
Planning for Modular Printers: Beyond Productivity

Minh B. Do
Embedded Reasoning Area
Palo Alto Research Center
Palo Alto, CA 94304 USA
minhdo atparc.com

Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA
ruml atcs.unh.edu

Rong Zhou
Embedded Reasoning Area
Palo Alto Research Center
Palo Alto, CA 94304 USA
rzhou atparc.com

Abstract

This paper reports our experience extending an on-line printer
controller based on AI planning to handle two significant fea-
tures of this commercially important domain: execution fail-
ures and multi-objective preferences. A printer controller must
plan quickly and reliably, otherwise expensive human inter-
vention will be required. Our approach is practical and effi-
cient, and showcases the flexibility inherent in viewing plan-
ning as heuristic search. Execution failure is handled by re-
planning. We link together the individual searches for eachin-
flight sheet, giving rise to a tree of potentially infinite branch-
ing factor. Multiple objectives are handled by linear combi-
nation and tie-breaking during best-first search. Multiplepre-
computed pattern databases are used to improve the efficiency
of handling preferences regarding image quality. Our success-
ful experience controlling multiple prototype printing systems
shows that replanning and preference-handling can be made
practical without using hand-coded control knowledge.

Introduction
It is a sustaining goal of AI to develop techniques enabling
autonomous agents to robustly achieve multiple interacting
goals in a dynamic environment. This goal also happens to
align perfectly with the needs of many commercial manu-
facturing plants. In this paper, we focus on one particular
manufacturing setting: high-speed digital production printing
systems. Unlike traditional continuous-feed offset presses,
digital xerographic cut-sheet printers can treat each sheet dif-
ferently: printing a different image and performing different
preparatory and finishing operations. Often, a single inte-
grated machine can transform blank sheets into a complete
document, such as a bound book or a folded bill in a sealed
envelope. It is sometimes even possible to process different
kinds of jobs simultaneously on the same equipment. De-
signing a high-performance yet cost-effective controllerfor
such machines is made more difficult by the current trend to-
wards increased modularity, in which each customer’s sys-
tem is unique and includes only those components that are
most appropriate for their needs. We have been working
closely with the Xerox Corporation to explore architectures in
which printing systems can be composed of literally hundreds
of modules, possibly including multiple specialized printing
modules, working together at high speed.

Copyright c© 2008, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Previous work has shown how AI techniques can be used to
control such machines (Rumlet al. 2005; Do and Ruml 2006;
Do et al. 2008). Requests for printed sheets become goals for
the system to achieve, the various actuators and mechanisms
in the machine become actions and resources to be used in
achieving these goals, and sensors provide feedback about
action execution and the state of the system. The main objec-
tive in previous work has been maintaining high productivity,
and thus high return on investment for the equipment owner.
While this is the most common and important objective, it is
by no means the only thing that owners care about.

In this paper, we address two major challenges. The first is
execution failure and exception handling. To reduce the need
for operator oversight and expertise and to allow the use of
very complex mechanisms, the system must be as autonomic
as possible. Because operators can make mistakes and even
highly-engineered system modules can fail, the system must
cope with execution failure. And because the system must
work with legacy modules in order to be commercially feasi-
ble, its architecture must tolerate components that are outof
its direct control and will give rise to unexpected events. The
second challenge is complex objectives. In a modular system
with multiple print engines, one might want to optimize the
cost of printing by choosing to print black-only pages only on
monochrome engines and avoid using more expensive color
engines. One might want to optimize image quality by choos-
ing to print pages from the same document only on print en-
gines whose current marking gamuts are similar. The printer
controller needs to give operators the ability to trade off these
conflicting objectives while maintaining robust operation.

We meet these challenges using (1) fast replanning to han-
dle various types of exceptions in plan execution, (2) multi-
objective optimization to handle both productivity and print-
ing cost, and (3) multiple heuristic look-ups to efficientlyhan-
dle image quality consistency constraints. We conclude with
a discussion of our experience using the planner to control
three physical prototype printing systems as well as results
from simulation studies.

Background
In analogy to other parallel systems such as RAID storage,
our approach to modular printing systems is called Rack
Mounted Printing (RMP). A modular RMP system can be
seen as a network of transports linking multiple printing en-
gines. These transports are known as the media path. Figure 1
shows a four-engine prototype printer located at the Palo Alto

Figure 1: A modular printer and schematic side view show-
ing how the four print engines and approximately 170 other
modules are connected. The solid line shows a sample sheet
plan together with other in-flight sheets in the system.

Research Center (PARC). It has over 170 independently con-
trolled modules and many possible paper paths linking the
paper feeders to the possible output trays. Multiple feeders
allow blank sheets to enter the printer at a high rate and multi-
ple finishers allow several jobs to run simultaneously. Having
redundant paths through the machine enables graceful degra-
dation of performance when modules fail. By building the
system out of relatively small modules, we enable easy recon-
figuration of the components to add new modules and func-
tionality. Each module has a limited number of discrete ac-
tions it can perform, also known ascapabilities, and for many
of these actions the planner is allowed to control their dura-
tions within a range spanning three orders of magnitude.

A printer controller works in an on-line real-time and con-
tinual planning environment with three on-going processes:
(1) on-line arrival of new goals; (2) planning for known goals;
and (3) executions of previously found plans. While usually
sequential for any given goal, these processes are interleaved
between different goals received. Figure 2 sketches the differ-
ent steps in the plan life cycle managed by the plan manager.

After the controller issues new plans, there is an additional
negotiation protocol before the plan is committed. First, each

printer model (off!line)p ()

Planner

STN

plans

fl ibl

sheet

descriptions

flexible

start time

l

recreate goals

planned/unsent

descriptions

(on!line)

fixed!time plans
unplanned sent

Plan Manager exceptions

new plans

planning

p

Figure 2: System architecture, showing the steps involved in
nominal planning (dashed lines) and replanning (solid lines).

plan step isproposedto the module involved. If all involved
modulesaccepttheir proposed actions, then the plan iscom-
mitted. As we discuss below, this commitment means that
modules become responsible for notifying the controller if
they fail to complete an action or realize that they will not
be able to perform a planned action in the future.

Sheet Planning

The sheet planner builds a plan for each sheet of a job us-
ing a combination of regression state-space planning and
partial-order scheduling. It plans by adding one module ac-
tion at a time, starting from a finisher until the sequence
of actions reaches a feeder. Adding an action to a sheet’s
itinerary causes resource allocations to be made on any re-
sources required for the execution of that action. Given the
media path redundancies in RMP, the planner usually faces
multiple choices about which action to add at each planning
step. To organize this search, the planner uses best-first A*
search with a planning-graph heuristic (Rumlet al. 2005;
Do and Ruml 2006), adjusted with resource conflicts, that
estimates how promising each potential route is. To main-
tain maximum flexibility, all action times are managed using
temporal constraints instead of absolute times. The planner
attempts to minimize the earliest time the last action of the
currently planned sheet could end, in essence optimizing the
system’s throughput. The planner uses no domain-dependent
search control knowledge, allowing us to use the same plan-
ner to run very different printing systems at full productivity.

Our system has been used successfully to control hard-
ware prototypes at PARC (four monochrome engines, giv-
ing a total of 220ppm) and at Xerox (two monochrome and
two color engines, yielding 180ppm), as well as hundreds
of hypothetical RMP systems in simulation, all at their full
productivity. These prototypes printers run at speeds higher
than any cut-sheet production printers current on the market.
We have also built a tool to automatically convert our cus-
tom domain language into the PDDL2.1 temporal planning
language, allowing us to test current state-of-the-art planners
such as LPG (Gereviniet al. 2003) and SGPlan (Chenet al.
2006), winner of the last two planning competitions. As re-
ported in detail by Doet al. (2008), neither of these planners
can handle a single sheet for the printer shown in Figure 1.
For a much simpler printer, our planner out-performed both
LPG and SGPlan by more than 1000x for jobs of up to 15
sheets, which already stretched the limits of LPG and SG-

Plan. For this simpler machine, our planner can plan very
quickly for hundreds of sheets easily.

Handling Execution Failures
Imagine a printer or copier that never seems to jam, but just
runs a little slower as the month goes on. Once a month,
someone opens the covers, removes some jammed sheets, and
the system is back at full productivity. The RMP systems that
our planner is used to control are designed to fulfill this vision
of partial productivity when a subset of the modules are down.
To make this transition transparent to the users (and thus in-
crease the perceived reliability of the system), we have been
concentrating on developing exception handling techniques
that minimize user interventions without stopping or slow-
ing down the machine. Current products perform exception
handling using rules hard-coded into each machine module.
This technique works well for simple straight-line systems,
but would be limited to a small predefined subset of failures
in more complex topologies. In our modular RMP systems,
there are a countless number of different printer configura-
tions and failure possibilities, so we would prefer a more gen-
eral exception handling approach.

Since all plans tightly interact through various scheduling
and temporal constraints, whether or not they belong to the
same jobs, an exception affecting any single plan can affect
the executability of other plans and the final job integrity.
Plans in different stages of their life cycle need to be analyzed
and treated differently (see Figure 2). Whileunsentplans can
be canceled, we need new plans for the sheets that are already
in-flight at the time exception occurs. In this section, we first
discuss the types of exceptions that we can currently handle
and how the plan manager reacts to them, we then concen-
trate on the hardest part of the exception handling framework:
finding new set of consistent plans for in-flight sheets.

Basic Exception Handling

Our planner can handle several types of exceptions. When
a given exception occurs, the planner will receive a special
message from the machine controller in real time. Depending
on the failure, the planner does one or more of: adjusting the
internal plan queue, updating the machine model and send-
ing new plans to replace the ones that are currently executing.
Figure 2 shows in solid lines the possible steps of the replan-
ning process. The dashed lines in this figure show the steps
in nominal planning, as described in (Doet al. 2008). Next,
we discuss in detail each of the different failure scenarios.
Plan Rejection: When a plan is sent to the machine con-
troller to execute, the controller may reject the plan if one
of the relevant modules cannot commit to executing its re-
quested action at the time defined by the planner. While such
rejections are rare, they can be caused by module constraints
that are outside the scope of the planner’s model. For exam-
ple, a binding module may need time to bring its glue reser-
voir to the proper temperature—a state variable and constraint
not currently modeled in our system. When a plan is rejected,
the planner will cancel all plans in theunsentqueue, in ad-
dition to the recently sent and rejected plan. All goals corre-
sponding to those plans will be rolled back to theunplanned
queue. Even plans that are not directly affected by the error
message also need to be canceled and rolled back because

those plans were made after the commitments had been made
for the rejected plan.
Module Update: Machine modules can gooff-line due to a
hardware failure, such as a sheet jam, a benign event, such
as running out of paper in a feed tray, or an unmodeled pro-
cess, such as print engine self-adjustment. Similarly, they can
comeon-line when they are repaired, adjusted, or otherwise
made ready. When this happens, the module controller will
send message to the planner indicating which of the module’s
capabilities is now on/off. If a given capability is turnedoff,
then the planner will remove the corresponding action from
consideration in future planning episodes. If a given capabil-
ity is turnedon, then the planner will add it to the action set
for future planning episodes.
Break-in-Future: When a module changes the status of
some of its capabilities fromon to off, currently executing or
unsent plans using that module may become invalid. In this
case, the module controller will send messages to the planner
indicating which plans are affected. The planner will cancel
the affected unsent plans and subsequent plans and move the
goals back to theunplannedqueue. For plans that are execut-
ing and thus correspond to sheets that have already been fed
into the machine, the planner needs to find new plans for the
affected sheets so that they can get to the correct finisher tray
without going through the affected modules. The next section
describes in detail how to reroute those in-flight sheets.
Broken: This type of exception happens when one or more
sheets are jammed in the system. Thebrokenmessages sent
to the planner include the ids of all sheets that are jammed
and thus cannot be reused or rerouted because of the fail-
ure. When some sheets jam, they normally also disable some
modules and thus thebrokenmessages normally accompany
severalmodule updatemessages, which are described above.
The handling of thebrokenexception is similar to the han-
dling of the break-in-futureexception in many respects: it
involves canceling of unsent plans and finding new plans for
the in-flight sheets. However, the main differences are: (1)
in-flight sheets that were jammed cannot be rerouted; and (2)
more critically, the jammed sheets break print-job integrity.
We discuss this in detail next.

In-flight Sheet Replanning
In this section, we discuss the problem of finding a new set of
plans for in-flight sheets when a sheet is jammed or a module
to be used by some plans is broken. The constraints that make
replanning more challenging than nominal planning are:

• Sheets cannot stop or slow down while the planner searches
for new plans for all in-flight sheets. Thus, if the plan-
ner takes too much time to find new plans, the jams and/or
module failures will cascade.

• All newly found plans do not have flexible starting times as
in the nominal planning case, but should all start from the
location at which the sheets are projected to be when the
plans are found. The new locations depend on the actual
replanning time of the planner.

• The sheets from jobs without jammed sheets still need to
finish in the correct finisher tray and in order. Any out-of-
order sheets (and all later ones in the same job) should be
rerouted to apurgetray.

1.2
Finisher 1

Finisher 2

P

1.1

Purge tray

2.1

Figure 3: Replanning Example (before jam): sheet 1.1 and
1.2 are planned to enter finisher 2, and sheet 2.1 to finisher 1.

1.2

Finisher 1

Finisher 2

1.1

Purge Tray

2.1

Figure 4: Replanning Example (after jam): sheet 1.1 is
jammed, which requires the planner to reroute sheet 1.2 to
the purge tray and reroute sheet 2.1 to circumvent the jammed
sheet before going to finisher 1.

Replanning involves four main steps: (1) create new goals
for the in-flight sheets; (2) predict (an upper bound on) the re-
planning time; (3) project the sheets according to the original
trajectory and the predicted planning time to find their future
locations, which will form the new initial state of the replan-
ning problem; (4) find plans for all sheets that are salvageable
(i.e., possible to avoid broken modules and jammed sheets in
time), satisfying the constraints listed above.
Example: Here we provide a concrete example illustrating
our replanning procedure. Figures 3 & 4 show a scenario in
which there are three in-flight sheets:S1.1 andS1.2 belong
to the same job and were planned to go to finisher 2 (in the
middle); sheetS2.1 belongs to a different job and is scheduled
to go to finisher 1. The third finisher is the purge tray. The
original routes are indicated by the dashed lines in Figure 3.
Assume thatS1.1 is jammed. According to the original routes,
we have: (i)S1.2 will arrive in the finisher tray out-of-order
(becauseS1.1 did not arrive before it); (ii)S2.1 will crash into
the module whereS1.1 jammed. Therefore, we need to find
new plans for those two sheets so thatS1.2 will instead go
to the purge tray andS2.1 goes aroundS1.1. Finding those
plans takes time and given that we cannot stop or slowS1.2

andS1.2 down while finding the new plans for them, those
two sheets will continue their original trajectories to thenew
locations, which were circled in Figure 4. From there, the
printer controller will apply the new plans, which were indi-
cated by the solid lines, that avoid further cascading failures
and also guarantee job integrity. After the replanning is done,
the planner will regenerateS1.1 andS1.2 again.

The example above shows one replanning strategy where
the new goal for out-of-order sheetS1.2 is set to go to the

sheet 1

plan 1 sheet 2

plan 2

plan 1 plan 2 plan 3

. . .

plan 3 plan 4

. . .

Figure 5: Chaining any searches together gives a search tree
with potentially infinite branching factor.

purge tray. This is the default strategy in our replanner that
tries to clear out the machine and finish the replanning process
as quickly as possible to return to normal operation. How-
ever, there are scenarios where printing medias are expensive
or confidential and purging them is not desirable. In those
scenarios, we have also experimented with a different strat-
egy that does not purgeS1.2 but keep it in the machine (e.g.
loop it) while waiting forS1.1 to be reprinted, thenS1.2 is
routed to the original finisher. We have tested this for a small
number of sheets, although more sheets could be saved if one
is allowed to slow down the transports while looping them.
Chained BFS:For normal operation, the planner uses A* to
find the plan for a given sheet that can end soonest, given the
(temporally flexible) plans for the previous sheets. A plan
always exists if scheduled sufficiently far in the future. For
re-routing, the problem is different. We must find jointly fea-
sible plans for as many in-flight sheets as possible. We cannot
greedily plan one sheet at a time, committing irrevocably to
the plans for all previous sheets, because the plan selectedfor
one sheet might render subsequent sheets infeasible.

We considered two strategies to solve this problem. The
first was to simply plan in the joint action space of all sheets.
This results in a large branching factor and it was not clear
to us how to design an effective heuristic evaluation func-
tion. We chose a different approach, in which we can retain
the view of planning for each sheet individually using heuris-
tic search. However, we overlay an additional search on top
of this, as depicted in Figure 5. In the high-level search, a
branching node represents the situation in which we have se-
lected certain specific plans for all previous sheets and it is
time to select a plan for an additional sheet. The children
of that node represent commitments to the different possi-
ble plans for that additional sheet. By considering different
paths in the high-level search tree, we can consider different
combinations of plans for the different sheets. We call this
approachchained best-first search. In our current implemen-
tation, sheets are replanned in their original order, as an ap-
proximation of “distance from exit.” An alternative approach
is to replan in the order of “urgency” defined as the time left
to reroute a sheet before it becomes unsalvageable.

Because the children of a node represent the possible plans
returned by a best-first search, the children are not available
all at once. Instead, an individual sheet-level planning search
will encounter goal nodes one at a time. We cannot termi-
nate the search when we find the first goal node because we
have no guarantee that the first goal will make the most sub-
sequent sheets feasible. Finding a goal merely results in an
new branch in the high-level space, and to retain complete-

Chained BFS(problems)
if problemsis empty, return success
p← remove first problem fromproblems
initialize openlistfor p
repeat untilopenlistis empty or node limit is reached:

n← best node onopenlist
if n is a goal, call ChainedBFS with remaining problems
expandn, adding any children toopenlist

Figure 6: Sketch of Chained Best-First Search with a depth-
first strategy.

ness we must retain the ability to continue our search and
uncover additional possible plans. In fact, in printers such
as ours that contain loops in the paper path, there may be
an infinite number of possible plans for a given sheet. Fun-
damentally, the high-level search must explore a tree where
nodes are expanded incrementally and the branching factor is
potentially infinite.

We identified three possible strategies for searching a tree
with infinite branching factor. The first is a best-first ap-
proach, in which one formulates a traditional heuristic eval-
uation function for the high-level nodes. These nodes repre-
sent commitments to complete plans for a subset of the in-
flight sheets, so the heuristic function needs to estimate the
probability that those plans will allow feasible plans for the
remaining sheets to be found. The infinite branching factor
could be handled using Partial-Expansion A* (Yoshizumiet
al. 2000), although this would require a non-trivial lower
bound on the heuristic value of the plans that have not yet
been found. It was not clear to us how this might be done. The
second possible strategy we considered was limited discrep-
ancy search (Korf 1996). Unlike depth-first search, limited
discrepancy search doesn’t necessarily visit all the children
of a node, which are potentially infinite for us. The disad-
vantage to this method is that, because we revisit each node
many times with different discrepancy bounds, we will suffer
considerable node regeneration overhead.

The third strategy, and the one we used in our implemen-
tation, is perhaps the simplest: depth-first search. Figure6
shows a pseudo-code sketch. Because we have a fixed num-
ber of sheets to replan, the high-level search tree has bounded
depth. To cope with the potentially infinite branching fac-
tor, we impose a limit on the number of nodes each low-level
sheet planning search may expand. This avoids the danger of
searching forever at one high-level node without finding an-
other goal, and is reminiscent of iterative broadening (Gins-
berg and Harvey 1992). To guide the sheet-level planning, we
use a heuristic that minimizes plan duration. This attempts
to minimize resource use in the machine and maximize the
probability that other sheets will have feasible plans.

Multi-Objective Search
Our second major extension to previous work is aimed at bet-
ter meeting shop owner’s needs in the nominal case. Previ-
ously, the planner’s objective has been to run multi-enginere-
configurable printers at full productivity. Productivity,while
very important, is only one of the many optimization criteria
that naturally exist in real-world planning and schedulingap-
plications like the printer control domain. In this section, we
will describe several additional objective functions thatwere

pointed out as important by our industrial partner, and discuss
how we extended the planning framework to handle them.

Optimizing for Printing Cost
For systems with heterogeneous print engines, the cost of
printing a given page depends on which of the engines is used.
For example, it is costlier to print a black and white page on
a color engine than a monochrome one. Thus, to minimize
the overall printing cost, one should use the engines with the
lowest printing cost that still satisfy the image type and qual-
ity requirements of a given print job. By doing so, only a
subset of all the available engines will be used for printinga
job and thus the overall productivity may be reduced.

To strike a balance between machine productivity and
printing cost, we have implemented a multi-objective search
framework that tradeoffs productivity for cost and vice versa.
Even though the framework only supports these two poten-
tially conflicting objectives at the moment, it can be easily
extended to support additional objectives such as minimiz-
ing machine physical degradation that we refer to aswear
and tear. We show that by combining different performance
criteria into a single objective, the same optimization frame-
work that works so well for single-objective planning can be
efficiently applied to the multi-objective case. Below are the
main steps to extending the planner from supporting single
objective to multiple objectives.

Step 1: extend the planner’s representation of machine ca-
pabilities to model action cost. Specifically, we added a cost
field representing the cost of executing each capability. Inad-
dition, there is an overall objective field with user-supplied
weights for each of the two objectives:obj = min w1 ∗ t +
w2 ∗ c, wheret is the end time andc is the accumulated total
cost of printing all sheets.

Step 2: heuristic estimation: to find the best route for a
given sheet, we estimate how good a potential route is accord-
ing to each of the objective functions. Finishing time is esti-
mated using temporal planning graph adjusted with resource
conflicts between different sheets (Do and Ruml 2006). To es-
timate the total plan execution cost, we use dynamic program-
ming starting from the initial state (i.e. sheet in the feeder) to
compute the total cost to reach different reachable states.The
computation is similar to cost propagation on the planning
graph as in the Sapa planner (Do and Kambhampati 2002).

Step 3: extend the search algorithm from considering only
a single objective to multiple ones. The estimations on total
time and cost are combined using the user-supplied weights
(as described in Step 1) to compare nodes in the best-firstA∗

search algorithm. Given that both heuristics for time and cost
are admissible, like the single objective planner, our planner
guarantees to find optimal solution for any given sheet. Note
that if the weights are not given, the planner chooses to pri-
oritize the objectives. For example, the planner can first find
the plan that has the lowest cost, and then break ties favoring
plans with higher productivity, then favoring one with lower
wear and tear, and so on. The new search algorithm has been
implemented and fully integrated into our planner. The de-
fault option without weights specified is optimizing for pro-
ductivity and break ties on total cost.

Other Objective Functions: Besides optimizing for speed
and cost, we recently extended the multi-objective framework
to balance between productivity and diagnostic information
gain, the goal of which is to locate one or more failed mod-
ules with the fewest test sheets (Kuhnet al. 2008). The ex-
ceptions we handle are different from the ones discussed in
the previous section. Here we assume the failures do not (a)
cause the plan to become inexecutable, (b) violate the job in-
tegrity, or (c) disable any capabilities. However, these failures
will cause incorrect plan output in the form of minor physical
damages of the finished sheets. For example, the sheets deliv-
ered to the finisher tray might have a small tear on the edge or
“dog-eared” corner — physical damage that is small enough
to not cause an actual paper jam. We know that the damage
was caused by some module that got used by the plan, but we
do not know which one. To locate a failed module, we need
to find a set of plans, the execution of which will pinpoint
the failed module using the fewest number of sheets on aver-
age, without sacrificing too much of the overall productivity.
Compared to other approaches such as passive and explicit
diagnosis, this approach significantly reduces the number of
wasted sheets, often by an order of magnitude if the fault is
intermittent, the most common failure type in our printer.

Planning for Image Quality Consistency
Maintaining image consistency across a set of heterogeneous
engines is especially important for a multi-engine printing
system. The planner achieves this by enforcing additional
image-consistency constraints while searching for an optimal
plan. In color science, the (in)consistency of two colors is
measured by a function, often denoted∆E, that calculates
the distance between them in some device-independent color
space. While there exist a variety of such functions in the
color science literature (the most popular of which is called
∆E2000), for our planning purpose it suffices to assume that
given any two engines, a∆E function returns a non-negative
real-valued scalar, called∆E distance, that measures the dis-
crepancy inperceivedcolor as a result of printing the same
image on these two engines. Because facing pages (i.e., pages
that face each other in a bound book or magazine) are most
sensitive to image-consistency issues, we have implemented
the following constraints in our planner:
1. facing-page constraintsthat require the facing pages of a

job be printed by the same print engine
2. ∆E constraintsthat allow only engines within some max-

imum∆E distance to print facing pages

Given that in reality no two engines can have a∆E dis-
tance of zero, the facing-page constraints can be viewed as
a special case of the∆E constraints with the maximum∆E
distance set to zero. Thus, we only need to focus on the lat-
ter, which is more general. To enforce∆E constraints, the
planner keeps track of the set of print capabilities that canbe
used to print the front side of a sheet, which is constrained by
the print action applied to the back side of its previous sheet.
Since the first sheet of a job does not have a previous sheet,
the set of print capabilities eligible for printing its front side
is unconstrained (i.e., equal to the entire set of print capabili-
ties). For subsequent sheets of the same job, however, only a
subset of print capabilities is allowed. Such a subset is com-
puted based on the∆E constraints by including only capabil-
ities of those engines whose∆E distance to the print engine

that printed the back side of the previous sheet is less than or
equal to some maximum distance. In most cases, this has to
be determined on-line, because the∆E distance between a
pair of engines can drift over time. Thus, our planner main-
tains an on-line version of a pairwise∆E-distance matrix for
all the engines in a printer.

While adding extra image-consistency constraints can re-
duce the brute-force search space (if the constraints make the
set of reachable states smaller), in practice we found this of-
ten makes the search problemharder, because the heuristic
computed for the unconstrained problem, while still admis-
sible, is no longer informative. To improve the accuracy of
the heuristic, the planner computes the temporal planning-
graph heuristic for all legal combinations of print capabili-
ties that can be used to print one side of a sheet, and then
stores them in multiple lookup tables, one for each combina-
tion. When a heuristic estimate for a search node is needed,
the planner calculates an index into the lookup table based on
the state description (e.g., sheet location, black or colorprint-
ing), in much the same way how lookups are done in pattern
databases (Culberson and Schaeffer 1998). On the implemen-
tation side, a hash table of hash tables is used to store multiple
lookup tables, but for any given sheet only the relevant hash
table(s) is loaded before the sheet is being planned, since the
set of eligible print actions is known and fixed at that time.

Since there are only a limited ways of printing a single face
of a sheet, this approach to improving heuristic accuracy has
little overhead yet can significantly reduce the time it takes
to find an itinerary. Interestingly, the same approach can also
be used to improve the accuracy of the heuristic under excep-
tions in which jammed sheets block the media paths to some
engines, which force the planner to work with only the set of
engines that are unblocked, giving rise to planning problems
that are similar to enforcing the∆E constraints.

Planning with Constrained Action Set
From a pure planning perspective, our approach to planning
for image-quality consistency corresponds to solving a con-
strained planning problem with a reduced set of actions (com-
pared to its unconstrained version). Given a planning prob-
lem with k actions, one can createO(2k) different versions
of the constrained problem. Thus, pre-computing the tem-
poral planning-graph heuristic for all possible subsets ofac-
tions can quickly become infeasible ask increases. Here
we describe a general solution that strikes a balance between
heuristic accuracy and the space overhead for storing multi-
ple lookup tables, one for each subset of actions. The idea
is to limit m, the maximum number of actions that are re-
moved from the unconstrained problem, and compute heuris-
tic lookup tables only for those constrained problems. For
example, it is usually feasible to enumerate those constrained
problems in which only one or two actions are removed from
the action set. To compute the heuristic value of a state in a
constrained problem that is not included in this pre-computed
set, the algorithm consults all the lookup tables whose re-
moved actions form a subset of the actions removed in the
constrained problem, and returns the maximum value as the
heuristic estimate of the state, since the value returned byany
of the lookup tables is admissible.

More formally, leth(s|P) be an admissible heuristic es-
timate for states in the constrained problem with the set of

actionsP ⊆ A removed from the original action setA, and let
m be the maximum number of actions removed in any con-
strained problems for which the heuristic is pre-computed.
The heuristic estimateh(s|P) can be calculated as follows,

h(s|P) =

{

h(s|P) if |P | ≤ m
maxQ⊂P ∧ |Q|=m h(s|Q) otherwise

The new heuristic resembles thehm family of admissible
heuristics (Haslum and Geffner 2000), wherem limits the
maximum cardinality of the set of atoms considered in the
construction of the heuristic. The difference is that our heuris-
tic considers the set of removed actions, whereas thehm

heuristic considers the set of satisfied atoms. Our heuristic
can also be seen as a kind of multiple pattern databases in
which one can take the maximum over a set of heuristic esti-
mates without losing admissibility, although ours is basedon
action-space abstraction and (multiple) pattern databases are
based on state-space abstraction.

Experience in Practice
In collaboration with Xerox, we have deployed our planner
to control three physical prototype multi-engine printers(one
with the schematic view shown in Figure 1). These deploy-
ments have been successful and the planner has also been
used in simulation to control hundreds of hypothetical printer
configurations. The planner is written in Objective Caml, a
dialect of ML, and runs on a standard desktop PC under ei-
ther Linux or Windows. It communicates with the job sub-
mitter and the printer controller using ASCII text over sock-
ets. The planner can also communicate with a plan visualizer
to graphically display the plans. The shortest single plan for
the machine shown in Figure 1 has 25 actions. Given that
there are many sheets in the printer at any given time and
the planner can plan ahead, the plan manager consistently
manages dozens to hundreds of plans. For the most complex
machine, the planner consistently on average produces plans
within the 0.27 seconds required to keep the printer running
at full productivity (220 pages/minute). The ability to use
domain-independent planning techniques allows us to use the
same planner for very different configurations, without need-
ing any hand-tuned control rules.
Exception Handling: Until now, the exception handling
strategies in current production printers have been to: (i)stop
the production or (ii) use machine-specific customized local
rules to purge sheets in the system. Our work is the first to
demonstrate automatic exception handling that does not rely
on machine-specific control rules.

The planner can handle the two easiest types of exception:
Plan RejectandModule Updatewithout any difficulties. For
theBrake-In-FutureandBrokenexceptions, we can currently
re-route on the fly up to five sheets for the machine shown in
Figure 1 (note that replanning is exponentially harder than
nominal planning according the number of in-flight sheets).
For the simpler prototype systems at Xerox with fewer
(but larger) modules, four print engines, and an aggregate
throughput of 180 pages-per-minute, our planner has been
able to successfully reroute all reroutable sheets when
different jams happen. We have demonstrated our replanning
technology in real-time by allowing people come up and
either turn on/off modules, or jam sheets intentionally, some-
times right before the sheets hits the broken module. Upon

receiving the error messages from the machine controller, the
planner is fast enough to reroute the sheets around the failed
modules or jammed sheets to the correct locations. Besides
experimenting with the physical hardware built at PARC and
by Xerox, we have also tested in simulation, by connecting
the planner to the visualizer instead of the printer controller.
We tried our replanning framework on different hypothet-
ical printer configurations with different fault modes and
different exception handling strategies. For example, when
the printing media is expensive and the replanning objective
function is switched from the default objective function of
finish replanning as quickly as possible (which can lead to
many purged sheets) to saving as many sheets at possible
(which can lead to longer replanning time) then the planner
has been able to successfully route up to 2 out-of-order
sheets in long routes (that may contain loops) in the system
waiting for the jammed sheet to be printed before routed to
the correct finisher tray. While achievement of replanning
for up to five sheets in a large RMP machine may not seem
very impressive, we want to point out that: (1) our planner
can reroute all reroutable sheets in simpler machines (which
is still much more complex than the biggest multi-engine
printer Xerox currently has on the market); (2) the large
machine is very complex for automated planning—the last
two IPC winners SGPLan and LPG cannot even find plan
for a single sheet in nominal planning using the PDDL2.1
version of our printer domain.

Multi-Objective Search: To test the ability to tradeoff be-
tween machine productivity and printing cost, we have tested
on the model of a four-engine prototype printer built at Xerox.
This is a better testbed for the tradeoff investigation because
that printer has a mixed set of printer engines (two color and
two black-and-white engines) instead of four identical black
engines such as in the our system. Moreover, the engines
are aligned asymmetrically and thus the paths leading to dif-
ferent engines are slightly different. We have modeled the
costs for all different components. We are especially inter-
ested in modeling the cost to print black pages on different
engines: printing them on more expensive color engines cost
more than on cheaper monochrome engines. By varying the
weights between the two objective functions, we have been
able to show that: (1) increasing the weight given to produc-
tivity results in more printer utilization of all four engines;
(2) increasing the weight on saving printing cost leads to re-
ductions in the number of unnecessary costly printing, thus
fewer black sheets are printed on color engines. We can ob-
serve the tradeoff between modules with similar functional-
ity as well, such as between different feeders, finishers, or
paper-path. For example, increasing the weight for saving
costs lowers the number of sheets fed from a more expensive
but faster feeders. We have also tested our multi-objective
search on other hypothetical printers with mixed components
and similar results were observed. We observed that moving
from single to multi-objective search did not slow down our
planner and thus does not affect the overall productivity.

We also tested the performance of our planner on image-
consistency planning. The model of the printer used has four
monochrome engines, two of which are faster but low-quality
engines, and the remaining two are slower but high-quality
engines. All four engines are connected through asymmet-
ric paper paths. We ran the simulation with a 20-sheet job

that requires using the two high-quality engines for double-
sided printing. This can be done with certain∆E constraints,
which can prevent the planner from choosing the two low-
quality engines. Since we are particularly interested in the ef-
fect of the heuristic on the search performance, we tested the
planner with and without using multiple lookup tables, which
made a significant difference in the number of node expan-
sions in A* search and planning times. On average, when the
multiple lookup table heuristic is used, the planner expands
only 1783 nodes per sheet; whereas using the heuristic com-
puted for the unconstrained problem, which grossly under-
estimates the remaining makespan for constrained problems,
needs 6458 node expansions to find a plan. In terms of run-
ning time, the one that uses multiple lookup tables is 60%
faster than using the naive heuristic.

Conclusions
In this paper, we have described extensions of an online
continual planner controlling high-speed modular printerto
handle two critical issues: (1) real-time execution failures;
and (2) objective functions beyond productivity. We have
successfully demonstrated our fast replanning and multi-
objective search on three physical prototype printers and
many other potential printer configurations in simulation.Our
work provides an example of how AI planning and scheduling
can find real-world application not just in exotic domains such
as spacecraft or mobile robot control, but also for common
down-to-earth problems such as printer control. The mod-
ular printer domain is representative of a wider class of AI
applications that require continual on-line decision-making.
Through a novel combination of fast continual temporal plan-
ning techniques, we have shown how AI techniques can suc-
cessfully enable robust, high-performance, autonomous oper-
ation without hand-coded control knowledge.

There are other frameworks to handle exceptions and
uncertainty in plan execution. Markov decision process
(Boutilier et al. 1999) and contingency planning (Pryor and
Collins 1996) build plans and policies robust to uncertain
environment. Planners built on those techniques are nor-
mally slow, especially in a real-time dynamic environment
with complex temporal constraints like ours. They are not
suitable for our domain where exceptions do not happen fre-
quently, but need to be responded to very quickly. Foxet.
al. (2006) discuss the tradeoff between replanning and plan-
repair strategies for handling execution failure. Their algo-
rithms work off-line, instead of in an on-line real-time en-
vironment such as ours, and they target different objective
function (i.e. plan stability). CASPER system at JPL (Chien
et al. 1999) uses iterative repairs to continuously modify and
update plans to adjust to the dynamic environment. Unlike
our system, CASPER uses domain control-rules and thus is
less flexible and the replanning decision is also not needed as
quickly as in our domain (sub-second).

There are several academic domain-independent plan-
ners such as GRT (Refanidis and Vlahavas 2003) and LPG
(Gerevini et al. 2008) that can optimize for multiple ob-
jectives or tradeoff between planning time and plan quality.
Standard planning languages, especially PDDL3 (Gerevini
and Long 2006), allow specifying complex objective func-
tions in the weighted-sum format (as in our framework).
While our planner is also based on domain-independent plan-

ning technology and uses an extension of PDDL, our multi-
objective planner works in a dynamic online continual en-
vironment and interacts with a physical machine, not in an
off-line abstracted environment like the mentioned planners.

Currently, we are extending our framework to scale up our
real-time replanning framework. While the current planner
works for simpler prototype machines (which are still more
complex than any multi-engine printer on the market), rerout-
ing all possible sheets for the complex modular printer at
PARC is still a challenge. We are also extending to other
objective functions such as machine wear and tear.

References
C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning:
Structural assumptions and computational leverage.JAIR, 11:1–
91, 1999.
Y. Chen, C. Hsu, and B. Wah. Temporal planning using subgoal
partitioning and resolution in sgplan.JAIR, 26:323–369, 2006.
S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau.
Using iterative repair to improve the responsiveness of planning
and scheduling for autonomous spacecraft. InProc. of IJCAI, 1999.
Joe Culberson and Jonathan Schaeffer. Pattern databases.Compu-
tational Intelligence, 14(3):318–334, 1998.
Minh B. Do and Subbarao Kambhampati. Sapa: A multi-objective
metric temporal planer.JAIR, 20:155–194, 2002.
Minh B. Do and Wheeler Ruml. Lessons learned in applying
domain-independent planning to high-speed manufacturing. In
Proceedings of ICAPS-06, pages 370–373, 2006.
Minh Do, Wheeler Ruml, and Rong Zhou. On-line planning and
scheduling: An application to controlling modular printers. InPro-
ceedings of AAAI-08, 2008.
Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina. Plan
stability: Replanning versus plan repair. InProc. of ICAPS-06,
pages 212–221, 2006.
A. Gerevini and D. Long. Preferences and soft constraints in
pddl3. InWorkshop on Preferences and Soft Constraints in Plan-
ning, ICAPS06, 2006.
Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. Planning
through stochastic local search and temporal action graphsin lpg.
Journal of Artificial Intelligence Research, 20:239–290, 2003.
Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. An approach
to efficient planning with numerical fluents and multi-criteria plan
quality. Artificial Intelligence, 2008.
Matthew L. Ginsberg and William D. Harvey. Iterative broadening.
Artificial Intelligence, 55:367–383, 1992.
P. Haslum and H. Geffner. Admissible heuristics for optimalplan-
ning. InProceedings of AIPS, pages 140–149, 2000.
Richard E. Korf. Improved limited discrepancy search. InPro-
ceedings of AAAI-96, pages 286–291. MIT Press, 1996.
Lukas Kuhn, Johan de Kleer, Robert Price, Minh Do, and Rong
Zhou. Pervasive diagnosis: The integration of active diagnosis into
production plans. InProceedings of AAAI-08, 2008.
L. Pryor and G. Collins. Planning for contingencies: A decision-
based approach.JAIR, 4:287–339, 1996.
Ioanis Refanidis and Ioannis Vlahavas. Multiobjective heuristic
state-space planning.Artificial Intelligence, 145:1–32, 2003.
Wheeler Ruml, Minh Binh Do, and Markus Fromherz. On-line
planning and scheduling for high-speed manufacturing. InProc. of
ICAPS-05, pages 30–39, 2005.
Takayuki Yoshizumi, Teruhisa Miura, and Toru Ishida. A* with
partial expansion for large branching factor problems. InProceed-
ings of AAAI-2000, pages 923–929, 2000.

