Fast and Loose in Bounded Suboptimal Heuristic Search

Jordan Thayer and Wheeler Ruml

{jttd7, ruml} at cs.unh.edu

Ephrat Bitton

ebitton at berkeley.edu
Finding optimal solutions is prohibitively expensive.
Finding optimal solutions is prohibitively expensive.
- It's nice to limit suboptimality.
■ Finding optimal solutions is prohibitively expensive.
■ It’s nice to limit suboptimality.
■ Weighted A* is a popular method for doing that.
Finding optimal solutions is prohibitively expensive.
Its nice to limit suboptimality.
Weighted A* is a popular method for doing that.
This talk: two algorithms which are often better.
Background

Weighted A*

Strict Approach: Clamped Adaptive
Correct for underestimating \(h(n) \)
Bound correction to ensure \(w \)-admissibility

Loose Approach: Optimistic Search
Greedily search for a solution
Enforce suboptimality bound afterwards
Weighted A^* (Pohl, 1970)

A^* is a best first search ordered on $f(n) = g(n) + h(n)$
A^* (Pohl, 1970)

A^* is a best first search ordered on $f(n) = g(n) + h(n)$

Weighted A^*: $f'(n) = g(n) + w \cdot h(n)$
Weighted A^* (Pohl, 1970)

A^* is a best first search ordered on $f(n) = g(n) + h(n)$

Weighted A^*: $f'(n) = g(n) + w \cdot h(n)$

What does w do?
- breaks ties on $f(n)$ in favor of high $g(n)$
- corrects for underestimating $h(n)$
- deepens search / emphasises greed
Weighted A* Respects a Bound

p is a node in open on an optimal path to opt

\[
f(n) = g(n) + h(n) \\
f'(n) = g(n) + w \cdot h(n)
\]

\[
g(sol) \\
f'(sol) \leq f'(p) \\
g(p) + w \cdot h(p) \leq w \cdot (g(p) + h(p)) \\
w \cdot f(p) \leq w \cdot f(opt) \\
w \cdot g(opt)
\]

Therefore, $g(sol) \leq w \cdot g(opt)$
Weighted A^* is a Popular Choice

- Weighted A^*
 - Pohl (1970)
- Dynamically Weighted A^*
 - Pohl (1973)
- A_ϵ
 - Ghallab & Allard (1983)
- A^*_ϵ
 - Pearl (1984)
- AlphA*
 - Reese & Frichs (unpublished)

Eight-way Grid Pathfinding (Unit cost)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Nodes generated (relative to A^*)</th>
<th>Sub-optimality Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>dWA^*</td>
<td>0.9</td>
<td>1.8</td>
</tr>
<tr>
<td>A^*_ϵ</td>
<td>0.6</td>
<td>1.5</td>
</tr>
<tr>
<td>AlphA*</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>wA^*</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>
Background
Weighted A*

Strict Approach: Clamped Adaptive
Correct for underestimating $h(n)$
Bound correction to ensure w-admissibility

Loose Approach: Optimistic Search
Greedily search for a solution
Enforce suboptimality bound afterwards
If \(h \) were perfect, solutions would be found in linear time.

How do we improve \(h(n) \)?

By correcting for the error in \(h(n) \)

We’ll ensure \(w \)-admissibility shortly.
Correcting $h(n)$ with one step error

Consider the single expansion:

![Tree diagram](image)

Recall that $f(n) = g(n) + h(n)$

- $f(n)$ should remain constant across parent and child.
 - if $f(n) = g(n) + h^*(n)$ this would be true.
 - $g(n)$ is exact.
 - All the error in $f(n)$ comes from $h(n)$.

- $err_h = f(bc) - f(p)$

Track a running average of err_h.

\[
\hat{f}(n) = g(n) + \hat{h}(n) \\
\hat{h}(n) = h(n) \cdot (1 + err_h)
\]
Correcting $h(n)$ with one step error

Consider the single expansion:

Recall that $f(n) = g(n) + h(n)$

- $f(n)$ should remain constant across parent and child.
 - if $f(n) = g(n) + h^*(n)$ this would be true.
 - $g(n)$ is exact.
 - All the error in $f(n)$ comes from $h(n)$.

- $err_h = f(bc) - f(p)$

Track a running average of err_h.

- $\hat{f}(n) = g(n) + \hat{h}(n)$
- $\hat{h}(n) = h(n) \cdot (1 + err_h)$

$\hat{h}(n)$ is inadmissible.

Clamping enforces w-admissibility.
Admissibility of Clamping: Weighted A*

\[f(n) = g(n) + h(n) \]
\[f'(n) = g(n) + w \cdot h(n) \]

\[g(sol) \]
\[f'(sol) \leq f'(p) \]
\[g(p) + w \cdot h(p) \leq w \cdot (g(p) + h(p)) \]
\[w \cdot f(p) \leq w \cdot f(opt) \]
\[w \cdot g(opt) \]

Therefore, \(g(sol) \leq w \cdot g(opt) \)
Admissibility of Clamping: Clamped Adaptive

p is a node in open on an optimal path to opt

$$f(n) = g(n) + h(n)$$

$$\tilde{f}(n) = \min(\tilde{f}(n), w \cdot f(n))$$

$$g(sol) = \frac{\tilde{f}(sol)}{\tilde{f}(sol)} \leq \frac{\tilde{f}(p)}{\tilde{f}(p)} \leq w \cdot f(p)$$

$$w \cdot f(p) \leq w \cdot f(opt)$$

And $g(s) \leq w \cdot g(opt)$ is still true.
Empirical Evaluation

- Grid world path finding
 - Four-way and Eight-way Movement
 - Unit and Life Cost Models
 - 25%, 30%, 35%, 40%, 45% obstacles

- Temporal Planning
 - Blocksworld, Logistics, Rover, Satellite, Zenotravel

See the paper for details.
Performance of Clamped Adaptive

- Introduction
- Weighted A^*
- Clamped Adaptive
 - Improving wA^*
 - Correcting $h(n)$
 - w-Admissibility
- Performance
- Optimistic Search
- Conclusion

Four-way Grid Pathfinding (Unit cost)

Nodes generated (relative to A^*)

Sub-optimality Bound

- wA^*
- Clamped Adaptive
Performance of Clamped Adaptive

Introduction

Weighted A^*

Clamped Adaptive
- Improving wA^*
- Correcting $h(n)$
- w-Admissibility
- Performance

Optimistic Search

Conclusion

The diagram shows the comparison between wA^* and Clamped Adaptive in terms of nodes generated relative to A^* across different sub-optimality bounds. The y-axis represents the ratio of nodes generated, and the x-axis represents the sub-optimality bound.

zenotravel (problem 2)
Performance of Clamped Adaptive

Introduction

Weighted \(A^* \)

Clamped Adaptive
- Improving \(wA^* \)
- Correcting \(h(n) \)
- \(w \)-Admissibility
- Performance

Optimistic Search

Conclusion

- Nodes generated (relative to \(A^* \))
- Sub-optimality Bound
- satellite (problem 2)
- \(wA^* \) - Black
- Clamped Adaptive - Red
Performance of Clamped Adaptive

Introduction

Weighted \(A^* \)

Clamped Adaptive
- Improving \(wA^* \)
- Correcting \(h(n) \)
- \(w \)-Admissibility
- Performance

Optimistic Search

Conclusion

logistics (problem 3)

Nodes generated (relative to \(A^* \))

- Clamped Adaptive
- \(wA^* \)

Sub-optimality Bound

- 1
- 2
- 3
Clamped Adaptive: Summary

Clamped Adaptive:

- On-line heuristic correction seems promising
 Performance varies
 Does well for small bounds
 Fails to become greedy
- No parameter tuning needed
- Clamping for admissibility of inadmissible heuristics
Background
Weighted A*

Strict Approach: Clamped Adaptive
Correct for underestimating $h(n)$
Bound correction to ensure w-admissibility

Loose Approach: Optimistic Search
Greedily search for a solution
Enforce suboptimality bound afterwards
Weighted A^* Respects a Bound

\[
\begin{align*}
 f(n) &= g(n) + h(n) \\
 f'(n) &= g(n) + w \cdot h(n)
\end{align*}
\]

\[
\begin{align*}
 g(sol) &\leq f'(sol) \\
 &\leq f'(p) \\
 &\leq g(p) + w \cdot h(p) \\
 &\leq w \cdot (g(p) + h(p)) \\
 w \cdot f(p) &\leq w \cdot f(opt) \\
 &\leq w \cdot g(opt)
\end{align*}
\]

Therefore, $g(sol) \leq w \cdot g(opt)$
Weighted A^* Respects the Bound and Then Some

\[f(n) = g(n) + h(n) \]
\[f'(n) = g(n) + w \cdot h(n) \]

\[
\begin{align*}
 g(sol) & \leq f'(sol) \\
 f'(sol) & \leq f'(p) \\
 g(p) + w \cdot h(p) & \leq w \cdot (g(p) + h(p)) \\
 w \cdot f(p) & \leq w \cdot f(opt) \\
 w \cdot g(opt) & \leq w \cdot g(opt) \\
 g(p) + w \cdot h(p) & \leq w \cdot g(p) + w \cdot h(p)
\end{align*}
\]
Solution Quality v. Bound

- wA^* returns solutions better than the bound.
- Be optimistic
- Run with higher weight

How do we guarantee a suboptimality bound?
\[f(p) \leq f(\text{opt}) \]
\[f(f_{\text{min}}) \leq f(p) \]
\[f_{\text{min}} \text{ provides a lower bound on solution cost.} \]

Determine \(f_{\text{min}} \) by priority queue sorted on \(f \)

Optimistic Search: Run a greedy search

Expand \(f_{\text{min}} \) until \(w \cdot f_{\text{min}} \geq f(\text{sol}) \)

- \(p \) is the deepest node on an optimal path to \(\text{opt} \)
This Paper:

- Grid world path finding
 Four-way and Eight-way Movement
 Unit and Life Cost Models
 25
- Temporal Planning
 Blocksworld, Logistics, Rover, Satellite, Zenotravel

To Appear in ICAPS:

- Traveling Salesman
 Unit Square
 Pearl and Kim Hard
- Sliding Tile Puzzles
 Korf’s 100 15-puzzle instances

See papers for details.
Performance of Optimistic Search

Introduction

Weighted A^*

Clamped Adaptive

Optimistic Search
- Loose Bounds
- Solution Quality
- w-Admissibility
- Performance

Conclusion

Pearl and Kim Hard

Node Generations Relative to A^*

wA^*

Optimistic

Sub-optimality bound
Performance of Optimistic Search

Introduction

Weighted A^*

Clamped Adaptive

Optimistic Search

- Loose Bounds
- Solution Quality
- w-Admissibility
- Performance

Conclusion

Korf’s 15 Puzzles

Node Generations Relative to IDA*

Sub-optimality bound

wA^*

Optimistic
Four-way Grid Pathfinding (Unit cost)

- Loose Bounds
- Solution Quality
- w-Admissibility
- Performance
Conclusion

Clamped Adaptive:
- On-line heuristic correction seems promising.
- No parameter tuning needed.

Optimistic Search:
- Performance is predictable.
- Current results are good, could be improved.

We have two algorithms that can outperform weighted A^*

We can use arbitrary heuristics for w-admissible search.
Tell your students to apply to grad school in CS at UNH!

- friendly faculty
- funding
- individual attention
- beautiful campus
- low cost of living
- easy access to Boston, White Mountains
- strong in AI, infoviz, networking, systems, bioinformatics
Bounded Anytime Weighted A*

Korf’s 15 Puzzles

Graph showing node generations relative to IDA* for different algorithms.

- BAwA*
- wA*
- Optimistic

Sub-optimality bound

Node Generations Relative to IDA*

Introduction

Weighted A*

Clamped Adaptive

Optimistic Search

Conclusion

Bounded Anytime Weighted A*
Bounded Anytime Weighted A^*

Pearl and Kim Hard

Node Generations Relative to A^*

Sub-optimality bound

BAwA* — green
wA* — black
Optimistic — blue
Duplicate Dropping can be Important

Introduction
Weighted A^*
Clamped Adaptive
Optimistic Search
Conclusion
Duplicate Dropping

Four-way Grid Pathfinding (Unit cost)

- wA^*
- wA^* dd

Nodes generated (relative to A^*)
Sub-optimality Bound
Sometimes it isn’t

Korf’s 15 puzzles

Node Generations Relative to IDA*

Sub-optimality bound

WA* dd

WA*

0.09

0.06

0.03

0.0