for the agents to execute at
a time.

The pseudo-code in figure 1 provides a high level sum-
mary of the TU-HOP planner. The planner first receives
three parameters, the first is the current belief about the
world state, the second is the number of samples to be used
and the third is the horizon with which to bound the deter-
ministic solver. First, we generate a set of NV possible worlds
that are consistent with the planner’s current belief about the
world (lines 2-3). Each of these sampled worlds are deter-
mistic versions of the current belief where all objects have
known locations, actions have known outcomes and events
have known start and end times. Next, for each action a
in the domain, we consider the resulting state s' = a(s)
(line 5). Next, for each action a, we consider the resulting
state s’ = a(s) (line 5). Then, each possible world w; is
initialized with the state s’, generating a fully-known deter-
ministic planning problem. Solving this problem provides
an estimate of the reward from s’. The mean reward across
the set of samples (line 6) along with the reward of the action
R(s,a) is used as the Q)-value for each action a in the orig-
inal state s (line 7). We then select the action with the max-
imum @Q-value (line 8), this action is then executed (line 9.
The result of this action, success, failure or an inaccurate
belief is returned and the current belief of the world state is
updated with this information (line 10). With this new be-
lief about the state of the world, the planner returns to the
beginning of the loop and executes another iteration.



Robot Office Assistant Domain

In this paper we focus on a specific domain where a set of
controllable and non-controllable agents are able to navigate
around a topological map containing objects. Controllable
agents are able to pickup, putdown, and give objects. The
give action is the exchange of one object in an agent’s pos-
session to another agent. All of the information about the
domain and belief of the world state will now be discussed.

The first major entity in the world belief is a representa-
tion of the topological navigation graph. Each node in the
graph is named and connected to another node in the graph
via an edge. Each edge has a traversal success rate, a mini-
mum and successful traversal time and a minimum and max-
imum failure time. The success rate represents the probabil-
ity that traversing this edge will succeed. The minimum and
maximum successful traversal times provide an expected in-
terval of how long it will take to traverse the edge if the
traversal is successful. Similarly, the minimum and maxi-
mum failure interval describes how long it will take for the
attempted traversal to report failure.

The objects present in the world each have a unique name,
two associated temporal intervals and a set of node locations.
The first interval is the minimum and maximum expected
arrival time for the object. This can be used to represent an
object being dropped off by an agent outside the control of
the planner. The second interval is the minimum and maxi-
mum duration the object is expected to remain usable in the
world. This can be used to impose a deadline on when an
object may need to arrive at its goal destination. The set
of nodes following the intervals contains at least one node
name. A single node represents complete certainty of the
object’s starting location. A set whose size is greater than
one represents uncertainty of the object’s starting location.

Agents are are very similar to objects with two major dif-
ferences. The first is that an agent can be marked as outside
of the control of the planner. This is useful if an agent is
only “’stopping by” to receive an object from another agent
that is under the planner’s control. The second difference is
that each agent also has a number of grippers available to
hold objects.

Goals can be one of three types different types. The first is
a simple goto goal which tells the planner which agent needs
to be moved to which location and what the reward for this
goal is. The second type of goal is move, which tells the
planner which object needs to be moved to which location
and what the associated reward is for completing this goal.
The last type of goal is give and tells the planner which ob-
ject should be given to which agent and how much reward
will be received for achieving this goal. Not all agents and
objects need bee involved with a goal.

Lastly, there are four actions in the domain; pickup, put-
down, give and no-op. Please keep in mind that the implicit
move action is defined on an edge by edge basis in the graph.
The motivation behind this is that some edges may be more
difficult or simply take more time to traverse. Each action in
the list has a success rate, minimum and maximum success-
ful execution duration and a minimum and maximum failure
duration with the exception of the no-op action. The success
rate represents the probability that executing this action will

succeed. The minimum and maximum successful execution
times provide an expected interval of how long it will take
to complete the action if the execution is successful. Simi-
larly, the minimum and maximum failure interval describes
how long it will take for the attempted execution to report
failure. The no-op action is always successful and has a de-
terministic execution duration equal to the planned duration.
The duration for each no-op is determined during planning.
It is set to be the time from the current state, until the next
occurring event. An event is simply the arrival or departure
of an agent or object, or another agent completing its current
action. Setting the duration in such a manner can render a
deterministic planner incomplete in certain domains, but in
this simple Robot Office Assistant Domain completeness is
maintained when planning in the deterministic world sam-
ples.

A Closer Look

All of the domain instance information is managed and up-
dated in the belief state of the TU-HOP planner throughout
its execution. Before emitting any action to be executed, the
Tu-HoOP enters its first planning iteration.

It begins by generating a set of possible deterministic
world samples consistent with the current belief state. This
means that in each sampled world any and all uncertainty is
removed. This is achieved for the location uncertainty by
picking, at random, one of the locations in each location list
for the agents and objects. The action outcome uncertainty
is resolved by using the success rate, success interval and
failure interval for each action and constructing a determin-
istic mapping of times to outcomes and durations. This is
accomplished by lazily querying the action in the determin-
istic world sample when needed for its outcome and duration
given the current time. If the time has no mapping, the out-
come is randomly computed given the success and failure
values, then stored in a lookup table. If the time has a map-
ping already, that mapping is returned. These time values are
rounded to a hundredth of a second before doing the lookup.
The arrival and departure times of any object or agent are
also resolved by taking a random sample from the arrival in-
terval and the duration interval to construct an exact arrival
and departure time.

Following the hindsight optimization framework, in each
world sample, TU-HOP examines each available action from
the current state. In the most simple goto (navigation) case
with no objects, TU-HOP will evaluate what will result after
moving to each node adjacent to its current node. In fig-
ure 2 the agent is currently in location (a) and is consider-
ing moving to location (b) or (c). Each move action can
either succeed or fail as depicted. Each of these outcomes,
{s1, $2, 83, 84}, is generated and then reward is maximized
individually in each outcome. In our implementation we use
a very simple temporal horizon bounded breadth first search
to evaluate reward in each outcome. The reward for execu-
tion of the action in a single deterministic sample is then a
weighted mean of the reward achieved in the success and
failure case weighted by the likelihood of the action suc-
ceeding and the likelihood of the action failing. For exam-
ple, if the achievable reward under s; is 1, the achievable



Figure 2: A simple example of the first step of hindsight
optimization.

reward under ss is 0.5, and the the success rate for that ac-
tion is 0.9 (0.1 failure rate), then the reward achievable for
executing move(b) is 0.95 by Tu-HOP’s reckoning.

This procedure is executed for each generated determinis-
tic sample. Then the reward is averaged over all the samples
yielding an estimate of achievable reward. The action with
the highest expected reward across all samples is then se-
lected for execution.

The action selected is then executed and the result of the
action is used to update the belief state of the planner. This
would include increasing the current time, removing a loca-
tion from an object’s possible location list, decreasing the
size of an agent’s arrival interval, and so on.

Experimental Results

We now evaluate TU-HOP by stressing each of the three
types of uncertainties (location, action outcome and tempo-
ral uncertainty). All experiments were planned and executed
in simulation on a Lenovo W520 with an Intel Core 17 and
8GB of RAM. For each instance problem considered, a set
of 25 seeds were used when generating a grounded simu-
lation world as well during planning in each world sample
constructed from the current belief. All plots presented show
a line representing the mean y-value across the instances
and vertical lines representing the 95% confidence interval
at that point on the line.

Location Uncertainty

The first set of experiments begin by issuing the goal of mov-
ing an object from its start location to a goal location. The
easiest instance starts with the object’s location known ex-
actly. We increase the difficulty of the instances by adding
uncertainty about the objects location to possibly two loca-
tions, then possibly three locations and so on. As the uncer-
tainty about the object’s start location increases, the agent
should be forced to search out the true start location. The
results from this experiment using planner configurations of
a horizon of 90 seconds and 1, 5 and 10 samples are shown
in figure 3.

In all instances, from where the object is in a known lo-
cation and up to 5 possible locations, the planner is able to
find the object and deliver it to its destination. In figure 3
(b) and (c) the lines representing 5 and 10 samples show
that these configurations required fewer actions to achieve
the goal than the single sample configuration and also have
an overall shorter goal achievement time. Since the plan-
ner was able to achieve the goal in all instances, we can see
that by increasing the number of samples taken, the agent
will visit the possible locations in a more reasonable order.
First visiting the closest possible location, then moving to
the next closest, and the next, until the object’s true location
is found. Figure 3 (a) shows the time required by the planner
at each iteration. Even on the hardest instance with 10 sam-
ples the planner takes much less than a second on average
before emitting an action for execution.

We also ran a small experiment to show the underlying
planner’s ability to scale with the number of object reloca-
tion goals. We start with a single goal of moving one object
to a location and slowly increase the number of goals and
objects in the world. The results from this experiment using
planner configurations of a horizon of 90 seconds and 1, 5
and 10 samples are shown in figure 4.

In all instances the planner was able to move all the ob-
jects to their goal locations. We can see that as expected
in figure 4 (a), using more samples does increase the over-
all planning time at each planning step. However, even in
the hardest considered instance with 5 objects using 10 sam-
ples the planner only took on average 0.6 seconds before
returning the next action. The scaling could be significantly
improved by using a heuristic or a more intelligent search
technique than breadth first search. In figure 4 (b) and (c)
a positive trend is shown where using more samples results
in fewer actions in the final execution and also earlier goal
achievement times.

Action Outcome Uncertainty

In the second set of experiments we issue a similar goal of
moving an object from its start location to a goal location.
However in these instances the object’s location is known
exactly and the topological edge traversals required com-
plete achieve the goal will have increasing traversal failure
rates. We start with a failure rate of 0% and increase it all
the way to 50%. By increasing the edge traversal failure
rates the agent will be forced to re-plan and accommodate
for the failure. The results from this experiment using plan-
ner configurations of a horizon of 90 seconds and 1, 5 and
10 samples are shown in figure 5.

The planner was able to achieve all goals in all instances
during this experiment. The x-axis in figure 5 is numbered
by instance difficulty where a difficulty of 1 represents fully
reliable edges. This means the outcome of traversing them
has 100% probability of success. As the number increases,
the success probability decreases to {90%, 80%, 70%, 60%,
50%}. In figure 5 (a) we can see that the planning times for
the 1, 5 and 10 sample cases are all quite similar until the
edges become quite unreliable (50% success rate). As the
failure rate increases, the plan lengths will simply increase
and planning with more samples magnifies this in its overall
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Figure 3: Increasing the amount of uncertainty in an object’s location in the world between 1 and 5 locations using a horizon
of 90 seconds and 1, 5 and 10 deterministic samples.
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Figure 4: Scaling the number of objects in the world between 1 and 5 using a horizon of 90 seconds and 1, 5 and 10 deterministic
samples.
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Figure 5: Decreasing the reliability of the only edges available to achieve an issued goal using a horizon of 90 seconds and 1, 5
and 10 deterministic samples.



planning time. In figure 5 (b) and (c) we see a trend similar
to the last experiment. This is most likely caused by the
same issue. The noise between sampled worlds is minimized
by generating more samples.

A simple third set of experiments extending the second
set were also performed. The instance is created with a
set of inexpensive topological edge traversals between the
agent and the object’s start locations with high action fail-
ure rates. A secondary set of expensive edge traversals with
very low failure rates are also created. As the inexpensive
route becomes more unreliable throughout the experiments,
the agent should choose to take the more reliable expensive
route. The results from this experiment are shown in fig-
ure 6.

Again, in this experiment the planner was able to achieve
all goals in all instances during his experiment. Figure 6 (a)
shows a predictable trend where increasing the number of
samples causes the planning step between action executions
to increase. However, planning times with 10 samples on
the most difficult instance are still well below 0.1 seconds
on average. Figure 6 (b) and (c) show the realization of our
prediction. When using only a single sample the number of
actions in the final execution is lower for the first three in-
stances, but the overall goal achievement time for those in-
stances is higher for than when using 5 an 10 samples. Once
the reliability of the cheap edges decreases significantly in
the last three instances, the single sample case starts to have
longer execution lengths and continues to have later goal
achievement times than the 5 and 10 sample cases.

Temporal Uncertainty

In this fourth set of experiments we involve a second agent
outside of the control of the planner. The goal issued in this
set of experiments is to give an object to this second agent
and also relocate a second object. Adding a second object
goal forces the planner to choose an ordering for the two
goals which becomes very important in this experiment. The
second agent does not begin at any location but is scheduled
to arrive at one during a predefined interval and will only re-
main for a duration between some minimum and maximum
value. We begin by starting with a small arrival interval and
a long duration before departing for the second agent. This
makes it very easy for the planner to achieve both goals. We
increase the difficultly of these instances by making the ar-
rival interval larger (more uncertain) and decreasing the du-
ration the agent remains before departing. By increasing the
uncertainty, it becomes much more important for the plan-
ner to consider the possible arrival and departure times of
the second agent if it is to catch it before it departs. The re-
sults from this experiment using planner configurations of a
horizon of 30 seconds and 1, 5 and 10 samples are shown in
figure 7.

Figure 7 (a) shows that planning times between action ex-
ecutions are still less than 0.5 seconds which is certainly ac-
ceptable when the action executions times for a robot can be
in the range of full seconds to a minute for some actions.
In figure 7 (d) the reliability of both goals being achieved is
illustrated. At first with the larger delivery window, the 1, 5
and 10 sample cases are able to achieve both goals reliably.

However when the window is reduced the planner clearly
benefits from more samples as the 10 sample case is able to
achieve all goals in all but the hardest instance. In the hard-
est instance none of the planner configurations are able to
deliver the object to the second agent. Figure 7 (b) and (c)
are slightly more difficult to interpret because if the planner
incorrectly chooses to relocate the second object first and
misses the delivery window, the planner will terminate with
fewer actions and an earlier goal achievement time than an
algorithm that achieves both goals.

Discussion

The main two attractive features of hindsight optimization
are its simplicity and generality. There are no obvious im-
pediments to combining the current work with previous ef-
forts that use hindsight optimization to address other forms
of uncertainty such as stochastic action effects, arrival of ad-
ditional goals, partial observability, or open worlds (Yoon et
al. 2008; 2010; Burns et al. 2012; Kiesel et al. 2013).

Compared to a planner using an STNU, Tu-HoP’s han-
dling of intervals is imprecise, thus the combinations of cir-
cumstances that are anticipated is incomplete. This limi-
tation gets more serious as the number of combinations of
stochastic events that need to be considered increases. How-
ever, in many applications, it is not necessary to reason about
such long chains of events in order to act successfully.

Tu-HoP demonstrates one way of very tightly coupling
planning and acting, namely to ensure reactivity by planing
after every state transition and never explicitly committing
to actions beyond the one that is currently executing.

Unlike many other task planners, TU-HOP does explicitly
consider action failure when selecting actions.

It does not output a complete plan that can be shared with
other collaborating agents. However, it should be possible to
merge together the actions selected in each rollout to form a
branching contingent plan that could be shared. Such shar-
ing could then be represented in the planner by increasing
the cost of actions that do not correspond to those in the
shared plan. This directly models the coordination costs that
the group would sustain if the plan were to be changed.

Hindsight optimization is often used with a limited hori-
zon planner. When this is done, it places some responsibility
on the heuristic evaluation function used at the leaf nodes of
the search to correctly identify promising states. An alterna-
tive is to use hierarchical planning, in which a complete plan
exists at some level of abstraction, and detailed planning is
then done on those parts that are ready for execution. Such
an approach has been proposed by Kaelbling and Lozano-
Pérez (2011).

Hindsight optimization is an unsound reasoning tech-
nique. UCT is a popular sampling-based technique that is
sound, in the sense that it is guaranteed to select the opti-
mal action given an infinite number of samples. Eyerich,
Keller, and Helmert (2010) compare hindsight optimization
with UCT on the Canadian Traveler’s Problem. While they
find that UCT does indeed converge better in the limit of
many samples, hindsight optimization performed well when
the methods were given only a moderate number of samples.
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Conclusion

Uncertainty is an unavoidable piece of real-world robotic
applications. We have shown how hindsight optimization
yields a simple and general approach to planning with lo-
cation, action outcome and temporal uncertainty. While the
technique is approximate, it is easy to implement and our re-
sults suggest that it can be successful in practice. Its simplic-
ity and capability make it a flexible baseline against which
future temporal uncertainty planning research can be com-
pared.
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