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Abstract

Bounded suboptimal search algorithms attempt to find a solution quickly while
guaranteeing that its cost does not exceed optimal by more than a desired factor. Typ-
ically these algorithms use a single admissible heuristic evaluation function for both
guiding search and bounding solution quality. In this paper, we present a new approach
to bounded suboptimal search that separates these roles, consulting inadmissible infor-
mation to determine search order and using admissible information to guarantee qual-
ity. Unlike previous proposals, it explicitly estimates expected solution cost and search
distance in an attempt to reach a solution within the suboptimality bound as quickly as
possible. We show how to construct these estimates during search using information
that is readily available yet often overlooked. In an empirical evaluation across six
diverse benchmark domains, the new techniques have better overall performance than
previous approaches, including weighted A* and optimisticsearch.



0.1 Introduction

When resources are plentiful or an optimal solution is required, A* search [1] using
a consistent heuristic will find an optimal solution as fast as any equally informed
search [2]. However, in many practical settings we must accept suboptimal solutions
in order to reduce the time or memory required for the search.In this paper we focus
on bounded suboptimal search, algorithms that find solutions whose cost is within a
specified factorw of optimal. We say such algorithms arew-admissible.

As we discuss below, all of the previously proposed algorithms that we are aware
of fail to directly address the problem of finding solutions within a bound as quickly
as possible. In this paper we introduce explicit estimationsearch (EES), a bounded
suboptimal search algorithm that uses unbiased cost and distance estimates rather than
lower bounds to find solutions of bounded quality as quickly as possible. We introduce
skeptical search, a simplification of EES that has reduced overhead and better perfor-
mance in some domains. We then illustrate how to construct the unbiased estimates
that EES and skeptical search rely on. We conduct a comprehensive empirical analy-
sis of these and other bounded suboptimal algorithms on gridpathfinding, the sliding
tile puzzle, the pancake puzzle, dynamic robot pathfinding,the TSP, and vacuum plan-
ning problems. We find that explicit estimation search has the strongest overall perfor-
mance, surpassing the current state of the art including weighted A* [3] and optimistic
search [4].

0.2 Previous Approaches

We now describe three previously proposed algorithms that demonstrate the most com-
mon approaches to bounded suboptimal search, and their strengths and flaws.
Weighted A* is a simple and effective bounded suboptimal search. In weighted A* the
traditional node evaluation function of A* is modified to place additional emphasis on
the heuristic evaluation function;f(n) = g(n)+h(n) becomesf ′(n) = g(n)+w·h(n).
The weight,w, increases the importance ofh (estimated cost of reaching a goal from
n) relative tog (cost of reachingn), making the search greedier.

Placing additional emphasis on the heuristic rewards nodesthat have lowh. The
higher theh value, the more unattractive weighting makes a node look. Skewing the
evaluation function in this way encourages progress towards areas with lowh. If the
heuristic is well informed and admissible, nodes near a goalmust have relatively lowh
values. We would hope to find solutions quickly by forcing thesearch into such areas
of the space. If all actions have the same cost, then we directly optimize the length of a
solution as well. If there are actions with varying cost, we may fail to find the nearest
w-admissible solution, which can increase solving time.

Weighted searches may expand many nodes that, strictly speaking, they do not
have to expand in order to find aw-admissible solution. We use weighted A* as an
example. Weighted A* will expand all nodes that it generatedwith f ′(n) < g(s)
wheres is the suboptimal goal returned by the search. This is a result of the search
order. However, if we obtains by some method other than best first search onf ′, we
would only need to expand those nodes withw · f(n) < g(s) in order to show thats
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represents aw-admissible solution. It is obvious that fewer nodes satisfy the inequality
w · f(n) = w · (g(n) + h(n)) < g(s) than dof ′(n) = g(n) + w · h(n) < g(s), as
the former scales bothg andh while the latter only increases the size ofh. Weighted
searches will always be at risk of expanding nodes beyond those needed to prove the
bound.
Optimistic search attempts to improve upon weighted A* by addressing the problem
of potentially expanding more nodes than needed in order to prove a suboptimality
bound. In optimistic search, weighted A* is run with a weighthigher than the desired
suboptimality bound. This weight is determined by scaling the desired bound up by an
optimism factor which must also be specified by the user. Thayer and Ruml use a value
of 2 [4]. The node with the smallestf -value of all open nodes, calledfmin, serves as a
lower bound on the cost of an optimal solution to the problem [5]. The quality bound
of the incumbent solution can be calculated by dividing its cost byf(fmin). Optimistic
search expandsfmin until this dynamic bound is at least as tight as the desired bound.
This stage of the search is called the cleanup phase.

Although the cleanup phase of optimistic search expands only those nodes neces-
sary to prove the bound, the initial phase during which the solution is found is flawed.
Optimistic search works by increasing the weight used in theinitial search, and while
higher weights generally lead to faster weighted A* searches, this is not universally
true. It has been shown that single-minded focus on cost to gocan lead to poor search
performance in domains where the lower bound requirements on h prevent it from ef-
fectively discriminating between nodes [6]. Here, an over-reliance onh can actually
lead to decreased performance, potentially causing optimistic search to perform worse
than weighted A*. These problems can be avoided by incorporating multiple sources
of information.

Additionally we only suspect that the initial solution willbe within the user’s de-
sired bound based on the past performance of weighted A*. There is nothing about the
search order that suggests that this solution will be withinthe bound, and if we set the
optimism factor too high, it frequently won’t be (see [4] fordetails regarding this case).
This is especially problematic for new domains where the performance of weighted A*
is unknown.

0.2.1 Distance-Oriented Searches

Not all bounded suboptimal search algorithms operate by focusing solely on a cost to
go heuristic.A∗

ǫ [7] maintains two orderings on its nodes, open and focal. In the first
ordering nodes are sorted in order off . The node at the front of this list isfmin, and
it is used to form the focal list. The focal list contains nodes whosef value is within a
factorw of f(fmin) and is sorted ond, an estimate of the distance from a node to the
goal. That is, focal contains those nodes that can currentlybe shown to be within the
w-admissibility bound, sorted in order of their estimated goal proximity, d. The node
from the front of focal,dmin, is chosen for expansion.

A∗
ǫ explicitly chases the nearest solution that can be shown to be within the bound

for all problems, something previous approaches did not attempt. Other algorithms
focus solely on the cost of a solution. This will map directlyto the nearest solution
for domains with unit cost actions, for example the sliding tile puzzle, but this will not
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work for domains where actions have varying cost. Unfortunately A∗
ǫ is still relying

on lower bounds to guide the search. Whiled need not be admissible, the focal list is
formed by consultingfmin, a lower bound on the cost of an optimal solution. The lower
bound is guidingA∗

ǫ to a large extent, and it frequently contradicts the order suggested
by d. When using an admissibleh function, thef values of nodes typically increase
as one descends from the root whiled tends to decrease. Nodes with lowd will often
have relatively highf values anddmin is often the node with the highestf in focal.
Children ofdmin are thus not likely to be included in focal. This causes a constant
emptying and refilling of the focal list, which results in terrible performance forA∗

ǫ in
many domains [8]. We now turn to explicit estimation search,which addresses these
flaws in previous approaches to bounded suboptimal search.

0.3 Explicit Estimation Search

The objective of bounded suboptimal search is to find solutions within the given sub-
optimality bound as quickly as possible. This suggests the following search order: For
all nodes that appear to be on a path to aw-admissible solution, expand the node that
seems closest to a goal. Explicit estimation search (EES) follows this principle as di-
rectly as possible while strictly guaranteeing bounded suboptimality. In addition to
g(n), h(n), andd(n), EES useŝh, a potentially inadmissible but more accurate version
of h, andd̂, a more informed version ofd. They can be supplied by the user, and we
will discuss one way in which they may be constructed during the search below. Using
these values, we construct two cost functions,f andf̂ . f is the traditional cost function
of A* and provides a lower bound on the cost of an optimal solution through a node.
f̂(n) = g(n)+ ĥ(n) attempts to be an unbiased estimate of the cost of the best solution
throughn.

EES selects one of the following nodes to expand:

fmin = argmin
n∈open

f(n)

best bf
= argmin

n∈open
f̂(n)

bestbd
= argmin

n∈open∧ bf(n)≤w· bf(best bf
)

d̂(n)

As before,fmin is the node with the lowestf value among all unexpanded nodes, and
acts as a lower bound on the cost of an optimal solution, a value we will need to prove
that the final solution lies within the desired suboptimality bound. best bf

is the node
with the lowest predicted solution cost. Rather than being chosen from all open nodes
asfmin andbest bf

are,bestbd
is selected from a restricted set of nodes. Specifically, it

must be a member of the set of nodes whosef̂ value is within a factorw of f̂(best bf
).

f̂(best bf
) represents our best estimate of the cost of an optimal solution, sobestbd

is
selected from those nodes we suspect lead to aw-admissible solution. Of these,bestbd
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is the node nearest to a goal. At every expansion, EES choosesfrom among these three
nodes using the rules:

selectNode =






bestbd
if f̂(bestbd

) ≤ w · f(fmin)

best bf
if f̂(best bf

) ≤ w · f(fmin)

fmin otherwise

We first considerbestbd
, as pursuing nearer goals should lead to a goal fastest.bestbd

is returned if the solution it will lead to can be shown to be within the suboptimality
bound, seen in the first rule ofselectNode. Specifically, we only returnbestbd

if the

estimated cost of a solution through it,f̂(bestbd
), is within a factorw of a lower bound

of the cost of an optimal solution,f(fmin). If bestbd
is unsuitable,best bf

is examined.
We suspect that this node lies along a path to an optimal solution, as it has the smallest
f̂ value. Pursuing paths of the highest quality is desirable, as proving that they are
within the suboptimality bound is easier. Expanding this node may enlarge the set that
bestbd

is selected from because it potentially replacesbest bf
with a node whosêf is

larger. We only expandbest bf
if it can be shown to be within the bound. If neither

best bf
nor bestbd

were within the bound, we returnfmin. Expanding it could raise our
lower bound by enlargingf(fmin), allowing us to considerbestbd

or best bf
in the next

expansion.

Theorem 1 if ĥ(n) ≥ h(n) and g(opt) is the cost of an optimal solution, then for
every noden expanded by EES, it is true thatf(n) ≤ w · g(opt)

Proof: selectNode will always return one ofbestbd
, best bf

or fmin. No matter what
node we select we have
f(n) ≤ w · f(fmin). This is trivial for the third case in selectNode, wherefmin is
chosen. For the other two cases, we must rely on the fact thath(n) ≤ ĥ(n). So long as
this is true, whenbestbd

is selected:

f̂(bestbd
) ≤ w · f(fmin)

g(bestbd
) + ĥ(bestbd

) ≤ w · f(fmin)
g(bestbd

) + h(bestbd
) ≤ w · f(fmin)

f(bestbd
) ≤ w · f(fmin)

f(bestbd
) ≤ w · g(opt)

Wheneverbestbd
is selected for expansion, itsf value is within a bounded fac-

tor w of the cost of an optimal solution. Ifbestbd
is a solution,h(bestbd

) = 0 and
f(bestbd

) = g(bestbd
), in which case the cost of the solution represented bybestbd

is
within a bounded factorw of the cost of an optimal solution. Thebest bf

case is identi-
cal. 2

0.3.1 Behavior

Explicit estimation search fixes the problems we have just highlighted with previous
approaches. It takes both the distance to go estimate as wellas the cost to go estimate
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into consideration when deciding what node to expand next. This allows it to prefer
finding solutions as quickly as possible in all domains instead of just unit cost domains.
It does this by operating in the same spirit asA∗

ǫ , using both an open and a focal list.
We will see that the orderings used for EES do not conflict withone another, allowing
EES to perform well across all suboptimality bounds. Like optimistic search, EES uses
a cleanup list to avoid unnecessary expansions when provinga suboptimality bound.
Rather than doing all of these expansions after having founda solution, EES interleaves
cleanup expansions with those directed towards finding a solution. As a result, it can
never run into the problem of having an incumbent solution that falls outside of the
desired suboptimality bound. Further, EES relies on unbiased estimates of the cost to
go, rather than the past performance of an underlying algorithm, when determining if
a node is likely to be within the bound. Not only is this a more principled approach, it
neatly avoids the problems optimistic search has when running on novel domains.

Much likeA∗
ǫ or weighted A*, EES will become greedier as the bound is loosened.

Like A∗
ǫ EES becomes a greedy search ond̂, unlike than weighted A* which focuses

almost exclusively on cost estimates. The greedy behavior of weighted A* will always
be tempered byf ′s inclusion ofg. Searches likeA∗

ǫ and EES, on the other hand,
can become even greedier. Whenw becomes sufficiently large, they perform a purely
greedy search on their estimates of distance-to-go.

For tighter suboptimality bounds, EES behaves much more like optimistic search. It
will frequently expandbest bf

, pursuing what appears to be the highest quality solution,
andfmin in order to prove the suboptimality bound. This is much like avariation on
optimistic search that interleaves its initial and cleanupphases. EES has the significant
advantage of never being able to find a solution outside of thedesired suboptimality
bound, as per the previous theorem. At a suboptimality boundof 1, it expands nodes
in A* order, breaking ties in favor of loŵd.

0.3.2 Implementation

EES is structured like a classic best-first search. We insertthe initial node intoopen,
and at each step, we select the next node for expansion usingselectNode. To effi-
ciently accessbest bf

, bestbd
, andfmin, EES maintains three queues, theopenlist, focal

list, andcleanuplist respectively.openand focal are strongly related to one another.
Theopenlist contains all generated but unexpanded nodes sorted onf̂(n). The node
at the front of theopenlist is best bf

. focal is a prefix of theopenlist ordered on̂d. fo-

cal contains all of those nodes that havef̂ values within a factorw of f̂(best bf
) which

estimates the cost of the optimal solution. The node at the front of focal is bestbd
.

cleanupcontains all nodes from open, butf(n) instead off̂(n). The node at the front
of cleanupis fmin, and it provides a lower bound on the cost of an optimal solution.

Efficiently performing EES requires fast access tofmin, best bf
, andbestbd

. We need
to be able to select one of these nodes, remove it from all relevant data structures, and
reinsert its children efficiently. To accomplish this we implementcleanupas a binary
heap,openas a red-black tree, andfocal as a heap synchronized with a left prefix of
open. This lets us perform all insertions and removals in logarithmic time (except for
transferring nodes fromopenontofocal).
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0.3.3 Simplified approaches

With three queues to manage, EES has significant overhead, sowe also introduce two
simplified techniques for incorporating inadmissible heuristic information.
Clamping [9] is a simple technique for using an inadmissible cost function ĥ to guide
search while maintaining bounded suboptimality. We merelyrestrict f̂ to never be
larger thanw · f as infca(n) = min((w · f), f̂(n)). fca has several drawbacks: it
cannot incorporate search distance estimates effectively, it fails to become greedy at
high weights, and if̂h is much greater thanh, the search will devolve into A*, but
without proving optimality. In this case,w · f(n) is frequently less than̂f(n), causing
the nodes to be sorted and expanded in the same order they would be in a A* search.
Skeptical Searchattempts to scale gracefully from a search onf̂ at low suboptimality
bounds to a search on̂h for large bounds. This results in a search onf̂ ′(n) = g(n) +

w · ĥ(n), wherew is the desired suboptimality bound. We call this Skeptical Search
because it learns to be mistrusting of the overly optimisticheuristich. It is likely to
produce very high quality solutions if̂h is accurate, and we expect it to decrease in
solving time asw increases, like weighted A*.

The main advantage of this approach is in reduced overhead. It never needs to
calculated̂, and it is never concerned withbestbd

. As a result, it maintains fewer sorted
lists and performs fewer heuristic calculations and thus has significantly less overhead.
Search on̂f ′ is obviously not going to be guaranteed to returnw-admissible solutions,
so we implement skeptical search as a more principled version of optimistic search.

Skeptical search is preferable to optimistic search because the user need only sup-
ply one parameter, the desired suboptimality bound. The optimism factor required by
optimistic search could be charitably characterized as correctingh into ĥ, which skep-
tical search does explicitly. The major drawback of skeptical search is that it has poor
performance for low weights. Unlike EES or optimistic search, skeptical search will
not converge to A* performance at a bound of 1, it will insteadexpand nodes in̂f
order, which will only mimic A* when̂h = h∗, the true cost to go.

0.4 Deriving Inadmissible Heuristics

EES uses the unbiased estimationsĥ and d̂ in addition to lower bounds, but where
do they come from? We may either create them based on insight into the domain or
derive them automatically. One idea that has been mentionedin passing by several
authors[10] [11], but never (to our knowledge) actually pursued, is to learn an inadmis-
sible heuristic function during search using temporal differences.

If h were perfect, then thef value of a parent node would be the same as the lowest
f among its children. However, admissible heuristics usually underestimate the cost to
the goal andf tends to rise in value along any path. The rise in value from a parent
to its best child is a measurement of the error in the heuristic. As nodes are expanded
during search, one can calculate the average one step error,eh, in h. One can estimate
a corrected value aŝh(n) = h(n) + eh · d(n). One can also measure one step error in
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d, resulting ind̂(n) = d(n) + ed · d(n). We can usêd to improve the estimate of̂h, as

in ĥ = h(n) + eh
˙̂
d(n).

When estimatingeh on-line its value is changing over time and so are theĥ and
f̂ of every node. Resorting the open list after every expansionis too costly. Two
possible approximations are 1) to re-sort the open list onlyoccasionally, perhaps at a
geometrically growing interval and 2) to not re-sort at all and have each node keep
forever thef̂ value computed when it was generated. Not resorting the openlist has
no affect on thew-admissibility of the solution for any of the proposed algorithms and
produces slightly better results.

0.5 Empirical Evaluation

In addition to the algorithms discussed above, we implemented and tested against all
other bounded suboptimal searches in the literature, namely Aǫ [12], AlphA* [13], and
revised dynamically weighted A* [8]. We now describe each algorithm briefly.

Aǫ is very similar in form toA∗
ǫ . It starts by expandingn such that

argminn d(n) : f(n) ≤ w · f(fmin), exactly the node thatA∗
ǫ expands every itera-

tion. Aǫ commits to this node, not unlike the way realtime algorithmscommit to a
node, and repeatedly follows the best child from each expansion until a goal is found
or until the best child could not be shown to bew-admissible. If the best child would be
outside of the bound,Aǫ must either abandon its commitment, expandingn such that
argminn d(n) : f(n) ≤ w · f(fmin), or it may instead choose to persevere, expand-
ing fmin until the desired child is within the bound, continuing along this path once
the lower bound on optimal solution cost has been sufficiently raised. Many different
persevering strategies exist, we choose to press onward if it appears the solution is at
least 90% complete.

AlphA* also uses the idea of maintaining multiple orderingsover the nodes. Nodes
are stored using one of two cost functions. Either they are stored with theirf values or
their f ′ value. If a node’s parent has anh value greater than the last node expanded,
it is stored withfwA∗, otherwise it is stored withfA∗. If a node appears to be closer
to the solution than its parent, it receives a favorable nodeevaluation. However, if the
heuristic appears to be misleading us, or if the node truly represents a step in the wrong
direction, it receives the worse value.

Revised dynamically weighted A* attempts to extend this approach by using two
measures of goal proximity:h, andd, the estimated number of steps to the goal. As
nodes progress towards the goal, the weight is steadily decreased. Revised dynami-
cally weighted A* sorts nodes in order offrdwA∗ = g(n) + max(1, w d(n)

d(root) )h(n).
Revised dynamically weighted A* is identical to or significantly better than dynami-
cally weighted A* [14] in all domains.

All algorithms were implemented in Objective Caml and compiled to native bina-
ries on 64-bit Intel Linux systems. All the algorithms were sampled at the following
suboptimality bounds: 1, 1.005, 1.001, 1.01, 1.05, 1.1, 1.15, 1.2, 1.3, 1.5, 1.75, 2,
2.5, 3, and 5. We show 95% confidence intervals averaged over all instances for each
domain.

7



Vacuum

lo
g

10
(t

o
ta

l 
ra

w
 c

p
u

 t
im

e)
2

1

0

Suboptimality Bound

5432

optimistic
clamped

EES
skeptical

Vacuum

lo
g

10
(t

o
ta

l 
n

o
d

es
 g

en
er

at
ed

)

6

5

4

Suboptimality Bound

5432

optimistic
clamped

EES
skeptical

Figure 1: Vacuum Planning

0.5.1 Vacuum World

In this domain, inspired by the first state space depicted in [15], a robot is charged with
cleaning up a grid world. Movement is in the cardinal directions, and when the robot
is on top of a pile of dirt, it may remove it. Cleaning and movement have unit cost.
We use the minimum spanning tree of the robot and dirt locations plus the number of
piles of dirt as an admissibleh. Search distance is estimated by finding the length of
a greedy solution on a board with no obstacles. We used instances that are 500 cells
tall by 500 cells wide, each cell having a 35% probability of being blocked. We place
twenty piles of dirt randomly in unblocked cells. The robot’s start location is selected
randomly from the unblocked cells. We averaged over 100 instances.

The results are presented in Figure 1. The suboptimality bound of the algorithms is
on the x-axis, with a bound of 1 requiring an optimal solution, and a bound of 3 means
that the solution returned has cost within a factor of 3 of theoptimal solution. The
y-axis shows either the total amount of nodes generated, or the time consumed by the
algorithm. The y-axis is always presented in log scale for readability. We display the
best four algorithms per domain for the same reason. The legend is sorted from worst
to best in terms of nodes generated or cpu time consumed. All algorithms were run
with a five minute time limit. Not all algorithms solve all problems across all subop-
timality bounds. If an algorithm failed to solve a problem, it was charged for the full
amount of time and for as many nodes as it could generate within that time limit. As
such, the plots represent lower bounds on the actual performance of the algorithms. All
of the plots follow this layout. There is a very clear separation between algorithms that
take advantage of learning and distance heuristics and those based around weighted
A*, as we see by the large separation between ESS and Skeptical Search and Opti-
mistic Search.A∗

ǫ performed almost as well as these algorithms for high bounds, but
failed to solve many instances at weights lower than 2. AlphA* performed very poorly.
Clamped search performs poorly at high weights because it cannot become sufficiently
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Figure 2: Dynamic Robot Navigation

greedy.

0.5.2 Dynamic Robot Navigation

This domains follows that used by [16]. The goal is to find the fastest path from the
starting location of the robot to some goal location and heading. We perform this
search in worlds that are 500 by 500 cells in size. To add challenge to these problems,
we scatter 75 lines with random orientations across the domain. Each line is up to 70
cells in length. Bothh andd are found by searching the problem without dynamics
exhaustively from the root. Ford, we return the shortest distance between that point
and the goal, assuming the robot can stop, start, and turn on adime. h is similar to
d, but we assume that the robot is constantly moving at maximumvelocity to obtain a
lower bound on the time to arrive at the goal from the current state.

Results for the dynamic robot navigation problem are shown in Figure 2. We see
again in the timing results that the three fastest algorithms all exploit inadmissible
heuristics to improve their search order. Skeptical searchand EES are outperforming
all other algorithms until a weight of about 1.5, whereA∗

ǫ starts performing very well.
At this point, it performs a greedy search ond, which is very well informed for this
domain. Before weights of 1.5, approaches using inadmissible information are orders
of magnitude faster. We suspect EES would be just as fast if wedid not correctd into
d̂ on this domain.

0.5.3 Macro Sliding Tile Puzzle

We examined algorithm performance on the macro 15-puzzle [17], using Korf’s orig-
inal instances [18]. The macro 15-puzzle is identical to thephysical implementation
of the 15-puzzle in the sense that moving multiple tiles towards the blank requires the
same amount of effort as sliding the blank only one tile in a give direction. Since the
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Figure 3: Macro 15-Puzzle

blank may move up to three spaces at once, we use manhattan distance divided by three
for bothh andd. This is the only domain where the learned inadmissible heuristic was
outperformed by the hand crafted one, in this case we used theundivided manhattan
distance.

Results for macro tiles are presented in Figure 3. EES using the hand crafted heuris-
tic is called “EES Fixed” in the figures. Skeptical search andOptimistic Search are the
two best algorithms by both metrics in this domain. Optimistic does so well in this
domain because it is accidentally correcting for heuristicerror. While an optimism of
2 is typically just a very good rule of thumb, for macro tile puzzles it is almost exactly
covering for the introduction of the macro moves. This explains why Skeptical search
and optimistic search are nearly identical here.

0.5.4 Grid Pathfinding

Following [4] we tested on grid pathfinding problems using the “life” cost function.
We show results over 20 instances of 2000 by 1200 grids, allowing for movement in
each of the cardinal directions. The grids were generated byblocking 35% of the cells
at random. The start is in the lower left of the grid, with the goal appearing in the lower
right.

Figure 4 shows the results for grid pathfinding problems. We immediately no-
tice that all of the algorithms, save weighted A* with duplicate dropping, are having
extreme difficulty for weights less than 1.5. In this region,the other algorithms are
reopening a large number of states that they have previouslyvisited with a suboptimal
g value. Weighted A* may avoid reopening these nodes because the heuristic for this
domain is consistent [19].

As the weight increases, we see that EES gains an edge in termsof the number of
nodes generated during the search. When we examine the CPU plot, EES is no longer
clearly superior to wA* dd. In this domain node expansion is extremely inexpensive.
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Thus the increased overhead of EES is more noticeable. When wetake away the large
difference betweenh andd by running on boards with 8-way movement (not shown)
the results change slightly. Duplicates are no longer a concern and the slight edge that
distance information provided at high suboptimality bounds goes away. Weighted A*
dd becomes the search of choice, although EES is still very competitive in both CPU
time and nodes generated.

0.5.5 Traveling Salesman

Following Pearl and Kim[7], we test on a straightforward encoding of the traveling
salesman problem. Each node represents a partial tour with each action representing
the choice of which city to visit next. We used the minimum spanning tree heuristic for
h and the number of cities remaining ford. We test on two types of instances, 100 cities
placed either uniformly in a unit square or with distance chosen uniformly at random
between 0.75 and 1.25 (called “hard” by Pearl & Kim). All problems are symmetric.
Results are averaged over 40 instances.

Figure 5 shows the results in unit square versions of the traveling salesman problem.
There was little difference between the algorithms on the “hard” Pearl & Kim instances
so we omit them.

0.5.6 Pancake Puzzle

We also performed experiments on the 10 Heavy Pancake puzzle. Like the original
puzzle [17], the goal is to arrange a permutation of numbers from 1 to N into an as-
cending sequence. Successor states are generated by selecting a prefix of the current
sequence and reversing that prefix. Each state in the problemhas N-1 successors. Each
pancake has a weight, equal to its index. The cost of a move is the sum of the pancakes
being moved. We liken this to rearranging a stack of free-weights from a careless pile
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Nodes Generated 1st 2nd 3rd 4th > 4th
EES 2 3 1 0 0
Optimistic 0 1 2 3 0
Skeptical 3 0 0 1 2
A∗

ǫ 1 1 1 0 3
wA* 1 0 0 2 3
AlphA* 0 0 0 0 6
Aǫ 0 0 0 0 6
Clamped 0 0 1 0 5
A∗

ǫ hhat 0 0 0 0 6
rdwA* 0 0 0 0 6
CPU Time 1st 2nd 3rd 4th > 4th
EES 0 3 3 0 0
Optimistic 0 2 1 3 0
Skeptical 3 0 0 1 2
A∗

ǫ 2 1 1 0 3
wA* 1 0 0 2 3
Aǫ 0 0 0 0 6
AlphA* 0 0 0 0 6
Clamped 0 0 1 0 5
A∗

ǫ hhat 0 0 0 0 6
rdwA* 0 0 0 0 6

Table 1: Rank across all benchmarks

into a neat stack, with the largest weight at the base and the smallest weight at the top.
We used pattern database for bothh andd. In Figure 6 we see that EES and Skeptical
search are the best search in terms of nodes generated and solving time.

0.5.7 Summary of Results

Table 0.5.7 summarizes the number of times each algorithm achieved each ranking
across all six benchmark domains when ranked by the number ofnodes generated and
the amount of CPU time consumed. Of all the algorithms we tested, those incorporating
inadmissible information such asd andĥ were always among the top four performers
in every domain we looked at. EES and Optimistic Search are the only algorithms
that appear in every plot. This is because they makes very informed decisions about
expansion order. Both are separating the goal of finding solutions and that of proving
their quality, and EES is deciding whether or not to expand a node based on unbiased
estimates of solution cost and length. The price for this stability is overhead, resulting
in slightly longer run times than that of Skeptical search. Optimistic search is also a
strong performer, primarily because weighted A* never performs exceptionally poorly
on many of these domains, however it is slower than both EES and Skeptical Search.

Table 0.5.7 provides a different perspective on the resultsin aggregate than Ta-
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CPU 1.5 1.75 2. 3. 4. 5.
optimistic 1.6 1.5 1.6 2.1 2.4 2.1
wA* 4.1 3.4 2.8 3.7 3.4 2.4
skeptical 2.6 4.7 4.9 5.1 11.4 13.9
A∗ǫ 50.4 44.8 28.5 1.8 1.1 0.6
Clamped 8.3 10.1 11.6 67.0 85.6 85.8
AlphA* 126.6 140.1 181.6 282.2 309.3 315.0
rdwA* 374.1 316.9 245.1 101.0 84.8 128.1
Aǫ 911.4 857.7 683.2 624.9 597.4 614.3
Generated 1.5 1.75 2. 3. 4. 5.
optimistic 3.1 2.4 2.5 3.3 3.4 3.2
wA* 6.6 5.5 4.5 5.5 5.0 4.0
skeptical 3.2 3.0 2.8 3.8 11.5 15.4
A∗ǫ 58.4 44.9 17.9 1.8 1.1 0.8
Clamped 6.8 5.6 7.1 76.5 95.9 97.4
AlphA* 1.2 1.5 2.2 4.4 5.6 5.7
rdwA* 187.3 171.7 150.2 86.3 78.1 163.1
Aǫ 1514 1415 1122 994 918 979

Table 2: CPU time and nodes generated relative to EES

ble 0.5.7. Here, rather than measuring the relative performance on single domains, we
look at the relative performance of the algorithms at different suboptimality bounds
across all domains. We present the number of nodes generatedand CPU time con-
sumed relative to that used by EES, averaged over all domains. Such figures give us
a quantitative sense of the relative performance of the algorithms. We see that, with a
single exception ofA∗

ǫ run with a bound of 5, explicit estimation search consumes less
time and generates fewer nodes than any other approach.

This may seem surprising, since in our previous evaluations, EES was infrequently
the best algorithm; it was often in second place. Although EES frequently comes in
second place, it is never extremely outperformed by the other algorithms. The other
bounded suboptimal algorithms, on the other hand, manage tofail spectacularly in
some domains. This drags their average performance down. Thus explicit estimation
search is the superior choice when running on a set of problems with diverse properties
or when running on a problem that we know very little about.

0.6 Discussion

There are two ideas driving these new search algorithms: inadmissible sources of in-
formation are readily available and helpful, and of all solutions within the bound, we
prefer the one we can find the fastest. Combining pattern databases [20], using linear
programming to correct for heuristic error [21], or using offline regression to find bet-
ter heuristic models are all possible approaches to constructing ĥ and d̂, but they are
fundamentally different from our current approach in that they all require training data,
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where as we gather all of our experience during the search.
The results presented in the evaluation clearly show that there are some limitations

to EES despite its generally good performance. If the cost ofexpanding nodes is very
low, a better expansion order may not expedite search because of explicit estimation’s
overhead. In domains with consistent heuristics and many duplicates, weighted A*
can avoid re-expanding the duplicate states, and has remarkably good performance as
a result. Ifĥ is very inaccurate, EES and skeptical search can perform poorly, as we
saw in the macro-tiles domain.

0.7 Conclusions

We showed how additional information can be exploited in bounded suboptimal search,
resulting in better search orders and shorter solving timesacross a wide variety of
benchmark domains. Unlike previous approaches, explicit estimation search (EES)
converts the stated goal of bounded subpotimal search rather directly into an expansion
order by taking advantage of inadmissible cost to go and search distance estimators
that attempt to be unbiased rather than lower bounds. We alsoshowed how to generate
these inadmissible estimates during search without requiring training data. Skeptical
search makes use of only the cost-to-go estimates to providea search order almost as
principled as that of EES with less overhead.
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