Suboptimal Heuristic Search

Wheeler Ruml

All actual work done by my fantastic students and collaborators. Grateful thanks to NSF, BSF, and DARPA.

Wheeler Ruml (UNH)

Why	Subo	ptimal?
vviiy	Jubo	puman

Search Rocks

- Behavior of A*
- Optimal Isn't
- Problem Settings
- Info Sources
- Classic AI Agent
- Alg as Agent
- Greedy Search
- Bounded-suboptimal
- Contract Search
- Real-time Search
- Conclusion

Search enables planning / action selection

- achieve goal robustly
- optimize resource use (time, energy, pollution, ...)
- autonomy or decision-support
- support retaskability, AGI

Search enables algorithms

- I dynamic programming
- discrete optimization
- 'intractable' → possible

Why	Subo	ptimal?
••••	Subo	pennar.

Search Rocks

- Behavior of A*
- Optimal Isn't
- Problem Settings
- Info Sources
- Classic AI Agent
- Alg as Agent
- Greedy Search
- Bounded-suboptimal
- Contract Search
- Real-time Search
- Conclusion

Search enables planning / action selection

- achieve goal robustly
- optimize resource use (time, energy, pollution, ...)
- autonomy or decision-support
- support retaskability, AGI

Search enables algorithms

- I dynamic programming
- discrete optimization
- 'intractable' \rightarrow possible

Point 1/3: Suboptimal search is the most important kind!

Dijkstra vs A* for Pathfinding

Why Suboptimal?

- Search Rocks
- Behavior of A*
- Optimal Isn't
- Problem Settings
- Info Sources
- Classic AI Agent
- Alg as Agent

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

uniform-cost search: best-first on g

Suboptimal Heuristic Search – 3 / 52

Dijkstra vs A* for Pathfinding

Why Suboptimal?

- Search Rocks
- Behavior of A*
- Optimal Isn't
- Problem Settings
- Info Sources
- Classic AI Agent
- Alg as Agent

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

A*: best-first on f = g + h

A* (Hart, Nilsson, and Raphael, 1968)

A* (Hart, Nilsson, and Raphael, 1968)

A* (Hart, Nilsson, and Raphael, 1968)

heuristic is more about procrastination or pruning than guidance

Wheeler Ruml (UNH)

- Search Rocks
- Behavior of A*
- Optimal Isn't
- Problem Settings
- Info Sources
- Classic AI Agent
- Alg as Agent

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

all nodes with $g(n) + h(n) < f^\ast$

Helmert and Röger, "How Good is Almost Perfect?", AAAI-08 Best Paper Award:

In many cases, such as the GRIPPER domain and a family of MICONIC tasks, there is no significant difference in node expansions between A* with an almost perfect heuristic and breadth-first search.

We suggest that, beyond a certain point, trying to improve a heuristic search algorithm by refining its heuristic estimates is basically fruitless.

- Search Rocks
- Behavior of A*
- Optimal Isn't
- Problem Settings
- Info Sources
- Classic AI Agent
- \blacksquare Alg as Agent

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

all nodes with $g(n) + h(n) < f^\ast$

Helmert and Röger, "How Good is Almost Perfect?", AAAI-08 Best Paper Award:

In many cases, such as the GRIPPER domain and a family of MICONIC tasks, there is no significant difference in node expansions between A* with an almost perfect heuristic and breadth-first search.

We suggest that, beyond a certain point, trying to improve a heuristic search algorithm by refining its heuristic estimates is basically fruitless.

detecting symmetries and partial orders only fixes modeling errors suboptimal search is the practical answer!

Suboptimal Search Problem Settings

Why Suboptimal?	optimal:	minimize solution cost	
■ Search Rocks			
Behavior of A*			
Optimal Isn't			
Problem Settings			
■ Info Sources			
■ Classic AI Agent			
Alg as Agent			
Greedy Search			
Bounded-suboptimal			
Contract Search			
Real-time Search			
Conclusion			

Why Suboptimal? ■ Search Rocks	optimal: minimize solution cost
 Behavior of A* Optimal Isn't Problem Settings 	greedy: minimize solving time
 Info Sources Classic AI Agent Alg as Agent Greedy Search 	bounded suboptimality: minimize time subject to relative cost bound (factor of optimal)
Bounded-suboptimal	bounded cost: minimize time subject to absolute cost bound
Real-time Search	contract: minimize cost subject to absolute time bound
	anytime: incrementally converge to optimal
	utility: maximize function of cost and time
	real-time: return next action within absolute time bound

Why Suboptimal? ■ Search Rocks	optimal: minimize solution cost
 Behavior of A* Optimal Isn't Problem Settings 	greedy: minimize solving time
 Info Sources Classic AI Agent Alg as Agent Greedy Search 	bounded suboptimality: minimize time subject to relative cost bound (factor of optimal)
Bounded-suboptimal	bounded cost: minimize time subject to absolute cost bound
Real-time Search	contract: minimize cost subject to absolute time bound
	anytime: incrementally converge to optimal
	utility: maximize function of cost and time
	real-time: return next action within absolute time bound
	My personal very biased view!

Taking Suboptimal Search Seriously: More Information

	informatio
Why Suboptimal?	mormatic
Search Rocks	
Behavior of A*	
Optimal Isn't	Po
Problem Settings	
Info Sources	
Classic AI Agent	
■ Alg as Agent	
Greedy Search	$\hat{\mathbf{x}}$
Bounded-suboptimal	h(n): unb
Contract Search	$\hat{1}$
Real-time Search	d(n): dist
Conclusion	
	experience
	nathe laal
	patris 1001

nformation that becomes available during problem-solving

Point 2/3: many sources of information beyond h!

 $\hat{n}(n)$: unbiased heuristics (possibly learned on-line from h)

(n): distance-to-go estimates (eg, unit-cost h)

experience so far: eg, how misleading are estimates? how many paths look promising?

beliefs: distributions over values, quantify uncertainty

not today: preferred actions / policies

Classic AI Agent

Point 3/3: Search Algorithm as an Agent

Greedy Search

- $\blacksquare Inadmissible h$
- Distance-to-go
- $\blacksquare \ \widehat{d} \ \mathsf{Performance}$
- Why?
- GBFS Behavior
- Others
- Bounded-suboptimal
- Contract Search
- Real-time Search
- Conclusion

Greedy Search

Greedy best-first search (GBFS): best-first search on hinadmissible \hat{h} can be more informed

Wheeler Ruml (UNH)

Suboptimal Heuristic Search – 11 / 52

Greedy Search

Inadmissible h

Distance-to-go

 $\blacksquare \ \widehat{d} \ \mathsf{Performance}$

■ Why?

GBFS Behavior

Others

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

minimize solving time = minimize number of expansions to goal for domains with costs, this is not h(n)

Distance-to-go

Why Suboptimal?

Greedy Search

Inadmissible hDistance-to-go

 $\blacksquare \widehat{d}$ Performance

■ Why?

■ GBFS Behavior

Others

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

minimize solving time = minimize number of expansions to goal for domains with costs, this is not h(n)

 $\widehat{d}(n)$ distance-to-go, remaining solution path length, arcs-to-go, hops-to-go

Performance of Distance-to-go

Wheeler Ruml (UNH)

Suboptimal Heuristic Search – 13 / 52

Why Is Speedy Faster Than Greedy?

Why Suboptimal?
Greedy Search
$\blacksquare Inadmissible h$
Distance-to-go
$\blacksquare \ \widehat{d} \ Performance$

□ Why?

GBFS Behavior

Others

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

why faster than h? (Wilt and Ruml, SoCS-14)

not: predicts search effort

Iocal minima are smaller

Domain	Cost	Max Local Expected		Exp
		Min Size	Min Size	
Tiles	unit	392	2	801
	inverse	51,532	87	93,010
	rev inv	2091	2	855
Hanoi	unit	7,587	1,892	36,023
	rev sq	35,874	4,416	559,250
	square	2,034	201	4,663
TopSpin	unit	296	250	933
	sum	922	3	749
	stripe	240	3	441

Greedy Search

- $\blacksquare \text{ Inadmissible } h$
- Distance-to-go
- $\blacksquare \ \widehat{d} \ \mathsf{Performance}$
- Why?
- GBFS Behavior
- Others
- Bounded-suboptimal

```
Contract Search
```

Real-time Search

Conclusion

intuition: for high cost ratios, many annoyingly cheap paths required to compensate for one unforeseen expensive action

Greedy Search

- $\blacksquare \text{ Inadmissible } h$
- Distance-to-go
- $\blacksquare \ \widehat{d} \ \mathsf{Performance}$
- Why?
- GBFS Behavior
- Others
- Bounded-suboptimal
- Contract Search
- Real-time Search

Conclusion

robust greedy search is a wide open area!

 ϵ -greedy, type-wA*, beam search

Greedy Search

Bounded-suboptimal

 \blacksquare Weighted A*

 $\blacksquare \mathsf{RR-}d$

Planning

Search

Contract Search

Real-time Search

Conclusion

Bounded-suboptimal Search

Bounded-suboptimal Search: Weighted A*

Why Suboptimal?	q
Greedy Search	
Bounded-suboptimal	SI
■ Weighted A*	
$\blacksquare RR\text{-}d$	
Planning	
Search	
Contract Search	
Real-time Search	
Conclusion	

uickly find a solution within factor b of optimal

imple hack (Pohl, AIJ 1970): $f'(n) = g(n) + b \cdot h(n)$

Bounded-suboptimal Search: Weighted A*

simple hack (Pohl, AIJ 1970): $f'(n) = g(n) + b \cdot h(n)$ $f_{min} =$ lowest f(n) on *open* the key lemma: f_{min} is a global lower bound any optimal path must pass through the frontier let p be an open node along an optimal path 3. $f_{min} < f(p) = q(p) + h(p) < f^*$ can expand any node with $f(n) \leq b \cdot f_{min}$

Wheeler Ruml (UNH)

start

p

Bounded-suboptimal Search: RR-d

Why Suboptimal?	quickl
Greedy Search Bounded-suboptimal Weighted A*	two ta
RR-d	
Planning Search	RR-d
Contract Search	mι
Real-time Search	open
Real-time Search	open: focal:
Real-time Search Conclusion	open: focal:
Real-time Search	open: focal: clean
Real-time Search Conclusion	open: focal: clean filter t

```
puickly find a solution within factor b of optimal
wo tasks: find sol \leq b \cdot f_{min}, raise f_{min}
RR-d (Fickert, Gu, and Ruml, AAAI-22):
multi-queue alternation (Röger and Helmert, ICAPS-10)
open: sorted on \hat{f}, explore
focal: sorted on \hat{d}, exploit
cleanup: sorted on f, raise bound
ilter for open and focal: f(n) \leq b \cdot f_{min}
```

obvious ablations/substitutions are worse

Why Suboptimal?					(0	PS	
Greedy Search		× Z	S	S	С Ц Х Ц		<i>b-</i> ۶
Bounded-suboptimal	Coverage	\geq	Ш	D	D ()	RI	RI
$\blacksquare RR-d$	Sum (1652)	995	967	1012	894	982	1025
PlanningSearch	Normalized $(\%)$	58.7	57.0	60.0	51.5	57.9	60.7
Contract Search	Expansions	569	558	472	734	665	383

Real-time Search

Conclusion

Search Domains

Search Domains

Search Domains

Wheeler Ruml (UNH)

Suboptimal Heuristic Search – 21 / 52

Greedy Search

Bounded-suboptimal

Contract Search

Ingredients

DAS

■ DAS Results

■ Summary So Far

Real-time Search

Conclusion

Contract Search

Wheeler Ruml (UNH)

Greedy Search

Bounded-suboptimal

Contract Search

Ingredients

DAS

■ DAS Results

■ Summary So Far

Real-time Search

Conclusion

find cheapest solution within deadline note: anytime algorithms (should) optimize for unknown deadline

Why Suboptimal? Greedy Search Bounded-suboptimal Contract Search Ingredients DAS DAS Results ■ Summary So Far Real-time Search Conclusion

find cheapest solution within deadline note: anytime algorithms (should) optimize for unknown deadline

- expansion delay: number of expansions when a node is generated and expanded
 - I $\widehat{d(n)} \cdot delay$ estimates expansions to goal
- time per expansion

Greedy Search

Bounded-suboptimal

Contract Search

- Ingredients
- DAS
- DAS Results
- Summary So Far

Real-time Search

Conclusion

find cheapest solution within deadline

Deadline Aware Search

- 1. while (time) < (deadline) and open is non-empty
- 2. $d_{max} \leftarrow calculate \ d \ bound$
- 3. $s \leftarrow \text{pop lowest } f \text{ state from } open$
- 4. if s is a goal and is better than *incumbent*
- 5. *incumbent* $\leftarrow s$
- 6. else if $\widehat{d}(s) < d_{max}$, expand s
- 7. else prune s
- 8. if open empties, recover some pruned states
- 9. return incumbent

ripe for improvement!
Results for Deadline-Aware Search

Results for Deadline-Aware Search

Summary So Far

Why Suboptimal? Greedy Search Bounded-suboptimal Contract Search Ingredients DAS DAS Results Summary So Far Real-time Search

Conclusion

Optimal search is impractical

Lots of room for creativity in suboptimal search

Going beyond lower bounds on cost-to-go:

Inadmissible cost-to-go \widehat{f} Inadmissible distance-to-go \widehat{d} : Speedy RR-d uses f, f, and dsee also XES (IJCAI-21) see also EES/Anytime EES see also Dynamic- \widehat{f} (JAIR, 2015) DAS also uses expansion delay

next: exploiting estimates of uncertainty

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

■ Real-time Search

■ The Issues

- Decision-making
- Lookahead
- Risky Lookahead
- Summary
- Whence Beliefs?
- Completeness
- Results
- Planning

Conclusion

Real-time Search

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Real-time Search

The Issues

Decision-making

Lookahead

Risky Lookahead

Summary

■ Whence Beliefs?

Completeness

Results

Planning

Conclusion

three phases:

1. Lookahead:

```
expand minimum f node
```

2. Decision-making:

backup minimum f from frontier ('minimin') select top-level action with minimum f

3. Learning:

update heuristic values

(avoid loops, escape local minima, ensure completeness)

repeat until goal achieved

Why Suboptimal?

three phases:

Greedy Search

Bounded-suboptimal

Contract Search

- **Real-time Search**
- Real-time Search
- The Issues
- Decision-making
- Lookahead
- Risky Lookahead
- Summary
- Whence Beliefs?
- Completeness
- Results
- Planning

Conclusion

Lookahead: 1.

> Which nodes to expand? minimum f optimal for A* (offline optimal) what about online?

2. Decision-making:

Which action to pick? lowest f optimal for A* (offline optimal) what about online?

```
Learning:
3.
```

How to backup from frontier? minimin optimal for A^* (offline optimal deterministic) Bellman optimal for VI (offline optimal stochastic) what about online?

- Summary
- Whence Beliefs?
- Completeness
- Results
- Planning
- Conclusion

Should an agent at A move to B_1 or B_2 ? (x_i are unknown but i.i.d. uniform 0-1)

lower bound on cost-to-go h = 0, so f = g

some x_i will be revealed at the next step

- Summary
- Whence Beliefs?
- Completeness
- Results
- Planning
- Conclusion

Should an agent at A move to B_1 or B_2 ? (x_i are unknown but i.i.d. uniform 0-1)

- Results
- Planning
- Conclusion

Should an agent at A move to B_1 or B_2 ? (x_i are unknown but i.i.d. uniform 0-1)

but decision theory says minimize expected value

 \hat{f} is expected total plan cost

four x_i will be revealed at the next step

Lookahead: An Example

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

- Real-time Search
- The Issues
- Decision-making
- Lookahead
- Risky Lookahead
- Summary
- Whence Beliefs?
- Completeness
- Results
- Planning

Conclusion

Should an agent expand nodes under α or β ?

Lookahead: An Example

Should an agent expand nodes under α or β ?

 \widehat{f} is not the answer: what to do? want to maximize value of information need to consider uncertainty of estimates

Why	Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

- Real-time Search
- Real-time Search
- The Issues
- Decision-making
- Lookahead
- Risky Lookahead
- Summary
- Whence Beliefs?
- Completeness
- Results
- Planning

Conclusion

Nancy (Mitchell et al, AAAI-19; Fickert et al, AAAI-20)

- want to maximize value of information
- expand nodes which minimize expected regret
- relies on belief over values
- choose expansions that decrease uncertainty about best

expand under α or β ?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Real-time Search

■ The Issues

- Decision-making
- Lookahead
- Risky Lookahead
- Summary
- Whence Beliefs?
- Completeness
- Results
- Planning

Conclusion

expand under α or β ?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Real-time Search

The Issues

- Decision-making
- Lookahead
- Risky Lookahead
- Summary

■ Whence Beliefs?

Completeness

Results

Planning

Conclusion

need 2 things:

- 1) current beliefs
- 2) estimate of how beliefs might change with search

expand under α or β ?

- Why Suboptimal?
- Greedy Search
- Bounded-suboptimal
- Contract Search
- Real-time Search
- Real-time Search
- The Issues
- Decision-making
- Lookahead
- Risky Lookahead
- Summary
- Whence Beliefs?
- Completeness
- Results
- Planning
- Conclusion

need 2 things:

- 1) current beliefs
- 2) estimate of how beliefs might change with search

expand under α or β ?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Real-time Search

- The Issues
- Decision-making
- Lookahead
- Risky Lookahead
- Summary
- Whence Beliefs?
- Completeness
- Results
- Planning

Conclusion

Risk: expected regret if a suboptimal action is selected α is TLA with lowest expected value, other is β $\mathbb{E}\left[\underbrace{f^*(\alpha) - f^*(\beta)}_{\text{our regret}} \mid \underbrace{f^*(\beta) < f^*(\alpha)}_{\text{when } \alpha \text{ not best}}\right]$

Suboptimal Heuristic Search – 36 / 52

expand under α or β ?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

- Real-time Search
- The Issues
- Decision-making
- Lookahead
- Risky Lookahead
- Summary
- Whence Beliefs?
- Completeness
- Results
- Planning

Conclusion

 $\begin{array}{ll} \textbf{Risk:} & \text{expected regret if a suboptimal action is selected} \\ \alpha \text{ is TLA with lowest expected value, other is } \beta \\ & \mathbb{E}\left[\underbrace{f^*(\alpha) - f^*(\beta)}_{\text{our regret}} \mid \underbrace{f^*(\beta) < f^*(\alpha)}_{\text{when } \alpha \text{ not best}}\right] \end{array}$

expand under α or β ?

- The Issues
- Decision-making
- Lookahead
- Risky Lookahead
- Summary
- Whence Beliefs?
- Completeness
- Results
- Planning
- Conclusion

expand under the TLA that minimizes risk! expand under β !

Nancy Backups

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

- Real-time Search
- The Issues
- Decision-making
- Lookahead
- Risky Lookahead
- Summary
- Whence Beliefs?
- Completeness
- Results
- Planning

Conclusion

Nancy:

parent \leftarrow belief with minimum \widehat{f} among successors conveys an entire belief distribution

Open Problem: How to Back-up Frontier Values

Why	Subo	ptimal?
vviiy	Jubo	punnar.

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

- Real-time Search
- The Issues
- Decision-making
- Lookahead
- Risky Lookahead
- Summary
- Whence Beliefs?
- Completeness
- Results
- Planning

Conclusion

 Nancy: parent gets expected-best child's belief assumes no more information will become available
 Cserna: parent gets expected min over all children's beliefs assumes we will know optimal choices

something intermediate would seem appropriate!

Nancy's Response to the Central Issues

Why Suboptimal?	1.	L
Greedy Search		
Bounded-suboptimal		
Contract Search	2.	E
Real-time Search		
Real-time Search		
■ The Issues		
Decision-making	3	
Lookahead	5.	L
Risky Lookahead		
Summary		
■ Whence Beliefs?		
Completeness		
Results		
Planning		

Conclusion

Lookahead:

Which nodes to expand? those that minimize risk

Decision-making:

Which action to pick? minimum \widehat{f} (rationality)

B. Learning:

How to backup from frontier? backup beliefs ('Nancy backups')

minimizing uncertainty drives the search

see also XES (bounded-cost search, IJCAI-21)

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

- Real-time Search
- The Issues
- Decision-making
- Lookahead
- Risky Lookahead
- Summary
- Whence Beliefs?
- Completeness
- Results
- Planning

Conclusion

Nancy: Heuristic values: scalar \rightarrow probability distribution (belief)

How to form beliefs?

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Real-time Search

The Issues

Decision-making

Lookahead

Risky Lookahead

■ Summary

■ Whence Beliefs?

Completeness

Results

Planning

Conclusion

Nancy: Heuristic values: scalar \rightarrow probability distribution (belief)

How to form beliefs?

assumptions:

```
Gaussian at \widehat{f} with width \propto \widehat{d}, truncated at f online learning with few parameters
```

training data:

histogram of previous h^* given h offline learning with many parameters

Example *h** **Distribution: Transport** vs **Blocks World**

What do the distributions look like?

Beliefs differ by domain. Often not Gaussian!

Why	Suboptimal?	

Greedy Search

- Bounded-suboptimal
- Contract Search
- Real-time Search
- Real-time Search
- The Issues
- Decision-making
- Lookahead
- Risky Lookahead
- Summary
- Whence Beliefs?
- Completeness
- Results
- Planning
- Conclusion

conditions on problem:

- 1. initial beliefs have finite expected value
- 2. positive action costs
- 3. finite state space
- 4. no dead-ends

conditions on algorithm:

- 1. goal-aware
- 2. learning creates local consistency (eg, DP)
- 3. selects actions via f

This proof applies to any LSS-LRTA*-style algorithm

Example Results: Racetrack

Even assumptions work well!

Wheeler Ruml (UNH)

Suboptimal Heuristic Search – 43 / 52

IPC Planning: Mean Solution Cost

Vhy Suboptimal?		LSS-	Nancy	Nancy
Greedy Search		LRTA*	(Gauss)	(data)
Bounded-suboptimal	Barman	559	702	415
Contract Search	Blocksworld	35	39	34
Real-time Search Real-time Search	Elevators-unit	34	27	26
The Issues	Parking	62	27	31
Decision-making Lookahead	Rovers	31	29	33
Risky Lookahead	Satellite	15	17	16
Whence Beliefs?	Termes	662	129	238
Completeness Results	Tidybot	30	30	29
Planning	Transport	499	567	422
Conclusion	Transport-unit	35	29	27
	VisitAll	52	50	52

Data works when assumptions don't!

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

Recap

Questions?

Conclusion

Recap: Suboptimal Heuristic Search

Vhy Suboptimal?	Sul
Greedy Search	
Bounded-suboptimal	
Contract Search	
Real-time Search	ma
Conclusion	
Recap	
Questions?	

Suboptimal search is the most important kind!

- practical instead of provably intractable
- I distinct settings: bounded-suboptimal, contract, utility...

nany sources of information beyond h!

- unbiased estimates (can be learned online)
- distance-to-go, not just cost
- beliefs can model uncertainty

search algorithm as agents

- entire AI agent toolbox applies what to represent, how to estimate how to exploit experience
- search highlights issues more clearly than RL

Suboptimal heuristic search needs YOU!
Questions?

Why Suboptimal?Greedy SearchBounded-suboptimalContract SearchReal-time SearchConclusionRecapQuestions?

Suboptimal Heuristic Search – 47 / 52

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

Back-Up Slides

■ Weighted A*

- $\blacksquare \text{ Learning } \widehat{f}$
- EES Bound
- Subopt. Search

Back-Up Slides

A Simple Bounded-suboptimal Search: Weighted A*

Why Suboptimal?	sim
Greedy Search	
Bounded-suboptimal	
Contract Search	
Real-time Search	
Conclusion	
Back-Up Slides	
Weighted A*	
\blacksquare Learning \hat{f}	
■ EES Bound	
 EES Bound Subopt. Search 	
 EES Bound Subopt. Search 	
 EES Bound Subopt. Search 	
 EES Bound Subopt. Search 	
 EES Bound Subopt. Search 	
 EES Bound Subopt. Search 	

simple hack:
$$f'(n) = g(n) + w \cdot h(n)$$

A Simple Bounded-suboptimal Search: Weighted A*

Why Suboptimal?
Greedy Search
Bounded-suboptimal
Contract Search
Real-time Search
Conclusion
Back-Up Slides
■ Weighted A*

 $\blacksquare \text{ Learning } \widehat{f}$

EES Bound

Subopt. Search

simple hack: $f'(n) = g(n) + w \cdot h(n)$

 $f_{min} =$ lowest f(n) on *open*

the key lemma: f_{min} is a global lower bound

1. any optimal path must pass through the frontier

2. let p be an open node along an optimal path

3.
$$f_{min} \le f(p) = g(p) + h(p) \le f^*$$

Why Suboptimal?
Greedy Search
Bounded-suboptimal
Contract Search
Real-time Search
Conclusion
Back-Up Slides
Weighted A*
\blacksquare Learning \widehat{f}
EES Pound

■ Subopt. Search

simple hack: $f'(n) = g(n) + w \cdot h(n)$

 $f_{min} =$ lowest f(n) on *open*

the key lemma: f_{min} is a global lower bound

any optimal path must pass through the frontier 1.

2. let p be an open node along an optimal path

3.
$$f_{min} \le f(p) = g(p) + h(p) \le f^*$$

wA*'s bounded suboptimality:

f'(s) < f'(p)

Why Suboptimal?
Greedy Search
Bounded-suboptimal
Contract Search
Real-time Search
Conclusion
Back-Up Slides
■ Weighted A*
• Learning \widehat{f}

EES Bound

Subopt. Search

simple hack: $f'(n) = g(n) + w \cdot h(n)$

 $f_{min} =$ lowest f(n) on *open*

the key lemma: f_{min} is a global lower bound

any optimal path must pass through the frontier
 let p be an open node along an optimal path

3.
$$f_{min} \le f(p) = g(p) + h(p) \le f^*$$

wA*'s bounded suboptimality:

$$f'(s) \le f'(p)$$

$$g(s) = g(p) + w \cdot h(p)$$

Wheeler Ruml (UNH)

Why Suboptimal?
Greedy Search
Bounded-suboptimal
Contract Search
Real-time Search
Conclusion
Back-Un Slides
Weighted A*
Learning \widehat{f}

■ EES Bound

Subopt. Search

simple hack: $f'(n) = g(n) + w \cdot h(n)$

 $f_{min} =$ lowest f(n) on *open*

the key lemma: f_{min} is a global lower bound

any optimal path must pass through the frontier
 let p be an open node along an optimal path

8.
$$f_{min} \le f(p) = g(p) + h(p) \le f^*$$

wA*'s bounded suboptimality:

$$f'(s) \le f'(p)$$

$$g(s) = = g(p) + w \cdot h(p)$$

$$\le w \cdot f(p) \le w \cdot f^*$$

Why Suboptimal?
Greedy Search
Bounded-suboptimal
Contract Search
Real-time Search
Conclusion
Back-Un Slides
Weighted A*
$\blacksquare \text{ Learning } \widehat{f}$

■ EES Bound

Subopt. Search

simple hack: $f'(n) = g(n) + w \cdot h(n)$

 $f_{min} =$ lowest f(n) on *open*

the key lemma: f_{min} is a global lower bound

any optimal path must pass through the frontier
 let p be an open node along an optimal path

8.
$$f_{min} \le f(p) = g(p) + h(p) \le f^*$$

wA*'s bounded suboptimality:

$$g(s) = f'(s) \le f'(p)$$

= $g(p) + w \cdot h(p)$
 $\le w \cdot f(p) \le w \cdot f^*$

note that any node with $f(n) \leq w \cdot f_{min}$ can be expanded!

f(p) should equal f(bc)

Wheeler Ruml (UNH)

f(p) should equal f(bc)

$$f^{*}(p) = f^{*}(bc)$$

$$g(p) + h^{*}(p) = g(bc) + h^{*}(bc)$$

$$h^{*}(p) = c(p, bc) + h^{*}(bc)$$

$$f^{*}(p) = f^{*}(bc)$$

$$g(p) + h^{*}(p) = g(bc) + h^{*}(bc)$$

$$h^{*}(p) = c(p, bc) + h^{*}(bc)$$

$$h(p) = h(bc) + c(p, bc) - \epsilon_h$$

$$\epsilon_h = h(bc) + c(p, bc) - h(p)$$

f(p) should equal f(bc)

f(p) should equal f(bc)

$$\begin{array}{rcl} f^{*}(p) &=& f^{*}(bc) \\ g(p) + h^{*}(p) &=& g(bc) + h^{*}(bc) \\ h^{*}(p) &=& c(p,bc) + h^{*}(bc) \end{array}$$

$$h(p) = h(bc) + c(p, bc) - \epsilon_h$$

$$\epsilon_h = h(bc) + c(p, bc) - h(p)$$

$$\widehat{h}(n) = h(n) + \overline{\epsilon_h} \cdot \widehat{d}(n)$$

Wheeler Ruml (UNH)

EES' Bounded Suboptimality

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

Back-Up Slides

Weighted A*
Learning \widehat{f}

EES Bound

■ Subopt. Search

$$f(n) \le w \cdot f_{min}$$
$$g(n) = \qquad \qquad \le w \cdot f^*$$

Why Suboptimal?	
Greedy Search	
Bounded-suboptimal	
Contract Search	
Real-time Search	
Conclusion	
Back-Up Slides	
Weighted A*	
\blacksquare Learning \widehat{f}	
■ EES Bound	
■ Subopt. Search	

it's time to take suboptimality seriously!

estimates, not lower bounds belief distributions to quantify uncertainty

acting under uncertainty to maximize utility

Why Suboptimal?	
Greedy Search	
Bounded-suboptimal	
Contract Search	
Real-time Search	
Conclusion	
Back-Up Slides	
■ Weighted A*	
$\blacksquare \text{ Learning } \widehat{f}$	
■ EES Bound	
Subopt. Search	

it's time to take suboptimality seriously!

estimates, not lower bounds belief distributions to quantify uncertainty

acting under uncertainty to maximize utility = all of Al