
Replanning in Advance for Instant Delay Recovery in Multi-Agent Applications:
Rerouting Trains in a Railway Hub

Issa K. Hanou*1, Devin Wild Thomas*2, Wheeler Ruml2, Mathijs de Weerdt1

1 Delft University of Technology, The Netherlands
2 University of New Hampshire, USA

i.k.hanou@tudelft.nl, dwt@cs.unh.edu, ruml@cs.unh.edu, m.m.deweerdt@tudelft.nl

Abstract

Train routing is sensitive to delays that occur in the network.
When a train is delayed, it is imperative that a new plan be
found quickly, or else other trains may need to be stopped to
ensure safety, potentially causing cascading delays. In this pa-
per, we consider this class of multi-agent planning problems,
which we call Multi-Agent Execution Delay Replanning. We
show that these can be solved by reducing the problem to an
any-start-time safe interval path planning problem. When an
agent has an any-start-time plan, it can react to a delay by
simply looking up the precomputed plan for the delayed start
time. We identify crucial real-world problem characteristics
like the agent’s speed, size, and safety envelope, and extend
the any-start-time planning to account for them. Experimental
results on real-world train networks show that any-start-time
plans are compact and can be computed in reasonable time
while enabling agents to instantly recover a safe plan.

Introduction
When executing a multi-agent plan and an agent is de-
layed, it must reroute to minimize the effect on other
agents. In many real-world settings, minor delays happen
frequently and can compound into larger holdups that prop-
agate through the network. Thus, replanning must be solved
as soon as possible, which is challenging because the search
space grows exponentially in the number of agents. Our fo-
cus is to swiftly handle holdups that can be resolved by
rerouting only the delayed agent. Such a setting is repre-
sentative of a set of problems that we name Multi-Agent
Execution Delay Replanning (MAEDeR) problems. These
are single-agent problems that occur during the execution
of a multi-agent plan. By quickly reacting without violating
the pre-existing plans of other agents, we are more likely to
avoid a cascade of delays.

Existing approaches to multi-agent delay recovery usu-
ally replan all agents. However, if the delay can be recov-
ered by replanning only the delayed agent, this can be done
faster than replanning all agents and requires no communi-
cation with the other agents or modifications of their plans.
We propose a method for solving MAEDeR by replanning
in advance using any-start-time safe interval path planning

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(@SIPP) (Thomas et al. 2023), which allows for instant de-
lay recovery. The search procedure computes an any-start-
time plan for each agent, which is the set of optimal plans
for all possible starting times ahead of execution, treating
the other agents executing their plans as moving obstacles.
An agent can instantly recover a safe plan once its delay is
known and execute it without affecting other agents.

Previously, any-start-time planning was used for single-
agent problems in grid-based settings. We show how it can
be useful in a multi-agent context, specifically railway hub
delay replanning. A railway hub is an area with a train sta-
tion and surrounding shunting yards, which are locations
where trains can be parked and serviced. For instance, Fig. 1
shows the Enkhuizen hub with platforms, sidings, and a
track connecting it to the railroad network. While we show
the example of dense infrastructure hubs, which are the most
difficult to plan, the same problem representation is also ap-
plicable to larger railway networks. In practice, replanning
is still done manually by human operators.

Railway hub delay replanning has several characteristics
that are emblematic of real-world applications. First, the
agents in these problems are not point agents, because they
have a spatial extent, and thus, a temporal extent. Agents oc-
cupy several locations simultaneously, such as a 300-meter-
long train stretching over two tracks. Because real-world
problems rarely have one type of agent, we allow for hetero-
geneity in size and speed. In a railway hub, switches further
constrain the possible moves a train can make. We create a
reduction from railway hub delay replanning to an @SIPP
graph that inherently encodes the direction of an agent. Fi-
nally, we include context-dependent safety measures that
agents must respect, like a variable headway (the time be-
tween two consecutive trains) that depends on the relative
travel directions.

Our main contribution is instantly solving delay response

PLATFORMS

End of track Track Parking track

Enkhuizen station Rest of railway
network

Figure 1: Layout of the Enkhuizen railway hub in the
Netherlands [Adapted from SporenPlanOnline].

in railway hub delay replanning by applying any-start-time
planning to multi-agent execution delay replanning. We re-
cover a safe plan to reroute the delayed train without affect-
ing other trains’ plans. The precomputation of safe plans al-
lows us to rapidly recover the ability to handle a new delay.
We show promising results for handling delays in real-world
problems. Our method is also extendable to other multi-
agent settings that can be modeled as a MAEDeR problem,
for example, routing automated guided vehicles in container
terminals.

Example: Railway Hub Delay Replanning
We use railway hub delay replanning to instantiate our meth-
ods in an intuitive application. Imagine two trains such as
those shown in Fig 2, with two station tracks 1 and 2, a park-
ing track P , two switches 3 and 4, and a track E connecting
the station to the rest of the network. Suppose that the initial
multi-agent plan is for train I to depart first and traverse its
route from I to I ′ without waiting, clearing the shared track
right before train II uses it to travel from II to II ′. Because
their paths cross over the shared track, if train I is delayed,
one of the trains may need to wait in order for both to safely
reach their destinations. If train I follows the same plan at
a later time, it may conflict with train II. Instead, it should
pick a new safe plan that respects train II, such as waiting for
train II to clear the shared track, and then finishing its route.

This example follows the Dutch railway operation poli-
cies, where trains that are being parked wait for ones serving
the timetable. Common causes for delays include too many
passengers trying to board, hindrances on the tracks, or a
servicing action taking longer than expected. In the follow-
ing sections, we formalize the intuitions of this example into
a planning method to solve this class of problems.

Background
MAEDeR is a single-agent problem in a multi-agent setting.
While the classic multi-agent path finding (MAPF) problem
constructs non-conflicting plans for a set of agents (Stern
2019), MAEDeR does not come up with the initial multi-
agent plan. Instead, it solves the problem of how to quickly
recover from one delayed agent while the multi-agent plan is
being executed. Delay handling has been previously studied
in the context of MAPF, although the focus has been on cre-
ating initial plans that are robust to delays (Ma, Kumar, and
Koenig 2017; Atzmon et al. 2020a). Where delay recovery
has been considered, it has been in the discrete-time context,
without singling out a single agent specifically.

Previous studies on delay handling for trains have focused
mostly on recovering from disturbances in the complete rail-
way network related to the timetable (Bešinović 2020; Cac-
chiani et al. 2014). However, railway hub operations differ in
that they are more flexible to plan and are planned manually.
Some studies have focused on delays solely in a shunting
yard. van den Broek, Hoogeveen, and van den Akker (2018)
evaluated a set of robustness measures in their scheduling
formulation of a shunting plan, using a distribution over ac-
tivity length to model delays. A different study used a dis-
tribution of arrival times to find a plan robust to different

I

II ′

IN/
OUT

<>
II

I ′

Track 1

Track 2 Track P

Track E

Railway track End of track/ Train routes

3 4

Figure 2: Railway hub delay replanning problem: tracks
(1, 2, E, P), switches (3, 4), and trains (I → I ′,II → II ′).

arrival times, which can be considered delays of the original
time (Gardos Reid 2023). Railway hubs have been previ-
ously studied as (re)dispatching, including delay response.
D’Ariano and Pranzo (2009) used an Alternative Graph for-
mulation with a job shop scheduling approach for conflict
detection and resolution to obtain a conflict-free schedule
respecting details of the problem formulation (e.g., signals
and operational rules). Although their method tries to stick
to the original routes, the wait times in the plans of non-
delayed trains can be changed. Their method can even can-
cel or introduce new routes if needed. In contrast, we focus
on handling delays without altering the plans of other non-
delayed trains. This limits the effects of the delay to only the
delayed train and requires no inter-train communication.

Safe Interval Path Planning (SIPP)
Our method for solving MAEDeR relies on the state space
of safe interval path planning (SIPP) (Phillips and Likhachev
2011) and the algorithms for solving any-start-time SIPP
(@SIPP) (Thomas et al. 2023). A SIPP problem is a
single-agent state-space search problem defined by the tu-
ple ⟨S,E, δ, so, xg⟩. A SIPP search state ⟨x, i⟩ ∈ S has two
components: x, the configuration (e.g., agent location), and
i = ⟨ts, te⟩, a safe interval, which is a continuous timespan
from ts to te when it is safe for the agent to be in configu-
ration x. The edges ⟨u, v, i⟩ ∈ E denote an interval i where
the agent can safely transition from configuration u to con-
figuration v. The cost of an edge is its duration δ(u, v). The
objective of a SIPP agent is to find a minimum duration path
to the goal configuration xg starting from the origin state so.
To solve SIPP problems, Phillips and Likhachev (2011) em-
ploy an A* search on this state space, where the objective
function f(s) = g(s) + h(s) uses the scalar earliest arrival
time at SIPP states as g(s). This returns a single safe optimal
plan as its solution, arriving as early as possible at each in-
termediate SIPP state. Using an A* search, the runtime of a
SIPP search is O(|E| log(|V |)), where |V | is the number of
SIPP search states and |E| is the number of edges in the SIPP
graph. Note that several states may share the same configu-
ration, with different non-overlapping safe intervals. Edges
between the same pair of states can similarly have several
intervals.

Because time is continuous, a SIPP search graph is a com-
pact representation of an infinite problem. For example, take
a pedestrian railway crossing. There are two SIPP states: the
near side of the crossing and the far side, both of which are
always safe. A train passing creates two SIPP edges, the safe

tdepartζ α β

∞

α+∆

tarrive

Figure 3: An ATF with parameters ζ, α, β, and ∆.

interval before the train arrives, and the safe interval after it
has passed. In this case, a pedestrian could try and cross at
any safe time, but the SIPP graph can represent those infinite
actions with only two edges.

Any-start-time SIPP (@SIPP)
Recent work on any-start-time SIPP, notated @SIPP
(Thomas et al. 2023), describes how to efficiently generate
plans for all start times on SIPP graphs. The augmented SIPP
(ASIPP) algorithm performs a search that is graphically iso-
morphic to a SIPP search. However, rather than returning a
single plan that arrives at a scalar earliest arrival time, ASIPP
returns a family of related paths. All paths in the family
move through the same sequence of SIPP states but at dif-
ferent times. ASIPP works by ‘augmenting’ the SIPP search
nodes to track the earliest arrival time functions (ATFs) in-
stead of the scalar g values used by SIPP.

The ATF of a path family tells us the earliest arrival time
for any departure time along the corresponding sequence of
SIPP states. To enable this search, the graph is transformed,
from a SIPP graph to an @SIPP graph. For each edge in the
SIPP graph, the source, destination, and edge safe intervals
are combined into a simple piecewise linear ATF, defined by
the parameters ⟨ζ, α, β,∆⟩ as shown in Fig. 3:

f [ζ, α, β,∆](t) =


∞ t < ζ

α+∆ ζ ≤ t < min(α, β)

t+∆ α ≤ t < β

∞ β ≤ t,

(1)

where ζ is the earliest time the agent can safely wait at the
starting state of the edge, α is the earliest time the agent
can safely begin traversing the edge, β is the time the edge
becomes unsafe, and ∆ is the transit time of the edge.

In a SIPP search, successors are generated with scalar g
being the cumulative sum of edge costs along the path so far.
In contrast, ASIPP’s functional g is the cumulative compo-
sition of edge ATFs along the path so far, which maintains
the same piecewise-linear structure ⟨ζ, α, β,∆⟩. However,
ASIPP only returns the family of plans that includes the op-
timal plan at a certain departure time.

Another algorithm developed by Thomas et al. (2023),
called RePEAT, repeatedly calls ASIPP and restarts a par-
tial expansion A* search with monotonically increasing start
times. RePEAT then compiles the plans returned by ASIPP
into a set that can be rapidly queried for an optimal plan cor-
responding to any departure time. Any-start-time planning
can be seen as precomputing a policy for any delay, or sim-
ilarly as a type of universal plan (Schoppers 1987). Univer-
sal planning is “an (almost) universally bad idea” (Ginsberg
1989) because universal plans generally grow exponentially

with problem size. However, @SIPP is one of the excep-
tions: the any-start-time plans grow linearly with problem
size (number of safe intervals) (Foschini, Hershberger, and
Suri 2014; Thomas et al. 2023), and RePEAT needs to call
ASIPP only a linear number of times.

Problem Description: MAEDeR
A Multi-Agent Execution Delay Replanning problem
(MAEDeR) is defined by the tuple ⟨N,T, C⟩. The infras-
tructure network N is a set of connected components that
can be represented as a graph with edges between locations.
The agents t ∈ T (i.e., trains) each navigate through the net-
work. The problem characteristics C define how the agents
interact with the network and each other. These are context-
specific and include information to calculate the edge dura-
tion δ(u, v) : u, v ∈ N and to constrain when edges can be
traversed. We refer to N and T collectively as the system,
which is safe if all agents have conflict-free plans.

A solution to MAEDeR is a function F taking an agent
a ∈ T and a positively delayed start time d and returning
the shortest safe plan for the delayed agent, or a failure if
no feasible plan exists. The returned plan does not require
modifications of the plans of any agent other than the one
that was delayed. When an agent is delayed, the system is
no longer safe until the function returns a new plan for this
agent. We refer to this period as the interval of uncertainty.
The objective of MAEDeR is to provide a solution that min-
imizes the interval of uncertainty.

Specifics for Railway Hub Delay Replanning
We now illustrate the MAEDeR definition for railway hub
delay replanning. In a railway hub, the components of the
network N include track segments, platforms, and switches.
The trains moving through the hub are the set of agents T .
The characteristics C include each train’s length λ and speed
ν, and the length of each track segment ℓ(u, v). The duration
to traverse an edge can be calculated as δ(u, v) = ℓ(u,v)

ν(a) .
The constraints for traversing edges in a railway hub relate

to the static hub infrastructure and movements of trains. As
trains cannot navigate sharp angles, they must be reversed
to change direction. To do so, the driver has to walk to the
other side of the train. Therefore, we need the driver’s walk-
ing speed ω ∈ C. The constraints also determine when edges
can be traversed to avoid conflicts and construct a safety en-
velope for each train, which is a safety buffer between trains.
An action’s safety envelope is defined by a train’s headway,
which is the time between two consecutive trains. This is
context-specific: we define the following headway ϵf ∈ C
for trains traveling in the same direction and the crossing
headway ϵc ∈ C for the opposite direction. Other MAEDeR
problems may share some or all characteristics with railway
hub delay replanning.

One such problem is railway freight traffic planning,
which is done ad hoc, depending on the arrival of supply.
Since the start and destination are known in advance, we
can precompute the any-start-time plan of a freight train. A
route can be queried once a train is ready to depart. So, our
method can be used out of the box for these scenarios, too.

S D

SA DA

SB DB

eA

eB

(a) Track segment topology.

SA DL
A

SB DL
B

S DL

DRDR
A

DR
B

eLA

eLB

eRA

eRB

(b) Switch topology.

Figure 4: Topology of (a) track segments and (b) switches.

When MAEDeR Fails
The MAEDeR solution function F calculates a feasible
shortest plan for agent a starting at delayed time d. If no safe
plan with start time d exists, then F returns that no such plan
exists. How the system reacts to this is problem-specific and
outside the scope of this paper. An example reaction could
be to execute a multi-agent replanning algorithm. Measures
to ensure safety in the meantime are also problem-specific.
For example, when planning driverless taxis, this could be
an all-stop order halting all taxis until a new safe multi-agent
plan is found.

Reducing MAEDeR to Any-Start-Time SIPP
To solve MAEDeR problems, we provide a reduction to
@SIPP. In short, for each agent, we transform the network
into a SIPP graph with safe intervals on the states and edges
for that agent, treating the other agents as moving obstacles.
We then compute an any-start-time plan for that agent, so
that when it is delayed, it can instantly recover a safe plan.
From here on, we demonstrate this reduction for the railway
hub delay replanning problem, but this can also be applied
to other MAEDeR contexts, such as navigating automated
vehicles in container terminals or dense road networks.

First, we give an intuition on this reduction. The loca-
tions in the transformed graph loosely correspond to points
in the railway network where track segments meet or join
other infrastructure components. The actual track segments
are represented by edges, one per possible travel direction.
The unsafe intervals result from other trains moving through
the network, blocking safe access to the track(s) that they
occupy. This reduction must obey the physical properties of
the infrastructure, and maintain the safety of the network.

In railway hub delay replanning problems, these proper-
ties (characteristics C) are inherent to tracks and switches.
Because trains move forward on the track and cannot simply
turn around, the available edges for a train to follow depend
on the direction it is traveling. For example, in Fig. 4a, two
straight track segments next to each other are connected: S
on the left and D on the right. A train can go either left to
right or right to left, based on its initial direction. So, we
split each location into two co-located states (A and B) as is
the custom in the railway sector. Now, when going from the
left track to the right track, the train goes from SA to DA.
The other way around, a train would go from DB to SB .
We transform the undirected edges of the train network into

IN/
OUT

<>
Track 1
Track 2 Track P

Track E

(a) Layout from Fig. 2.

1A

1B

2A

2B

3RA

3LA

3B 4A

EA

EB

PA

PB

4RB

4LB

OUT

IN

Reversal track / Train routes (in/out)
XA/XB Track direction XR/XL Switch left/right

(b) Graph representation of the layout.

Figure 5: Modeling the layout graph (solid versus dashed
lines are used to demonstrate the direction of a route).

pairs of antiparallel directed edges, where A-sides of states
have directed edges solely to A-sides, and B-sides only to
B-sides. The A and B-sides are only connected if trains can
reverse on this track, like at the end of track 1 in Fig. 5a.

To model a switch, we use three pairs of co-located states,
as shown in Fig. 4b. Here, we see the conjunction of three
tracks, with S on the left and two tracks D on the right. The
two tracks are named DL and DR to signify the left and right
sides of a switch, also a custom in railway operations. A train
incoming from track S encounters location SA, which has
two successors DL

A and DR
A . Oppositely, a train coming from

either track DL or DR will use the B-side and continue its
route over point SB . Since a switch always forms an acute
angle between two tracks on the same side, a train cannot
make that turn, so the same-side nodes are not connected.

These translations are used to construct the graph of a
hub railway layout. An example is shown in Fig. 5. All four
tracks (1, 2, E, P) have two nodes (A/B-sides) and switches
have additional R/L-nodes on the same side of the switch.
We see that only the reversal tracks (1, 2, P) have their A
and B-sides connected. Finally, all A-sides are connected to
neighboring A-sides, and similarly for the B-sides.

Safe Interval Generation
Given the graph of the network infrastructure N , we want
to generate safe intervals that allow our agent to navigate
safely given the other agents in the problem. We now show
the interval generation process specifically for railway hubs,
though this can be similarly done for any type of obstacles
moving across an infrastructure. We start by tracing out the
unsafe intervals created by other trains, which are then in-
verted to form safe intervals. Intuitively, a location is unsafe
when it is occupied by (part of) a train, and an edge is un-
safe when a train occupies the start of it. We have co-located
states for each location, and safe intervals are often shared
between them. The antiparallel edges joining a track’s two
pairs of co-located states have a more complicated relation-

ship. An edge that is traversed by a train is unsafe until the
train has completely departed the edge’s origin. On the other
hand, the antiparallel edge is unsafe while the train is still
occupying any part of the edge.

We calculate the unsafe intervals as follows. Take agent
train a traveling from location uA to vA beginning at t0. The
time to traverse the edge δ(u, v), and the duration δa of a
passing one point on the edge are

δ(u, v) =
ℓ(u, v)

ν(a)
, δa =

λ(a)

ν(a)
. (2)

The time to fully traverse the edge front to rear is thus
δ(u, v) + δa. The unsafe interval for location uA is

iuA
= ⟨tuA

s , tuA
e ⟩ = ⟨t0, t0 + δa + ϵf ⟩, (3)

where train a arrives at uA at t0, the duration to traverse
uA is δa, and we add the headway ϵf to complete the safety
envelope. For location vA, the unsafe interval is

ivA = ⟨tvAs , tvAe ⟩ = ⟨t0 + δ(u, v), tvAs + δa + ϵf ⟩, (4)

where the start time of the interval is the moment the train
arrives at location vA (start time t0 + traversal δ(u, v)), and
the end of the interval has the additional duration δa and
headway ϵf . For the end of the intervals, we need the time
for the rear of the train to depart, which is the length of the
train over its speed. Co-locations uB , vB are unsafe in the
intervals

iuB
= ⟨tuB

s , tuB
e ⟩ = ⟨tuA

s , tuA
s + δa + ϵc⟩, (5)

ivB = ⟨tvBs , tvBe ⟩ = ⟨tuB
s + δ(u, v), tvBs + δa + ϵc⟩, (6)

so the only difference is the headway ϵc that is included in-
stead of ϵf . The edge e = (uA, vA) is unsafe from

ie = ⟨tes, tee⟩ = ⟨tuA
s , tuA

e ⟩, (7)

which already includes the headway as well. The antiparallel
edge e′ = (vB , uB) has the unsafe interval

ie′ = ⟨te
′

s , t
e′

e ⟩ = ⟨tuA
s , tvAe ⟩. (8)

For example, consider again the scenario in Fig. 2, where
a train II is routed from EB to 2A. We construct the unsafe
intervals for train II, which are shown in Fig. 6, using the
parameters given in Table 1. Take train II traveling from lo-
cation EB to location 4RB which takes δ(u, v) = 100 (Eq.2).
The train departs EB at t0 = 100 and its front arrives at
location 4RB at 200 (Eq. 4). The end of the unsafe interval
for location EB is 260, which adds the time for the rear
to leave (60) and the headway (100) to the start t0 = 100
(Eq. 3). The end of the unsafe interval for location 4RB is
360 (Eq. 4). This yields the unsafe intervals ⟨100, 260⟩ and
⟨200, 360⟩ for locations EB and 4RB , respectively. The co-
locations ⟨EA, ⟨100, 210⟩⟩ and ⟨4A, ⟨200, 310⟩⟩ have simi-
lar intervals with only the headway difference ϵf − ϵc (Eq. 5
and 6).

For reversal tracks, the intervals are calculated a bit dif-
ferently. As mentioned, we must ensure that the train has
enough time to be reversed. So, when a train arrives at a
dead-end track, there is a buffer time before the internal edge

t0 λ(t) ν(t) ω ϵf ϵc
100s 600m 10 m/s 1 m/s 100s 50s

Table 1: Information for scenario in Fig. 6, train II (t).

1A

1B

2A

2B

3RA

3LA

3B 4A

4RB

4LB

PA

PB

EA

EB

OUT

IN

0

460

100

1000

⟨100, 260⟩
⟨100, 210⟩

⟨200, 360⟩
⟨200, 310⟩

⟨210, 370⟩⟨210, 320⟩

⟨256, 1016⟩

Reversal track ℓ(u, v) Path of t

Figure 6: Unsafe intervals for train II (t) from Fig. 2. These
form the obstacles for train I to navigate through. For each
node involved in the move, the associated intervals are given.

becomes a safe action. This time is calculated as the time
for the driver to walk across, using driver speed ω and train
length λ(a). The unsafe interval for such a location y is

iy = ⟨tys , tye⟩ =
〈
tys , t

y
s +

λ(a)

ω
+ ϵf

〉
, (9)

where both co-locations yA, yB of the track get the same
interval, as well as the edge (yA, yB). For example, the lo-
cations 2A and 2B have such an interval in Fig. 6.

For a switch, consider the topology shown in Fig. 4b. Take
a train traveling from SA through the switch to DR

A . The
switch should be unsafe to traverse while the train is moving
through it, but it should be safe for a train to wait at DL

B
for the switch to clear. The unsafe intervals for SA and SB

can be calculated using Equations 3 and 5, respectively, and
the same for DR

A (Eq. 4) and DR
B (Eq. 6). Since state DL

A

is co-located with DR
A they share the same interval. State

DL
B has no unsafe interval for this move, because a train

could technically wait here. For the edges, edge (SA, D
R
A)

has the interval ⟨tSA
s , tSA

e ⟩ (Eq. 7) and edge (DR
B , SB) has

interval ⟨tSA
s , t

DR
A

e ⟩ (Eq. 8). Since there is in practice only
one track part that is the switch, the edges all share the same
intervals. So, the intervals for (SA, D

R
A) and (SA, D

L
A) are

the same based on Equation 7 and the intervals for (SA, D
L
A)

and (SA, D
L
A) are equal based on Equation 8. The example

(Fig. 6) shows the resulting intervals for switches 3 and 4.
Following this reduction, we have a SIPP problem with

safe intervals on states and edges. We can apply the approach
of Thomas et al. (2023) to compile the safe intervals into
edge arrival time functions, and then solve it as an any-start-
time SIPP problem.

Solving MAEDeR
The generic planning loop for solving MAEDeR consists of
the following points in time we call milestones:

Unsafe when a delayed agent learns it is delayed,

Solve the MAEDeR function is applied,

Safe when the delayed agent regains a safe plan,

Recompute a new MAEDeR function is derived,

Recovered when the system can handle a new delay.

The interval of uncertainty is between unsafe to safe. An ef-
fective method solving MAEDeR minimizes the uncertainty
interval. Moreover, it minimizes the time to recompute a new
solution, allowing sooner handling of a second delay.

We describe two algorithms for solving MAEDeR: re-
planning SIPP (rSIPP) runs a new SIPP search for the de-
layed agent, while any-start-time planning for MAEDeR
(@MAEDeR) queries an any-start-time plan. The rSIPP so-
lution consists of a set of SIPP graphs. Each agent has a cor-
responding SIPP graph with safe intervals where all other
agents are treated as moving obstacles. When a delay is en-
countered, rSIPP selects the SIPP graph of the delayed agent
and runs a SIPP search to find a new safe plan starting after
the delay. The solving milestone for rSIPP searches the pre-
computed SIPP graph, while the recomputation milestone
precomputes the SIPP graphs.

@MAEDeR trades increased precomputation time for
eliminating the interval of uncertainty. The precomputation
of @MAEDeR generates the same set of SIPP graphs for
each agent as rSIPP. These graphs are then transformed into
@SIPP graphs, and we replan in advance using RePEAT to
compute the any-start-time plan for each agent as part of the
precomputation. The @MAEDeR solution is the set of every
agent’s any-start-time plan. When an agent is delayed, the
solving milestone for @MAEDeR queries their any-start-
time plan, while the recomputation milestone precomputes
the @SIPP graphs given that new plan and runs the RePEAT
searches.

Querying an any-start-time plan is logarithmic in its size,
which is at most linear in the number of safe intervals in the
SIPP graph. Each location in the graph adds a safe interval to
the problem, and each agent splits the safe intervals it passes
through, adding one interval to each state and/or edge it tra-
verses. As such, the problem size scales linearly with the
number of locations and number of agents. The first step of
@MAEDeR’s recomputation is to generate the SIPP graphs
needed for rSIPP, meaning that @MAEDeR can fall back to
rSIPP if another delay happens before it has finished recom-
puting the any-start-time plans. In fact, MAEDeR will reach
rSIPP’s recovery point before rSIPP would have, because its
interval of uncertainty is shorter.

λ(t) ν(t) ω ϵf /ϵc
100-2000 5-50 0.5-5 50-500

Table 2: Sampled values for scenario generation ∀t ∈ T .

End of track
Track Parking track

Heerlen station

Platforms

Figure 7: Layout of the Heerlen railway hub in the Nether-
lands [Adapted from SporenPlanOnline].

Experimental Evaluation
The goal of our experiments is to empirically evaluate the
performance of rSIPP and @MAEDeR, including our claim
that @MAEDeR is ‘effectively instant’. We want to answer
the following question:
Q1 Is the interval of uncertainty for @MAEDeR signifi-

cantly shorter than for rSIPP?
We also demonstrate the appeal of both methods in practice:
Q2 Are the recomptutation times for both methods using

realistic scenarios reasonable for practical application?

Data
We created our own dataset based on real-world data from
two Dutch railway hubs. The smaller one is based on the sta-
tion of Enkhuizen (Fig. 1) which has a total of eight tracks.
The larger one with 29 tracks is the station of Heerlen shown
in Fig. 7, which also has ‘free tracks’ that can be entered
from both sides. The hub layouts comprising the network N
were computed manually based on the information available
online1, taking the length of tracks in meters. We assign all
platforms and parking tracks to be places where trains can
turn around. Intermediate track segments or ongoing tracks
(like IN/OUT in Fig. 5) do not allow trains to reverse. This
way, trains are not allowed to stop in the middle of a track
where other trains can still be traveling.

For the Enkhuizen hub, we created three scenarios. The
small scenario (6 trains) was constructed manually and the
medium scenario (13 trains) is based on the actual timeta-
bles showing the necessary moves on a Tuesday morning
(October 31, 2023)2. This scenario uses realistic headway
times (Liu and Han 2017; Wang, Liu, and Zeng 2017), train
speeds, and train lengths. Finally, we generated a large sce-
nario of 25 trains (more is unrealistic as the Enkhuizen hub
does not have enough tracks for that many trains). For the
Heerlen hub, we also generated scenarios with 6, 13, and 25
trains for comparison. Additionally, as this layout is much
bigger, we created a scenario with 50 trains. For each sce-
nario, we created different instances by assigning a different
train as our agent, so we had variations of the same scenario.

The scenario generation samples several values using a
given random seed (see Table 2). Each train gets a set of
routes, which define start and end locations, and there can be
either 1, 2, or 3 ordered subgoals for the train to reach. The

1sporenplan.nl, openrailwaymap.org
2ns.nl/reisplanner, treinposities.nl, treinenweb.nl/materieel

Real-world scenario
Enkhuizen (13 trains)

Extra large scenario
Heerlen (50 trains)

Scenario size

Time (s)
(logarithmic

scale)

5.84e-09
@MAEDeR: Safe6.66e-09

0.27 rSIPP: Recovered &
@MAEDeR: Partial

0.01 rSIPP: Recovered &
@MAEDeR: Partial

0.28 @MAEDeR: Recovered

0.01 @MAEDeR: Recovered

3.28e-03 rSIPP: Safe
5.94e-04 rSIPP: Safe

0.266s

0.
26

6s

0.013s
0.

01
3s

MAEDeR problem
milestones

@MAEDeR sequence
@MAEDeR milestone
Solve: Query plan
Recompute SIPP graphs
Replan in advance

rSIPP sequence
rSIPP milestone
Solve: Search plan
Recompute SIPP graphs

Figure 8: Comparing the average time to reach the mile-
stones described in Section Solving MAEDeR.

start time of a route is sampled from an interval of ⟨0, 1000⟩.
We find the shortest path through the time-dependent state
space for each route (i.e., time-independent route between
start and goal location), and the end time of the route is cal-
culated using the agent’s sampled speed. Successive trains
are generated with progressively increasing start times. If
the trains in the scenario have no conflicts, then this route
is included in the scenario and we move on to the next train
route. Otherwise, a new route is sampled until we have the
number of required routes for the total number of trains.

Implementation
The code to replicate our experiments is available on
GitHub3. We ran our experiments using an Apple M1 Pro
processor. The Q1 and Q2 search results use an implementa-
tion of rSIPP and RePEAT in an efficient C++ code base, us-
ing the same search code and data structures when possible.
The Q2 graph computation results currently use an imple-
mentation of SIPP and @SIPP graph generation in Python.
The search timeout was set to 300s, but never reached.

Results and Discussion
Fig. 8 compares the two algorithms in their time to reach
the milestones described in the Solving MAEDeR section.
The ‘Recompute SIPP graphs’ step is the same procedure
for both algorithms and thus takes an equal amount of time,
although it appears different due to the log scale (the time
is also shown in the respective boxes). The ‘Replan in ad-
vance’ step (‘@MAEDeR recovered’ in Fig. 8) recomputes
the any-start-time plans for all other agents, so every agent

3https://github.com/dwthomas/delay-replanning

6 t
rai

ns

13
 tra

ins

25
 tra

ins

6 t
rai

ns

13
 tra

ins

25
 tra

ins

50
 tra

ins
0.00

0.02

0.04

0.06

0.08

0.10
Time (s)

Enkhuizen hub Heerlen hub

Scenario
size

@MAEDeR (left)

rSIPP (right)

Recompute @SIPP graph @MAEDeR
Search for plan @MAEDeR
Recompute SIPP graph rSIPP
Search for plan rSIPP

Figure 9: Average replanning runtime of the algorithm for
different size scenarios on the Enkhuizen layout.

is ready to query their updated any-start-time plan in case
of a new delay. To answer Q1, we measured the interval of
uncertainty, which is the time to reach the Safe milestone.
In Fig. 8, we can clearly see a significant difference between
the algorithms, @MAEDeR’s interval of uncertainty is tens
of nanoseconds, while rSIPP takes almost 0.1 milliseconds
for the largest scenario, which is 1000 times slower. We find
that @MAEDeR reaches the safe milestone ∼1 ms before
rSIPP does.

This result provides empirical support for our assertion
that looking up an any-start-time plan is effectively instant.
Theorem 1 shows that the interval of uncertainty is over be-
fore the other trains ever knew it began.

Theorem 1. In MAEDeR problems of the scale of railway
hub delay replanning, @MAEDeR ends the interval of un-
certainty before any other agent can be informed of the de-
lay.

Proof. Our empirical results show that @MAEDeR ends the
interval of uncertainty within tens of nanoseconds. Trains
within train hubs are generally separated by more than tens
of meters. The speed of light is ≈0.3 m/ns, and information
cannot travel faster than the speed of light. Thus, the delayed
agent has ended the interval of uncertainty before any other
agent could physically receive word of its delay.

For Q2, we compare the recomputation runtimes of both
methods for different scenario sizes in Fig. 9. We see that the
recomputation time is only tenths of a second, in which it is
very unlikely that a new delay is already problematic, tak-
ing into account that the headway between trains is often 2
minutes in practice. As the scenario sizes are representative
of real-world scenarios for these hubs, both methods offer
attractive runtimes. So, agents can quickly recompute their
plans to allow a new delay to be handled. These attractive
runtimes would only improve with a more performant graph
generation implementation.

Train III: E → 1

Train I: 1 → P

Time (s)

Task

0 100 280 400

Figure 10: Safe intervals for train I from Fig. 2 and train III.

From Fig. 9, we can see that the runtime scales linearly in
the problem size, which is quadratic in the number of trains
because the runtime is the sum of all trains in the scenario.
The runtime for a single agent is linear in the total number
of trains and the number of locations, which explains the
difference between the two hubs.

Finally, we consider the additional benefits of the
@MAEDeR solution. Our results showed that about 80% of
all delays are resolved by maintaining the same route while
departing at a later time. In other cases, we reroute the de-
layed train along a different set of tracks. Besides replanning
delayed trains, our method can also visualize the safe inter-
vals, which can help human operators when planning ad hoc
freight traffic. Train paths are the regular routes that trains
can make, so for any new train that has to be planned ad
hoc, we can quickly look up when this train can safely make
its route. In Fig. 10, Train I’s intervals show when it can
move around train II, and the new train III’s intervals give
its possible plans around train I and II from Fig. 2. Train
III represents a common scenario in real-world railway hub
delay replanning, especially when considering freight traf-
fic. These trains are often dependent on the arrival time of a
container ship, so they need to be planned last minute.

Related Work
MAPF with Delay Response considers the delays of agents
by predicting these upfront and handling them during plan
execution (Ma, Kumar, and Koenig 2017). The effectiveness
of this approach obviously depends on the accuracy of the
predictions. A general framework for MAPF that is more ro-
bust against delays is called k-robust MAPF (Atzmon et al.
2020a) and extends the safety envelope for a grid node with
k time steps. However, a delay suffered by one agent is often
propagated to other agents, something we wish to avoid. One
solution to this uses a temporal network for post-processing,
but delays are still handled ad hoc (Hönig et al. 2016). This
can be a complex task to solve and we wish to avoid lengthy
computations while the system is in an unsafe state, so a
precomputed recovery plan is safer.

There has been much work on speeding up trajectory
planning in dynamic environments (Nantabut 2023, inter
alia). However, we wish to avoid planning from scratch
when a delay is encountered. MAPF with heterogeneous
agents has been proposed before (Atzmon et al. 2020b) and
a MAPF model was developed specifically for train rout-
ing (Švancara and Barták 2022), which also includes the
length of a train agent, but does not allow for different agent
speeds. Similarly, the Flatland challenge also addressed train
routing from a MAPF perspective and included delays (Mo-

hanty et al. 2020). While they assume a grid world struc-
ture, railway hubs have a more constrained infrastructure,
adding complexity to the problem. However, their focus is
on allocating tracks for the timetable, not a railway hub, and
they do not include the dynamics of the environment. All
the MAPF works cited here handle delays by either predict-
ing them, planning such that they are less likely to occur, or
planning ad-hoc in response, while the main benefit of our
method is precomputing new plans for possible delays. As
we do not replan from scratch, our method relates to plan
repair in multi-agent plan execution (Komenda, Novák, and
Pěchouček 2012). As the agent can safely execute its pre-
computed plan, it only needs to send an update of its new
plan to other agents, so they can precompute their set of
plans, leading to minimal communication.

Conclusion
This paper provides a solution for handling delayed trains
in a railway hub. When an agent is delayed, it can instantly
recover a safe plan and resume execution, eliminating the in-
terval of uncertainty during which the railway hub system is
unsafe. More generally, we demonstrated how to apply any-
start-time planning to a multi-agent real-world setting. We
defined the multi-agent execution delay replanning problem
(MAEDeR) and showed how to transform it into safe in-
terval path planning (SIPP). This can then be used with an
any-start-time planning approach to precompute safe plans
for agents. Because these plans can be computed prior to ex-
ecution, the agent can immediately use its safe plan once its
delay is known.

Compared to earlier work on any-start-time SIPP, our ap-
proach extends beyond the grid-based pathfinding domain.
Moreover, we allow for different agent sizes and speeds, we
let the agent spatially occupy several locations, and we in-
herently encode the movement direction in our graph. The
latter is especially important in MAEDeR problems where
the agents cannot easily turn around.

The experiments showed that the lookup time for a safe
plan is instantaneous, so agents can recover their safe plan
and immediately execute it without extra waiting time. Fur-
thermore, we show that the use of a SIPP graph with safe in-
tervals still allows for fast replanning, enabling other agents
to quickly react to one delayed train. Our method scales
well, solving real-world size scenarios in a reasonable time,
allowing operators to respond rapidly. Moreover, the ap-
proach can also be used for the ad hoc planning of new
trains, which is very common for freight traffic. Our ap-
proach can be applied to other MAEDeR problems, like
moving automated guided vehicles in a container terminal
or navigating self-driving cars in dense urban areas.

Acknowledgements
This work is part of the NWO LTP-ROBUST RAIL Lab, a
collaboration between the Delft University of Technology,
Utrecht University, NS, and ProRail. More information at
https://icai.ai/icai-labs/rail/. We are also grateful for support
from the NSF-BSF program via NSF grant 2008594.

References
Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N.-F. 2020a. Robust multi-agent path finding and
executing. Journal of Artificial Intelligence Research, 67:
549–579.

Atzmon, D.; Zax, Y.; Kivity, E.; Avitan, L.; Morag, J.; and
Felner, A. 2020b. Generalizing Multi-Agent Path Finding
for Heterogeneous Agents. In Thirteenth Annual Symposium
on Combinatorial Search.

Bešinović, N. 2020. Resilience in railway transport systems:
a literature review and research agenda. Transport Reviews,
40(4): 457–478.

Cacchiani, V.; Huisman, D.; Kidd, M.; Kroon, L.; Toth,
P.; Veelenturf, L.; and Wagenaar, J. 2014. An overview
of recovery models and algorithms for real-time railway
rescheduling. Transportation Research Part B: Methodolog-
ical, 63: 15–37.

D’Ariano, A.; and Pranzo, M. 2009. An Advanced Real-
Time Train Dispatching System for Minimizing the Propa-
gation of Delays in a Dispatching Area Under Severe Dis-
turbances. Networks and Spatial Economics, 9(1): 63–84.

Foschini, L.; Hershberger, J.; and Suri, S. 2014. On the
Complexity of Time-Dependent Shortest Paths. Algorith-
mica, 68(4): 1075–1097.

Gardos Reid, R. 2023. Inferring Robust Plans with a Rail
Network Simulator. MSc thesis, Delft University of Tech-
nology.

Ginsberg, M. L. 1989. Universal planning: An (almost) uni-
versally bad idea. AI magazine, 10(4): 40–40.

Hönig, W.; Kumar, T. K. S.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-Agent Path Finding
with Kinematic Constraints. In Proceedings of the Twenty-
Sixth International Conference on Automated Planning and
Scheduling, 477–485.

Komenda, A.; Novák, P.; and Pěchouček, M. 2012. Decen-
tralized Multi-agent Plan Repair in Dynamic Environments.
In Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems. AAMAS.

Liu, P.; and Han, B. 2017. Optimizing the train timetable
with consideration of different kinds of headway time. Jour-
nal of Algorithms & Computational Technology, 11(2): 148–
162.

Ma, H.; Kumar, T. S.; and Koenig, S. 2017. Multi-agent path
finding with delay probabilities. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Mohanty, S.; Nygren, E.; Laurent, F.; Schneider, M.;
Scheller, C.; Bhattacharya, N.; Watson, J.; Egli, A.; Eichen-
berger, C.; Baumberger, C.; Vienken, G.; Sturm, I.; Sar-
toretti, G.; and Spigler, G. 2020. Flatland-RL : Multi-Agent
Reinforcement Learning on Trains. arXiv:2012.05893.

Nantabut, C. 2023. A*-based trajectory planning in dy-
namic environments for autonomous vehicles. Ph.D. the-
sis, Rheinisch-Westfälische Technische Hochschule Aachen
University.

Phillips, M.; and Likhachev, M. 2011. SIPP: Safe interval
path planning for dynamic environments. In IEEE Interna-
tional Conference on Robotics and Automation.
Schoppers, M. 1987. Universal Plans for Reactive Robots
in Unpredictable Environments. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence, vol-
ume 87, 1039–1046.
Stern, R. 2019. Multi-agent path finding–an overview. Arti-
ficial Intelligence: 5th RAAI Summer School, Dolgoprudny,
Russia, July 4–7, 2019, Tutorial Lectures, 96–115.
Thomas, D. W.; Shimony, S. E.; Ruml, W.; Karpas, E.; Sh-
perberg, S. S.; and Coles, A. 2023. Any-Start-Time Planning
for SIPP. In ICAPS Workshop on Heuristics and Search for
Domain-Independent Planning.
van den Broek, R.; Hoogeveen, H.; and van den Akker, M.
2018. How to Measure the Robustness of Shunting Plans. In
18th Workshop on Algorithmic Approaches for Transporta-
tion Modelling, Optimization, and Systems (ATMOS 2018),
volume 65, pp 3:1–3:13. Dagstuhl, Germany: Open Access
Series in Informatics (OASIcs).
Švancara, J.; and Barták, R. 2022. Tackling Train Routing
via Multi-agent Pathfinding and Constraint-based Schedul-
ing. In Proceedings of the 14th International Conference on
Agents and Artificial Intelligence, 306–313. SciTePress.
Wang, G.; Liu, H.; and Zeng, X. 2017. Study on train head-
way in different turning-back mode of urban mass transit
station. Transportation Research Procedia, 25: 451–460.

