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Abstract

In problem domains for which an informed admissible heuris-
tic function is not available, one attractive approach is hi-
erarchical search. Hierarchical search uses search in an
abstracted version of the problem to dynamically generate
heuristic values. This paper makes two contributions to hi-
erarchical search. First, we propose a simple modification
to the state-of-the-art algorithm Switchback that reduces the
number of expansions (and hence the running time) by ap-
proximately half, while maintaining its guarantee of optimal-
ity. Second, we propose a new algorithm for suboptimal hi-
erarchical search, called Switch. Empirical results suggest
that Switch yields faster search than straightforward modi-
fications of Switchback, such as weighting the heuristic or
greedy search. The success of Switch illustrates the poten-
tial for further research on specifically suboptimal hierarchi-
cal search.

Introduction

Hierarchical search is used to generate informed admissible
heuristics via abstraction for problems where a good heuris-
tic does not exist or is not known. It works by first creating
an abstract, easier to solve, version of the original problem.
Then when a heuristic is required for a state in the original
problem, a search is executed in the abstraction until the dis-
tance of the abstract state to the abstract goal is known. The
distance in the abstraction is then returned as the heuristic
value for the state in the original problem. This same ap-
proach can be used to generate heuristics for the search at
the abstract level, creating a hierarchy of abstractions that
can be used to generate informed heuristics.

One alternative to using hierarchical search is to use a pat-
tern database (Culberson and Schaeffer 1996). The differ-
ence is that pattern databases enumerate all possible abstract
states before search and store them in a table (the pattern
database). Then, generating a heuristic value for the origi-
nal problem consists of a table look-up. One of the short-
comings of using pattern databases is that generating every
state in the abstraction requires a considerable amount of
pre-computation. However, Holte, Grajkowskic, and Tan-
ner (2005) shared that only a small fraction of these states
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are required when solving an individual problem. In addi-
tion, the database must be recomputed each time the goal
state changes. They must also be stored in memory during
the search in order to produce acceptable performance. This
means that fewer resources can be dedicated to solving the
original problem.

Switchback (Larsen et al. 2010) is a state-of-the-art hier-
archical search algorithm. We propose a simple modifica-
tion to the Switchback algorithm, called Short Circuit, that
reduces the number of node expansions required at each ab-
stract level search. We present an empirical evaluation of
Short Circuit that shows that on average it increases the per-
formance of Switchback by approximately a factor of two.

Hierarchical search algorithms proposed to date have fo-
cused on finding optimal solutions. However, it is often the
case that time or memory is limited such that no optimal
solution can be found. In such cases one is sometimes will-
ing to sacrifice solution quality for decreased CPU time or
memory use. One obvious approach is to use a hierarchi-
cal search to generate heuristics for sub-optimal algorithms
such as Weighted A* (Pohl 1973). We present an empirical
evaluation showing that this approach does not result in the
desired outcome. As we will show below, in many cases this
can actually increase the amount of CPU time required to
solve the problem.

We offer an alternative approach, that we call Switch, that
uses suboptimal searches during the creation of the heuris-
tic to boost performance. This approach only requires that a
portion of the abstraction hierarchy be kept in memory at any
one time, reserving resources for the base level search. Evi-
dence suggests that this approach not only improves perfor-
mance but also returns shorter solutions than simply using
hierarchical search to generate a heuristic for a conventional
suboptimal search algorithm.

We hope that Short Circuit and Switch will further pop-
ularize hierarchical search as a useful alternative when the
pre-computation costs of a full pattern database are pro-
hibitive. The success of Switch illustrates the potential for
further research on suboptimal hierarchical search.

Previous Work

Because Short Circuit and Switch build on previous work,
we briefly review relevant algorithms.
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Figure 1: Hierarchical A* on a 3-level hierarchy.

Hierarchical A* Hierarchical A* (HA*) is a forward hi-
erarchical search algorithm that performs an A* search at
each level in the abstraction hierarchy (Holte et al. 1994).
It requires an abstraction function φi(s) that maps a state s
at level i − 1 to a state at abstraction level i. Figure 1 il-
lustrates the process. Conventional A* search is run on the
original problem at the base level by removing a node with
minimum f on open, generating its children, and querying
their heuristic values. To calculate the heuristic value for
a given node Q at the base level, an A* search is started
from Q′ = φ1(Q) at the next level in the abstraction hierar-
chy. This search is terminated when the abstract goal state
G′ = φ1(G) is reached. The length of the path found by this
search is used as the heuristic value for Q. This technique is
used recursively to generate heuristic searches in further ab-
stract levels as well, resulting in an hierarchy of abstraction
levels. The highest level of the hierarchy is a trivial space
where search can be driven by the ǫ heuristic, which returns
0 for the goal state, and the cheapest cost operator otherwise.

Because a new A* search is started each time a heuristic
for the base level search is required, nodes in the abstraction
hierarchy could potentially be expanded many times. To
prevent as much node re-expansion as possible, HA* uses
three caching techniques. (We will later modify and use
some of these techniques in the creation of our suboptimal
algorithm.) The first caching technique is to store heuris-
tic values for every node for which a full abstraction level
search has been completed. This value will be returned if
the node’s heuristic is ever requested again. Second, when a
solution from a given query node to the goal is found, the en-
tire optimal path is placed into the cache. This technique is
known as optimal path caching. Third, every node n that is
expanded on the way from the query node to the goal node
that does not lie along the optimal path is placed into the
cache with the value of P − g(n), where P is the optimal
path length. This technique comes from the fact that, be-
cause P is optimal, P ≤ g(n) + h∗(n) for all nodes and
hence h(n) ≥ P − g(n). This can potentially increase the
heuristic value of a given node.

Switchback Switchback (Larsen et al. 2010) is a hierar-
chical search algorithm that changes the direction of search
at every level of the hierarchy. This technique is used to
prevent node re-expansion. Figure 2 gives an example of
Switchback on a three level abstraction hierarchy. Search
begins in the original problem using A*. The start node is
expanded and Q is generated. To create a heuristic value
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Figure 2: Switchback on a 3-level hierarchy.

for Q, an A* search at abstraction level one begins. This
search proceeds in the opposite direction, from the goal state
G′ = φ1(G) to S′ = φ1(S). R

′ is generated and a heuristic
is required. This leads to a search at the second abstraction
level from S′′ = φ2(S

′) to G′′ = φ2(G
′). Once R′′ has been

expanded, the optimal distance from S′′ to R′′ is known and
used as the heuristic value for R′. When Q′ is achieved, its
distance from G′ is used as the heuristic value for Q. This
will continue until the original search expands G, and the
solution is known.

The closed list at each level of a Switchback search will
have optimal g values and search will alternate in direction
as the abstraction level increases. Because g values are used
as the heuristic for the level below, the entire closed list can
be used as a cache. Once an abstraction level has completed
a search from start to goal (or goal to start), it may need to
continue searching if additional query nodes are requested
and not found in the cache. Heuristic values always guide
the search to the goal at the given level. After that goal has
been achieved search continues in an uninformed manner.
This will cause the search to expand f layers until the query
node is reached. The dotted lines in Figure 2 represent how
the search will progress at each level after the goal at that
level has been achieved.

Optimal Search

One approach to solving problems optimally without a
known heuristics is to use a pattern database. Holte, Gra-
jkowskic, and Tanner (2005) show that hierarchical search
can solve many problem instances before an initial pattern
database can be constructed. For example, creating a “7-8”
additive pattern database for the 15-puzzle takes approxi-
mately 3 hours. Hierarchical search algorithms can solve
many problem instances in that time. This makes hierarchi-
cal search an attractive approach when only a few problem
instances will be solved for a given goal state.

The purpose of search at abstract levels is to determine
g values. At node generation time of an A* search, many
nodes have their optimal g values. These nodes can be used
to expand the size of the cache, and therefore decrease the
number of subsequent searches. These nodes can also be
used to exit early from, or “Short Circuit”, abstract level



searches. The Short Circuit algorithm we introduce below
uses a special case of the following theorem.

Theorem 1 Assume fmin is the node at the front of open
and n is a goal node that has been generated but not ex-
panded. Assume also that a consistent heuristic is being
used. Then the cost of a solution returned by an A* search
that stops when a goal is generated rather than waiting for
it to be expanded is bounded by a sub-optimality factor of
g(n)/f(fmin)− h(n).

Proof: Let g∗(n) be the optimal g value for n. The
sub-optimality of a goal node n can be measured using
g(n)/g∗(n). If an A* search exits during node generation
only when g(n)/g∗(n) ≤ b then the solution is clearly
within b of optimal. Given our assumptions and properties
of A*, we have

f(fmin) ≤ f(n)

f(fmin) ≤ g∗(n) + h(n) by admissibility

f(fmin)− h(n) ≤ g∗(n)

Hence f(fmin) − h(n) is a lower bound on g∗(n) and
g(n)/f(fmin)−h(n) is an upper bound on the solution sub-
optimality of a A* search that returns a solution as soon as
it is generated. 2

Short Circuit

Short Circuit is a simple modification of the Switchback al-
gorithm. The difference between the two algorithms is in
deciding when to return from abstract searches. Switchback
does not return until the query node has been expanded,
while Short Circuit returns as soon as the query node is
known to have its optimal g value. This is done by checking
to see if the query node has been found during node genera-
tion rather than node expansion. Theorem 1 gives a method
for bounding the sub-optimality of a solution returned dur-
ing node generation of an A* search. Short Circuit uses a
special case of Theorem 1 where the bound is 1. Assume
that Q is the query node and fmin is the node with mini-
mum f on open. Then, when g(Q)/(f(fmin) − h(Q)) ≤
1 ≡ f(fmin) = f(Q), Q has its optimal g value. When this
holds, search is stopped and g(Q) is returned as the heuristic
value.

This technique can also be used to add additional caching
to Switchback. In a normal Switchback search, the closed
list is checked for the query node before search is restarted.
In Short Circuit the open list is checked as well. If the query
node is found in open then the same optimality checks per-
formed above can be used to prove that it has an optimal g
and thus prevent additional search. Otherwise, search will
be restarted as usual. Since Short Circuit returns only opti-
mal values, the admissibility and consistency guaranteed by
Switchback are maintained.

Figure 3 shows the pseudo-code for Short Circuit. The
code is nearly identical to the original Switchback code with
the exception of lines 14–16.1 Adding Short Circuit to an
implementation of Switchback is fairly straightforward.

1Line 12 fixes an error in the published Switchback pseudo-
code, which omitted the check against open.

SHORTCIRCUIT()
01. open← array of length heightφ of empty open lists
02. closed← array of length heightφ of empty closed lists
03. for i← 0 up to heightφ − 1 do
04. if i is even then
05. g(sstart)← 0;h(sstart )← 0
06. insert φ(i, sstart ) into openi
07. else g(sstart)← 0;h(sgoal )← 0
08. insert φ(i, sgoal ) into openi

09. result← RESUME(0, open, closed, sgoal )
10. if result 6= NULL then return EXTRACT-PATH(result)
11. return NULL

RESUME(i, open, closed, s)
12. if s is in closedi and not in openi then return s
13. while openi is not empty do
14. if s is in openi
15. fmin← node from openi with lowest f
16. if g(s)/(f(fmin)− h(s)) ≤ 1 then return s
17. n← remove node from openi with lowest f
18. if i is even then children← succs(n)
19. else children← preds(n)
20. for each c in children do
21. if c in closedi then
22. if g(c) < g(n) + cost(n, c) then continue
23. g(c)← g(n) + cost(n, c)
24. if c is not openi then insert c onto openi
25. continue
26. h(c)← HEURISTIC(i, open, closed, c)
27. g(c)← g(n) + cost(n, c)
28. insert c into openi and closedi
29. if n = s then return n
30. return NULL

HEURISTIC(i, open, closed, s)
31. if i = heightφ − 1 then return ǫ(s)
32. n← lookupφ(i+ 1, s) in closedi+1

33. if n 6= NULL then return g(n)
34. r ← RESUME(i+ 1, open, closed, φ(i+ 1, s))
35. if r = NULL then return∞ else return g(r)

Figure 3: Pseudo-code for Short Circuit

Evaluation

In order to gain a better understanding of the performance
of Short Circuit, we modified the original Switchback code
from Larsen et al. (2010) and compared the two algorithms
on the four domains used in their work. Each instance was
tested on a dual quad-core Xeon running at 2.66 GHz with
48 GB of RAM. All instances were given unlimited running
time and a memory limit of 47 GB.

Figure 4 shows a scatter plot for each of the domains
tested. The x and y axes represent the Log2 of the nodes
expanded for each instance solved by Short Circuit and
Switchback respectively. Each point on the chart represents
a single problem instance. A solid black line is drawn on
each plot to indicate the line x = y. Points to the left of this
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Figure 4: Log2 of Node expansions on the 15 puzzle, glued 15 puzzle, macro 15 puzzle, and 14-pancake domains.

Nodes Expanded CPU Time
Domain Speedup Std Speedup Std

15 Puzzle 5.49 2.05 5.18 1.68
Macro 15 2.98 0.47 3.27 0.41
Glued 15 2.11 0.85 1.86 0.54
14-Pancakes 1.45 0.31 1.46 0.29

Table 1: Average node expansion and CPU time speedup
ratio for Short Circuit over Switchback.

line indicate that Short Circuit solved the instance with less
node expansions than Switchback, points to the right indi-
cate the opposite. Points that lie directly on this line indicate
that there is no difference between either algorithm on the
specific instance. CPU time plots (omitted for space) show
nearly identical results.

Table 1 displays the average node expansion and CPU
time speedup of the two algorithms on each domain. Col-
umn 2 shows speedup in terms of average nodes expanded ;
average nodes expanded by Switchback over average nodes
expanded by ShortCircuit for all instances in each domain.
Column 4 shows a similar result for CPU time. The standard
deviation for each distribution is shown in columns 3 and 5.

15 Puzzle The first domain is the standard 15-Puzzle. This
domain is not well suited for hierarchical search since Man-
hattan distance is reasonably informative and less costly to
compute. It is offered here because it has become a standard
benchmark in the literature. We tested on the standard 100
instances first presented by Korf(1985).

A 9-level instance-specific abstraction hierarchy that was
first presented by Holte, Grajkowskic, and Tanner (2005)
was used for all puzzle instances. To create the first level of
abstraction, the 7 tiles that are closest to their goal position
(according to Manhattan distance) are selected. The identity
of these tiles are then removed. The second level is created
by selecting 8 tiles and removing their identities. This con-
tinues until the complete hierarchy has been created. The
epsilon heuristic is used at the highest level. An identical
abstraction hierarchy was used in the macro 15-puzzle and
glued 15-puzzle domains.

The left most panel of Figure 4 shows the node expan-
sion results for this domain. The results are clear; Short

Circuit expands fewer nodes on every instance compared to
Switchback. The first row of Table 1 shows that, on average,
node expansion results improved by approximately a factor
of five.

Macro 15 Puzzle The macro 15-Puzzle is a variant of the
classic sliding tile puzzle. Multiple tiles in a row or column
can be moved in one step, resulting in a larger branching fac-
tor and shorter solution length. The same standard instances
from Korf (1985), used for the 15-Puzzle, were applied to
this domain. The median solution length is 32 with an av-
erage solution length of 32.06 and a standard deviation of
2.3.

The second panel of Figure 4 shows node expansion re-
sults. On all instance, Short Circuit offered superior per-
formance. According to row 2 of Table 1, Switchback ex-
panded nearly three times more nodes than Short Circuit on
average.

Glued 15 Puzzle The glued 15-Puzzle is another variation
of the standard puzzle that glues a tile to the board. This tile
cannot be moved during the entire search process. The 100
instances reported by Larsen et al. (2010) were used for the
experiment. The median solution length is 51. The average
solution length is 53.56 with a standard deviation of 9.61.
This domain is well suited for hierarchical search since the
standard Manhattan distance heuristic does not account for
the glued tile.

The third panel of Figure 4 shows the results. In this do-
main, Short Circuit did not offer substantial speedup on ev-
ery instance. Short Circuit increased performance the most
on instances that required the fewest number of node ex-
pansions. As problem difficulty increased, both algorithms
performed approximately the same.

14-Pancake Puzzle The last domain in the evaluation is
the N-Pancake puzzle. In this domain, N pancakes of dif-
ferent size stack on top of one another. The goal is to ar-
range the pancakes according to their size, largest pancake
on the bottom of the stack, smallest on the top. A legal move
consists of picking a position in the stack and then flipping
all pancakes above it. We used the 100 instances reported
in Larsen et al. (2010) where N=14 for all instances. The
median solution length is 13 and the average solution length
is 12.91 with a standard deviation of 1.1. Hierarchical search



is no longer an attractive approach for this domain since the
gap heuristic presented by Helmert (2010) is an informative
and less computationally expensive alternative.

In this domain, Short Circuit offered the smallest perfor-
mance increase. The fourth row of Table 1 shows an aver-
age speedup of 1.45 over all instances. The far right panel
of Figure 4 shows node expansion results. While substantial
reductions are not reported, Short Circuit always expanded
fewer nodes than Switchback.

Suboptimal Search

When resources are limited, or time is critical, optimal so-
lutions may be traded for suboptimal ones in order to solve
larger problems. Two well-known approaches to finding so-
lutions sub-optimally include weighted search (Pohl 1973)
and greedy search (Doran and Michie 1966). In weighted
search, the node evaluation function is made greedier by ap-
plying a weight w ≥ 1 to the heuristic value. If the un-
weighted heuristic is admissible, then weighted search will
return a solution guaranteed to cost no more than a factor of
w greater than optimal. When we use Short Circuit to com-
pute heuristic values for a weighted search at the base level,
we call the resulting algorithm Short Circuit Weighted A*.
In greedy search, we ignore the g value associated with each
node and always expand the node with the smallest heuristic
value. Solutions returned by greedy search are not guaran-
teed to have any bound on solution cost. When using Short
Circuit to generate heuristic values that drive a greedy search
at the base level, we call the resulting algorithm Short Cir-
cuit Greedy.

Tables 2 and 3 compare optimal Short Circuit to the sub-
optimal variants. (The first row of each table pertains to the
Switch algorithm, which we present below.) The column en-
titled “Solved” displays how many of the 100 instances each
algorithm was able to solve with the 47GB memory limit.
The Sub-Optimality column shows the average ratio of solu-
tion length returned by a given algorithm over optimal solu-
tion length. The last two major columns display statistics for
node expansion and CPU time. Mean in each one of these
columns represents the geometric mean of the distributions.
These results were derived from a completely new C++ im-
plementation, disjoint from the one used above.2 Table 2
shows results on the same 15-Puzzle instances as used pre-
viously and Table 3 shows results on a more difficult variant
of the glued 15-Puzzle in which two tiles cannot move.

In the Glued Two domain, 100 problem instances were
generated by randomly selecting two adjacent tiles to be
glued, then performing a random walk back of one million
steps from the goal. The median solution length is 47 with
an average solution length of 52.76 and a standard devia-
tion of 21.83. This domain is more suitable for hierarchical
search than the standard 15-Puzzle since the Manhattan dis-
tance heuristic does not take into account the fact that 2 of
the tile pieces are not able to move.

The results are surprising: suboptimal search using
heuristics from hierarchical search is even slower than op-

2This is the reason for the absence of the Macro puzzle, glued
15 puzzle, and 14-Pancakes domains in these results.

timal search. A more detailed look at the results (omitted
for space) shows that the number of nodes expanded at the
base level does decrease, as one would expect, but that this
decrease is swamped by an increase in the number of nodes
expanded at higher levels of the search. Apparently sub-
optimal search worsens the cache behavior that hierarchical
search relies on for efficiency. A new approach using hierar-
chical search to generate suboptimal solutions is needed.

A Closer Look at Switchback

To motivate a new approach to suboptimal hierarchical
search, we first examine the behavior of Switchback in more
detail. Larsen et al. (2010) suggest that Switchback is effec-
tive because it expands each node at most once. However,
Switchback’s effectiveness also hinges on the assumption
that subsequent nodes in the search are likely to already be
present in the large caches built up during previous searches.
This is a reasonable assumption for nodes that lie roughly
between the start and goal, as these are exactly the nodes
that needed to be expanded to compute previous heuristic
values. And indeed, Larsen et al. (2010) present high cache
hit rates for Switchback. However, note that optimal heuris-
tic search must also expand many nodes that are not directly
between the start and goal, in fact, it must expand any node
n for which f(n) ≤ f∗(opt). This means that Switchback
must determine heuristic values for nodes that lie signifi-
cantly to the ‘opposite’ side of the start or goal. Note that
these additional searches are still guided by a heuristic fo-
cused on the original goal, not one focused on the current
query nodes. How can Switchback be efficient in the face of
these additional expansions? The following theorem shows
that, in fact, any new query node must be close to the exist-
ing cache, so the amount of additional search is limited.

Theorem 2 Assume an abstraction φ that preserves struc-
ture, that is, if r is a child of q, then either φ(r) = φ(q) or
φ(r) is a child of φ(q). Assume also that the search space
is bidirectional (r is a child of q implies q is child of r) and
that all actions cost 1. Let node q at level i of Switchback
be a node for which we have already computed a heuristic
value. Then, for a child r of q, f(φ(r)) ≤ f(φ(q)) + 2.

Proof: From our assumptions and properties of the ab-
straction we know that if φ(r) is not in the cache, then
φ(r) 6= φ(q) and φ(r) is a child of φ(q). This means that
g(φ(r)) ≤ g(φ(q)) + 1. From Theorem 1 of Larsen et
al. (2010) we know that h is admissible and consistent. From
consistency, we have

h(φ(r)) ≤ h(φ(q)) + c(φ(r), φ(q))

h(φ(r)) ≤ h(φ(q)) + 1

Then, f(φ(r)) = g(φ(r))+h(φ(r)) ≤ g(φ(q))+h(φ(q))+
2 = f(φ(q)) + 2 as desired. 2

Switch

Using the observation above, we have created Switch, a new
unbounded suboptimal search algorithm that places sub-
optimality in the hierarchy used to generate heuristics for the
search. The algorithm reverses the direction of a Switchback



Nodes Expanded (100K) CPU Time (s)
Algorithm Weight Solved Sub-optimality Mean Median Mean Median

Switch - 100 1.31 0.78 0.84 0.27 0.30
Short Circuit - 99 1 34 34 28 28
Short Circuit WA* 1.1 99 1.01 53 58 44 49
” ” 1.2 99 1.04 105 121 92 106
” ” 2 52 1.20 200 238 182 217
” ” 5 52 1.37 159 215 143 199
” ” 10 68 1.50 192 243 173 219
Short Circuit Greedy - 58 8 321 430 276 375

Table 2: Switch, Short Circuit Greedy, and Short Circuit WA* on the 15 Puzzle.

Nodes Expanded (100K) CPU Time (s)
Algorithm Weight Solved Sub-optimality Mean Median Mean Median

Switch - 100 1.13 0.29 0.20 0.10 0.06
Short Circuit - 100 1 1.39 0.91 0.89 0.55
Short Circuit WA* 1.1 100 1.01 1.69 1.28 1.10 0.81
” ” 1.2 100 1.03 2.39 1.89 1.59 1.24
” ” 2 100 1.24 6.34 6.77 4.46 5.00
” ” 5 100 1.44 6.03 8.06 4.22 5.75
” ” 10 100 1.53 5.51 6.34 3.84 4.52
Short Circuit Greedy - 100 5.17 8.25 8.69 5.63 6.00

Table 3: Switch, Short Circuit Greedy, and Short Circuit WA* on the glued two 15 Puzzle.
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Figure 5: Switch on a 3-level abstraction hierarchy.

search after one complete search from start to goal (or goal
to start depending on the direction of search) at each level.
Once the first search at each level is complete, all nodes re-
maining in the open and closed list are moved to a cache
for that level, even though their g values are not necessarily
optimal.

Figure 5 illustrates the search procedure on a three level
hierarchy. Switch starts at the highest level of the abstrac-
tion hierarchy with an A* search from S′′ = φ2(S) to
G′′ = φ2(G). This search is driven by the ǫ heuristic. Once
the goal at this level is reached, all nodes on the open and
closed lists are placed into the cache. This is indicated by

the oval encapsulating S′′ and G′′. The search then pro-
gresses down the hierarchy to abstraction level one. Ab-
straction level one starts an A* search in the opposite direc-
tion from G′ to S′ using heuristics from abstraction level
two. Once S′ is expanded search moves to the base. The
base in-turn will start a search from S to G.

At some point during the base level search a heuristic for
node R will be required. Node R will be abstracted to R′ =
φ1(R) which may not exist in the cache of abstraction level
one. If it doesn’t, we take comfort from knowing that it is
probably not far away. A uniform cost search will be started
from R′ back to the cache in abstraction level one. Once the
search intercepts the cache, the cost from R′ to G′ will be
calculated and returned as a heuristic value for R. A uniform
cost search back to the cache will be performed for any node
that is not found in the cache for the remainder of the base
level search. It should be noted that this search checks for
cache intersections during time of generation and not time
of expansion.

In Switchback and Short Circuit, every level of the ab-
straction hierarchy is used for the duration of the search.
This is not the case for Switch. Since subsequent searches
are uninformed they do not use heuristics from the level
above. Once the initial search is completed at a given level,
the levels above it will never be used again. This allows
memory resources to be reclaimed as the initial search pro-
gresses down the hierarchy.

In an attempt to reduce the total number of nodes ex-
pansions, Switch adopts two caching techniques taken from
HA*. First, all nodes in a secondary search that lie along
the path from the query node R′ to the cache are moved into



the cache. This is similar to the optimal path caching that is
used in HA* but in this case the path is sub-optimal.

The second caching technique used is a variant of P − g
caching where nodes generated during the secondary search
that are not along the suboptimal path (indicated by the cir-
cle surrounding R′) are also placed into the cache. These
nodes however are cached with the much larger value of
P + g, where P is the cost of the suboptimal path and g
is the nodes g value in the secondary search. If at any point
during search a heuristic for one of these nodes is requested
from a lower level search, the value P + g will be returned.
Since secondary searches are uninformed, these values are
only used to guide the lower levels, and for cache intersec-
tions. They are not used to guide the search at a given ab-
straction level. This is an attempt to force the lower level
search to stay within the bounds of the abstract solution. In
other words, we are trying to build a wall around the initial
search.

Evaluation

The first two lines in Tables 2 and 3 show, the suboptimal
Switch algorithm find solutions much faster than the opti-
mal Short Circuit algorithm, while suffering only a modest
increase in solution cost. In the Plain 15-Puzzle, the solu-
tions returned by Switch were on average within 33% of
optimal. Short Circuit expanded 30 times more nodes than
Switch. In the glued two 15-Puzzle domain, Switch was able
to solve all 100 instances with fewer resources than the other
algorithms. Switch was nearly five times faster than Short
Circuit in terms of node expansion and four times faster in
terms of CPU time.

Discussion

Our evaluation revealed that a simple modification to the
state-of-the-art optimal hierarchical heuristic search algo-
rithm can result in a significant speedup on many domains.
Short Circuit offered equivalent or enhanced performance on
every instance of every domain presented. In some domains,
speedups of more than a factor of five are reported.

Short Circuit gains its speedup because of how Switch-
back behaves when it reaches the goal at a given abstraction
level. It has the potential to continuously expand f layers in
the abstraction hierarchy until the node in question is found.
Short Circuit does not completely solve this problem but it
does reduce its effect on search performance. Exiting during
node generation and using part of the open list as a cache
has the effect of tie breaking in favor of the query node.
This can prevent a complete f layer expansion. In domains
where Switchback does not need to restart abstraction level
searches often, the speedup of this technique will be lim-
ited. It should be noted however that Short Circuit requires
almost no additional overhead; hence performance on such
domains would likely be similar to the original algorithm.

We have also shown that placing sub-optimality in the
heuristic evaluation function of a hierarchical search leads
to better solutions faster than applying a standard subopti-
mal algorithm at the base level. Changing the direction of
the search takes advantage of the fact that nodes not found

SWITCH()
01. closed← array of length heightφ of empty closed lists
02. for i← 0 up to heightφ − 1 do
03. result← FIRSTSEARCH(0, closed, sstart , sgoal )
04. if result 6= NULL then return EXTRACT-PATH(result)
05. return NULL

FIRSTSEARCH(i, closed, s, g)
06. if i 6= heightφ− 1
07. return FIRSTSEARCH( i+ 1, closed, φ(i+ 1, g), φ(i+ 1, s))
08. open← empty open list
09. insert s open
10. while open is not empty do
11. n← remove node from open with lowest f
12. if i is even then children← succs(n)
13. else children← preds(n)
14. for each c in children do
15. if c in closedi then
16. if g(c) < g(n) + cost(n, c) then continue
17. g(c)← g(n) + cost(n, c)
18. if c is not open then insert c onto open
19. continue
20. h(c)← HEURISTIC(i, closed, c)
21. g(c)← g(n) + cost(n, c)
22. insert c into open and closedi
23. if n = g then
24. free closedi+1 return n
25. return NULL

SEARCHBACK(i, cache, s)
26. if s is in cachei then return s
27. open← empty open list; closed← empty closed list
28. q ← φ(i, s)
29. insert q into open
30. while open is not empty do
31. n← remove node from open with lowest
32. if i is even then children← succs(n)
33. else children← preds(n)
34. for each c in children do
35. if c in closed then continue
36. g(c)← g(n) + cost(n, c); h(c)← 0
37. if c in cachei then
38. d← cachei(c)
39. P ← g(c) + g(d)
40. for each a in path from q to c
41. g(a)← g(c)− g(a) + g(d)
42. insert a into cachei
43. for each b in open and closed
44. g(b)← P + g(b)
45. insert b into cachei
46. g(q)← P ; return q
47. insert c into open
48. insert n into closed
49. return NULL

Figure 6: Pseudo-code for Switch



HEURISTIC(i, closed, s)
50. if i = heightφ − 1 then return ǫ(s)
51. n← lookupφ(i+ 1, s) in closedi+1

52. if n 6= NULL then return g(n)
53. r ← SEARCHBACK(i+ 1, closed, s)
54. if r = NULL then return∞ else return g(r)

in the Switchback cache are likely only a few steps away. In
nonuniform cost domains this may not be the case and per-
formance may degrade. Also, Switch attempts to constrain
the base level search to follow a solution found by the ab-
straction. It may be the case that no such solution exists in
the original problem. This would force the base level search
to leave the constraints of the abstract solution and could
negatively effect search performance. Switch also has an-
other limitation in that it is unbounded and does not offer
the ability to control the tradeoff between solution quality
and CPU time.

Switch uses P + g caching to return large heuristic values
for states that are outside of the initial Switchback search.
Holte et al. (1994) present a method known as Refinement
that is similar. In Refinement, all searches in the abstrac-
tion hierarchy are completed before search at the base level
begins. Then when search at the base level proceeds, only
states that map to states on the solution path of the abstrac-
tion are considered. All other states are given a heuristic
value of infinity. Refinement is complete as long as a path
can be found in the original problem space that follows the
solution path found in the abstraction. To guarantee that this
is the case, Refinement uses the “star” method of abstraction
(Mkadmi 1993). This method creates the abstraction by enu-
merating the original problem space. Switch is essentially a
softened version of refinement that maintains completeness
while using modern instance-specific homomorphic abstrac-
tion techniques that do not require enumeration of the com-
plete problem space.

P + g caching is a first attempt at creating a wall of ab-
straction around an initial Switchback search. It is essen-
tially an upper bound on the true cost of the state in ques-
tion. An alternative approach would be to execute a Dijkstra
search as soon as the cache was intersected. This search
could then update all node values in the subsequent search
with their actual distance from the suboptimal path. This
approach could potentially increase search performance by
returning more accurate heuristic values to the level below.

Switch also has similarities to the work of Zhou and
Hansen (2004), who use a suboptimal search to help con-
struct an instance-specific pattern database. Their scheme is
targeted at optimal search, however.

Conclusion

We presented a simple modification to the state-of-the-art
optimal hierarchical heuristic search algorithm. This mod-
ification is simple to implement and resulted in a signifi-
cant speedup across all tested domains, and in some cases
expanded less than one fifth of the nodes. We also pre-
sented and evaluated a new suboptimal hierarchical search

algorithm that places sub-optimality in the hierarchy rather
than at the base of the search. Our results have shown that
adaptations of existing suboptimal search techniques may
not take advantage of the fact that a hierarchy of search is
being used to generate heuristic values and can actually use
more resources than their optimal counterparts to solve the
same problem. This work opens up a new area of investi-
gation in hierarchical search for the common case in which
one wishes to solve a problem so large that optimal search is
not feasible.
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