
Replanning for Situated Robots

Michael Cashmore and Andrew Coles
King’s College London

Bence Cserna
University of New Hampshire

Erez Karpas
Technion — Israel Institute of Technology

Daniele Magazzeni
King’s College London

Wheeler Ruml
University of New Hampshire

Abstract

Planning enables intelligent agents, such as robots, to act so
as to achieve their long term goals. To make the planning pro-
cess tractable, a relatively low fidelity model of the world is
often used, which sometimes leads to the need to replan. The
typical view of replanning is that the robot is given the cur-
rent state, the goal, and possibly some data from the previous
planning process. However, for robots (or teams of robots)
that exist in continuous physical space, act concurrently, have
deadlines, or must otherwise consider durative actions, things
are not so simple. In this paper, we address the problem of
replanning for situated robots. Relying on previous work on
situated temporal planning, we frame the replanning problem
as a situated temporal planning problem, where currently ex-
ecuting actions are handled via Timed Initial Literals (TILs),
under the assumption that actions cannot be interrupted. We
then relax this assumption, and address situated replanning
with interruptible actions. We bridge the gap between the
low-level model of the robot and the high-level model used
for planning by the novel notion of a bail out action gen-
erator, which relies on the low-level model to generate high-
level actions that describe possible ways to interrupt currently
executing actions. Because actions can be interrupted at dif-
ferent times during their execution, we also propose a novel
algorithm to handle temporal planning with time-dependent
durations.

Introduction
The connection between planning and execution is a seem-
ingly simple one: a robot will typically first plan, that is,
come up with a course of action that achieves its goal,
and then execute that plan. However, planning is usually
done using a relatively low fidelity model, in order to make
the planning process tractable. This can lead to the not-
infrequent need to replan. Other possible causes for replan-
ning include newly sensed information, failure to execute
some action (while other actions might still continue exe-
cuting), or the goal changing.

The typical view of replanning is that the robot is given its
current state, its goal, and possibly some data from the pre-
vious planning process (e.g., the previous plan or the gener-
ated search nodes). If the robot actually existed in a world
that obeyed the assumptions of classical planning, then this

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

would indeed be correct. However, for robots (or teams of
robots) that exist in continuous physical space, act concur-
rently, have deadlines, or must otherwise consider durative
actions, things become more complex. Consider, for exam-
ple, a durative encoding of a MOVE(A,B) action, which ap-
pears in many planning domains. This action is meant to
model a robot moving from waypoint A to waypoint B. It
is usually modeled as deleting at(A) in the beginning, and
adding at(B) at the end. Now consider the state of the world,
and specifically the location of the robot, if replanning is
triggered while the MOVE action is executing. Since at(A)
was already deleted, but at(B) was not yet added, the robot
is currently nowhere. This discrepancy is caused by the fact
that the robot is actually located at some real set of coor-
dinates, but planning uses an abstraction of the real world
consisting of waypoints. This mismatch will cause a naive
replanning process to fail.

In this paper, we propose a general solution to this prob-
lem. Our overall approach is to frame the replanning prob-
lem as planning with a dynamic initial state. This dynamic
initial state is modeled by a temporal planning problem,
which captures the effects and conditions of currently ex-
ecuting actions using timed initial literals (TILs) (Cresswell
and Coddington 2003; Edelkamp and Hoffmann 2004).

Our first treatment of this problem assumes that actions
are non-interruptible and that, once an action has started, it
will either continue executing until it succeeds or it will fail
and trigger replanning. We show how previous work on sit-
uated temporal planning (Cashmore et al. 2018) can be used
to handle the dynamic initial state described above, and thus
is also useful for replanning while actions are currently exe-
cuting.

However, forcing an agent to complete an action it has
started can be highly suboptimal. For example, consider a
rover driving to waypoint A to sample a rock there. Suppose
halfway through the drive, the agent realizes that the drill is
stuck, making drilling impossible, and thus invalidating the
plan and triggering replanning. Forcing the rover to finish
the drive to A is pointless, as it no longer has any actions to
perform at A. Even worse, this wastes time and consumes
battery energy, which could have been used to achieve other
goals. Thus, we will also address the case where actions can
be interrupted.

As we previously implied, interrupting an action requires

a higher fidelity model of the world, which makes model-
ing difficult and planning intractable. Thus, we assume only
carefully limited use of such a model, in the form of a black-
box ‘bail out action’ generator that, based on a more de-
tailed model of the agent’s state, can propose various ways
to bail out of a currently executing action. For example, a
bail out action generator for move actions might generate
paths from the real position of the robot to several nearby
waypoints. Importantly, bailout actions are local, in that they
only describe ways to bail out of a currently executing ac-
tion. Thus, instead of planning with one high-fidelity model
of the world, which could be difficult to come up with, we
can plan with one low-fidelity model combined with several
models for bail out actions, which do not necessarily have
to be consistent with each other or account for all aspects of
the problem.

Recall that time still passes while we are replanning, and
the robot’s real position when replanning is triggered may be
different from its real position when the new plan will start
executing, and thus the duration of the bail out action will be
different depending on when it begins execution. However,
as we explain later, these time-dependent durations obey a
certain monotonicity property, namely that the ending time
of the bailout action is monotonic in its start time — that
is, the earlier the bailout action is triggered, the earlier it
completes. We present a novel algorithm for checking the
consistency of a Simple Temporal Network (STN) (Dechter,
Meiri, and Pearl 1991) with such monotonic time-dependent
durations, which we have integrated with the OPTIC planner
(Benton, Coles, and Coles 2012).

We evaluate our approach on a real robotic testbed — a
Turtlebot robot in an office delivery task, as well as in the
Robocup Logistics League (RCLL) simulation (Niemueller,
Lakemeyer, and Ferrein 2015). Our results show that our re-
planning approach outperforms a baseline which can only
plan from a static state, either when there are deadlines in
the problem, or when there are multiple agents which our
approach can better exploit.

Related Work
Action failures, goal changes, and other online execution is-
sues have long been facts of life in the planning commu-
nity. One way to cope is to produce plans in a representa-
tion with inherent flexibility, such as representing exact exe-
cution times as a temporal constraint network (Ghallab and
Laruelle 1994), or to return partial policies, such as contin-
gent plans (Pell et al. 1997; Myers 1999). When the only
uncertainty is about action durations, planning can be com-
bined with scheduling under uncertainty to come up with ro-
bust plans (Cimatti et al. 2018). However, trying to account
for uncertain outcomes often impedes scalability.

Another way to handle change is to replan. For example,
when plans for their printing system are invalidated by bro-
ken machine modules, Ruml et al. (2011) attempt to rescue
in-flight sheets by replanning the remainder of their trajec-
tories. This requires estimating the time required by replan-
ning, so that an appropriate state can be chosen at which the
new plan will replace a suffix of the original plan.

Planning online is also explored in Domain Predictive
Control (Löhr et al. 2013; 2014), which combines planning
with Model Predictive Control to generate control input se-
quences for hybrid dynamical systems. Perhaps the most
closely related work to ours is the IxTeTeXEC executive
(Lemai and Ingrand 2004), which interleaves planning and
execution, and takes into consideration the fact that execu-
tion will start only after planning finishes.

Fox et al. (2006) contrast replanning with plan repair, and
argue that the latter can promote plan stability, the similarity
of a new plan to the original. In applications involving multi-
agent coordination or multi-level planning, stability can pro-
vide benefits. Cushing and Kambhampati (2005) provide a
counter-argument, arguing that plan repair can be subsumed
by replanning where, among other changes, the objective of
the new planning problem might penalize deviating from the
commitments of the previous plan. This allows an agent to
properly balance the costs and benefits of using actions sim-
ilar to those in the original plan. All of this previous work
assumes that failures conveniently happen at action bound-
aries and that the world stops while the agent replans.

Cashmore et al. (2018) consider planning problems in
which actions depend on externally timed events, such as
taking a bus, and the time taken during planning can be long
enough to affect the choices of the planner. For example, if
planning is anticipated to take a long time, plans involving
taking the next bus may not be found soon enough to be ex-
ecutable. They develop a strategy in which externally timed
events are modeling using TILs and estimates of remaining
planning time are used to prune infeasible heuristic search
nodes in the planner.

Preliminaries
We consider propositional temporal planning problems with
Timed Initial Literals (TIL) (Cresswell and Coddington
2003; Edelkamp and Hoffmann 2004). Such a planning
problem Π is specified by a tuple Π = 〈F,A, I, T,G〉,
where:
• F is a set of Boolean propositions that describe the state

of the world.
• A is a set of durative actions. Each action a ∈ A is de-

scribed by:
– Minimum duration durmin(a) and maximum dura-

tion durmax(a), both in R0+ with durmin(a) ≤
durmax(a),

– Start condition cond`(a), invariant condition
cond↔(a), and end condition conda(a), all of
which are subsets of F , and

– Start effect eff `(a) and end effect eff a(a), both of
which specify which propositions in F become true
(add effects), and which become false (delete effects).

• I ⊆ F is the initial state, specifying exactly which propo-
sitions are true at time 0.

• T is a set of timed initial literals (TIL). Each TIL l =
〈time(l), lit(l)〉 ∈ T consists of a time time(l) and a
literal lit(l), which specifies which proposition in F be-
comes true (or false) at time time(l).

• G ⊆ F specifies the goal, that is, which propositions we
want to be true at the end of plan execution.
A solution to a temporal planning problem is a schedule

σ, which is a sequence of triples 〈a, ta, da〉, where a ∈ A
is an action, ta ∈ R0+ is the time when action a is started,
and da ∈ [durmin(a), durmax(a)] is the duration chosen for
a. A schedule can be seen as a set of instantaneous happen-
ings (Fox and Long 2003) that occur when an action starts,
when an action ends, and when a timed initial literal is trig-
gered. Specifically, for each triple 〈a, t, d〉 in the schedule,
we have action a starting at time t (requiring cond`(a) to
hold a small amount of time ε before time t, and applying
the effects eff `(a) right at t), and ending at time t + d (re-
quiring conda(a) to hold ε before t + d, and applying the
effects eff a(a) at time t+ d). For a TIL l we have the effect
specified by lit(l) triggered at time time(l). Finally, in or-
der for a schedule to be valid, we also require the invariant
condition cond↔(a) to hold over the open interval between
t and t+d, and that the goalG holds at the state which holds
after all happenings have occurred.

Interruptible and Non-Interruptible Actions
As previously mentioned, actions might be interruptible or
non-interruptible. A high-level propositional model does not
necessarily capture this difference. Consider two actions,
both of which move an object from waypoint A to waypoint
B:
Ballistic Launch: The action is implemented by launching

an object using a catapult.
Driving: The action is implemented by driving.

Both of these actions can be modeled with pre` = at(A),
eff ` = ¬at(A), eff a = at(B), with a controllable du-
ration in the range [dmin, dmax]. However, for the ballistic
launch action, the duration is chosen when the action is ex-
ecuted (by setting the appropriate trajectory), and can not
be changed during execution — that is, the action is non-
interruptible.

On the other hand, for the driving action, the duration is,
in fact, a different way of representing the average veloc-
ity. If this action is interrupted, the duration can be adjusted,
or the agent can even choose to drive to any other location.
However, all of these options are not modeled in the standard
propositional representation of this action.

In the next section, we explain how we address situated
replanning with only non-interruptible actions, by relying
on previous work on situated temporal planning (Cashmore
et al. 2018). Then, we describe one way of modeling inter-
ruptible actions, and how we can replan with interruptible
actions for situated agents, that is, online.

Replanning with Non-interruptible Actions
We now describe our approach for replanning during exe-
cution with non-interruptible actions. For example, consider
the well known match cellar domain, in which a fuse must
be fixed while a match is burning. The LIGHT-MATCH ac-
tion serves as an envelope for the FIX-FUSE action; that is,
FIX-FUSE must be executed within the time interval when

F ′ =F ∪ {ea | 〈a, ta, da〉 ∈ CA}
A′ ={a′ | a ∈ A},where :

durmin(a
′) = durmin(a)

durmax(a
′) = durmax(a)

cond`(a
′) = cond`(a)∪

{eb | 〈b, tb, db〉 ∈ CA, del`(a) ∩ cond↔(b) 6= ∅}
cond↔(a′) = cond↔(a)

conda(a
′) = conda(a)∪

{eb | 〈b, tb, db〉 ∈ CA, dela(a) ∩ cond↔(b) 6= ∅}
eff `(a

′) = eff `(a)

eff a(a
′) = eff a(a)

I ′ =I

T ′ ={〈time(l)− t, lit(l)〉 | l ∈ T, time(l) ≥ t}∪
{〈ta + da − t, f〉 | 〈a, ta, da〉 ∈ CA, f ∈ eff `(a)}∪
{〈ta + da − t, ea〉 | 〈a, ta, da〉 ∈ CA

G′ =G

Figure 1: Replanning Task Definition

LIGHT-MATCH is executing. Now assume that FIX-FUSE
failed for some reason, but we have already lit our only re-
maining match. Thus, we must come up with a plan and be
able to execute it within the remaining time until LIGHT-
MATCH has finished.

One decision we make here is that, when replanning has
been triggered, we never start executing a new action from
the original schedule π — we only finish executing the cur-
rently executing actions. This is because we do not yet know
whether future actions in the (stale) plan might lead to a dead
end, in which case we will never be able to solve the prob-
lem. Thus, we choose to possibly err on the side of inaction,
and deal only with the currently executing actions. We are
also assuming here that, if action failure triggered replan-
ning, the failed actions had either no effect on the state or
that the effects of the failure are fully observed and modeled
at the start of replanning.

In general, let Π = 〈F,A, I, T,G〉 be the planning prob-
lem, and assume we are in the process of executing a sched-
ule π when replanning is triggered at time t, when the cur-
rent state of the system is s. As previously mentioned, it
would be incorrect to simply replan from state s, because (a)
there might be some actions which have already started but
have not yet ended, and their invariant conditions and end
effects must be taken into consideration, and (b) the TILs in
Π need to be updated to reflect that the current time is t.

We will denote the set of currently executing actions oc-
currences by CA = {〈a, ta, da〉 ∈ π | ta ≤ t < ta + da},
that is, the action occurrences in the schedule which have
started but not yet ended. We now describe a temporal plan-
ning problem Π′ = 〈F ′, A′, I ′, T ′, G′〉 which captures the
dynamic state we are planning from — namely, that the cur-
rently executing actions will finish.

Π′, described fully in Figure 1, is very similar to Π, except
that it contains a fact ea for each currently executing action,
which indicates that the action has finished. The ea facts
work together with TILs (as explained below) and slightly
modified action definitions to enforce the invariant condi-
tions of currently executing actions, as we now explain.

The TILs in Π′ capture three different things. First, we
adjust the timing of the TILs from the original planning task,
to reflect that the current time is t, so past TILs are removed,
and the time for future TILs is adjusted by decreasing it by t.
Second, we use TILs to encode the end effects of currently
executing actions, so that if action a will finish in d time
units, its effects are encoded as TILs which will occur at time
d. Finally, we use TILs to signal that an action has ended
(by setting ea to true), and therefore its invariant condition
no longer has to hold. This, in turn, enables all snap actions
(start or end of a durative action) which delete the invariant
condition of a — which is implemented by adding ea as a
condition for all snap actions whose effects delete some fact
in cond↔(a).

We can now use previous work on situated temporal plan-
ning (Cashmore et al. 2018) to solve the above planning task.
Since this technique accounts for time passing while plan-
ning is going on, the solution returned by the planner will be
executable when the planner terminates — even if the cur-
rently executing actions have not finished yet.

To continue the above example, suppose the duration of
LIGHT-MATCH is 10 seconds, and FIX-FUSE failed 2 sec-
onds after LIGHT-MATCH started. We encode this using a
TIL, stating that the end effect of LIGHT-MATCH (i.e., the
light going out) will occur 8 seconds from when replanning
started. Essentially, this imposes a deadline of 8 seconds on
goal achievement time (GAT) — that is, planning time +
plan makespan, which the situated temporal planner can ac-
count for.

Replanning with Interruptible Actions
We now turn our attention to the problem of replanning with
interruptible actions. As previously mentioned, we must first
overcome the issue of modeling what are the possible ways
to bail out of a currently executing action. We assume we
have access to a bail out action generator, which takes as in-
put an action (that is assumed to be currently executing —
we still do not start executing actions from the stale plan
before a new plan is found), and returns as output a list of
possible bail out actions. The bail out action generator can
be thought of as extending the successor generator with al-
ternative endings of the currently executing action. This bail
out generator can be implemented as a black box, and will
run every time replanning is triggered. Thus, the bail out ac-
tion generator can have access to lower level state variables
than the high-level propositional model used for planning
does.

Although the details of bail out actions are domain-
specific, there are common properties that we discuss. Es-
sentially, the most important property of a bail out action is
that, after the bail out action has ended, the high-level propo-
sitional planning model is consistent. In other words, the bail

out action needs to correctly specify the high-level proposi-
tional state of the world after the bail out action has finished,
which ensures that after applying a bail out action, we can
keep planning using the more abstract high-level proposi-
tional model.

For example, consider the previous example of a rover
driving from waypoint A to waypoint B to sample a rock,
when the drill breaks at some point during the drive. The
bail out action generator can utilize a path planner, which
has access to the rover’s real position (and possibly even to
the underlying dynamical model which accounts for mass,
acceleration, obstacles, turning radius, . . .). These bail out
actions restore the state of the world to a consistent one,
where after the bail out action finishes the rover has a loca-
tion, instead of not being located anywhere during the drive.

When modeling bail out actions for high-level proposi-
tional planning, a good rule of thumb is that a bailout action
for a should have something to do with the state variables a
affects. In light of the abovementioned discussion on restor-
ing consistency, this means that when we model a bail out
action for a, we should start by looking at the effects of a,
and identify facts which are made inconsistent by the start
effects of a, whose consistency is restored by the end effects
of a. Our bail out action should fix those, but of course, the
low-level details of the domain could dictate other precondi-
tions and effects for the bail out actions.

An additional complication occurs when considering the
fact that multiple actions could be executing currently, and
bailing out of them might not be independent. For example,
consider a rover that is driving from A to B, and taking pic-
tures of the route from A to B — which can be modeled
using two concurrently executing actions: drive(A,B) and
photo(A,B). In this case, bailing out of drive(A,B) also
requires bailing out of photo(A,B). If we have such co-
dependent actions, our bail out generator could take as input
sets of currently executing actions, and generate options to
bail out of all of the input actions. As implied by the above
discussion, such co-dependency will typically occur only for
actions which have some shared fact in their preconditions
or effects.

Durations of Bail Out Actions
We now turn our attention to the durations of the bail out ac-
tions. Continuing with our rover example, consider the map
illustrated in Figure 2a, where the rover is driving from A
to B, and replanning is triggered when it is in the position
drawn in the figure, about one third of the way from A to B.
One possible bail out action is to drive to C. The duration
of this bail out action depends on the position of the rover,
which in turn depends on the time the bail out action starts.
Thus, in order to plan in such a scenario, we must extend our
planner to handle time-dependent durations. Furthermore,
this time-dependent duration could be non-monotonic. In
our example, the duration decreases until the rover reaches
the point on the line from A to B where it is closest to C,
and starts increasing after passing that point, as illustrated in
Figure 2b (the solid blue line).

Previous work on situated temporal planning (Cashmore
et al. 2018) relied on estimating the latest time a plan π

A B

C

(a) Map of Waypoints

0 1 2 3 4 5

2

4

6

8

Time after leaving A

Duration of Driving to C
Time of Arrival at C

(b) Time-dependent Duration

Figure 2: Illustration of Rover Example

can start, denoted estimated latest start(π). This estimate
relied on both the current plan π as well as the Temporal
Relaxed Planning Graph (TRPG) (Coles et al. 2010) from
the state reached by π. Unfortunately, with non-monotonic
time-dependent durations, it is not enough to look at a single
number to describe the latest time a plan can start.

Note, however, that the ending time of the bailout action
does increase monotonically with the time the bail out ac-
tion started, as shown in the dotted red line in Figure 2b.
We claim this is always the case, under some reasonable as-
sumptions, which we discuss next.

Optimal Bailout Actions and Monotonicity
Recall that our bailout action generator has access to a
higher fidelity model of the world, although it plans for a
shorter horizon. If this planner returns optimal plans, then
the ending time of the bailout action should always increase
monotonically with when the bail out action started.

In our rover example, where we ignore obstacles, the
shortest path to C is a straight line. The rover travels on the
straight line from A to B for some distance d, and then bails
out and drives in a straight line towards C. Clearly, the to-
tal distance the rover travels on the way to C, and thus the
duration, increases with d, although not necessarily linearly.

To formalize this intuition, assume that each high-level
action a corresponds to a plan πa = 〈l1, l2, . . . , lm〉 in some
higher-fidelity (low-level) model of the world, where li are

low-level actions. We also assume the bailout action gener-
ator uses an optimal planner for this low-level model, min-
imizing the total duration of the plan. Finally, assume the
agent bails out of a after executing 〈l1, l2, . . . , ln〉, and de-
note the low-level state of the world at this time by xn.

Now consider what happens if the agent bails out earlier,
after n′ < n low-level actions. Note that we are assuming
the same bailout target, that is, the same goal in the low-level
model in both cases. We will denote this bailout goal by bg . It
is easy to see that the optimal plan from xn′ to bg can not be
more expensive than any plan which continues the execution
of a until ln and then bails out to bg , that is, a plan from xn′

to bg which is constrained to start with 〈ln′+1, . . . , ln〉. Thus,
if our bailout action generator relies on an optimal planner,
we automatically get monotonicity in the ending time of the
bailout action.

However, it is also easy to show examples where this
property does not hold. If our bailout action generator calls a
sampling-based motion planner, e.g., RRT (Lavalle, Kuffner,
and Jr. 2000), then we can not guarantee that it returns an op-
timal path. Nevertheless, if we ever get such low level plans
that bailing out at time t1 finishes later than bailing out at
time t2, but t1 < t2, we can always improve upon the bail
out action at time t1, by continuing execution of the origi-
nal action until time t2, and bailing out then. In other words,
because it is always possible to bail out later, we can ob-
tain monotonicity in the ending time of bail out actions via
simple post processing of the durations of the bail out ac-
tions, which chooses the best time to bail out after some
time point, instead of exactly at that time point.

We have seen the monotonic nature of the ending time of
bail out actions. We now explain how we exploit this prop-
erty in checking the temporal consistency of partial plans
with time-dependent durations, which is integrated into our
temporal planner.

Temporal Planning with Time-Dependent
Durations
In prior temporal planners (Coles et al. 2010; 2009), the tem-
poral constraints on a plan under construction have been rep-
resented as a Simple Temporal Problem (Dechter, Meiri, and
Pearl 1991) – a collection of constraints, each lb ≤ tj− ti ≤
ub, with ub, lb ∈ <+

0 , recording the constraints on the tem-
poral separation of the plan steps ti and tj . State progres-
sion updates an STP stored in each state, according to the
actions applied. Then, by solving the STP, one can deter-
mine whether the temporal constraints are consistent; and if
so, obtain the minimum and maximum time at which each
step can be scheduled. In the nominal case, in temporal plan-
ning, only the minimum times are used when reporting the
time-stamps of a solution plan.

In the case where actions’ durations are known at the
point the action is applied, during search, an STP is suffi-
cient: the duration of an action is encoded as a constraint
between its start and end step indexes, with a known lower-
and upper-bound. In the case where actions’ durations are
time-dependent, though, this is no longer the case: the dura-
tion of the action is not known until the time at which it is to

Algorithm 1: STP with Time-Dependent Durations
Data: STP constraints T and the corresponding plan of

snap-actions P
Result: ts , the timestamps of the plan steps in P ; or ⊥

if the STP is inconsistent
1 Ttd ← ∅;
2 do
3 ts ← solve to find minimum timestamps of the STP

(T ∪ Ttd);
4 if ts = ⊥ then return ⊥;
5 converged ← >;
6 Ttd ← ∅;
7 foreach start–end snap action pair 〈a`, aa〉 ∈ P ,

with step indexes i and j respectively do
8 dur ← duration of a if started at time ts[i];
9 min dur ← minimum time-dependent duration

of a at any time at-or-after ts[i];
10 max dur ← maximum time-dependent

duration of a at any time at-or-after ts[i];
11 add ts[i] + dur ≤ tj to Ttd ;
12 add min dur ≤ tj − ti ≤ max dur to Ttd ;
13 if ¬(dur ≤ ts[j]− ts[i] ≤ dur) then
14 converged ← ⊥;
15 end
16 while ¬converged ;
17 return ts

be applied is known.
To address this issue, we take a two-fronted approach.

First, during search, when applying an action a with a time-
dependent duration that starts at step i and finishes at step j,
the STP is constrained so a can have any duration between
its global minimum and global maximum – across any of
the times for which its duration is defined. This admissibly
relaxes the time-dependency into a duration interval.

Second, when checking that the temporal constraints in a
given state are consistent – formerly a case of simply check-
ing the consistency of the STP – an iterative refinement pro-
cess is used, presented in Algorithm 1, which exploits the
monotonicity requirement on the durations of bailout ac-
tions.

The algorithm takes as input the STP T from the state,
as well as the plan P that reached it, and builds a collec-
tion of additional STP constraints Ttd to capture the time-
dependent durations. On the first iteration, these are empty,
hence at line 3 the STP solved is that from the state – if this
is inconsistent, the algorithm terminates immediately.

Otherwise, the algorithm then inspects the times given to
actions, to see what time-dependent durations are relevant –
assuming they started at-or-after the times in ts , with ts[i]
denoting the time of step i. For each start–end action pair in
the plan, with step indexes i and j, we look up three values:
• What the duration of the action would be if it started ex-

actly at time ts[i] – the duration dur

• What the minimum possible duration of the action would
be, assuming it has to come at or after time ts[i] – the
duration min dur

• What the maximum possible duration of the action would
be, assuming it has to come at or after time ts[i] – the
duration min dur

These values are used in two ways. First, ‘feasibility cuts‘
are added to Ttd , as follows:

• if dur is indeed the duration the action should have, the
earliest time step j could occur is ts[i] + dur (line 11).

• in any case, starting the action at or after time ts[i] bounds
its duration between min dur and max dur (line 12).

Second, the value of dur is used to determine whether the
current solution to the STP is consistent with respect to the
time-dependent durations. If this is not the case (i.e. ts[j]−
ts[i] 6= dur – line 13) the converged flag is set to false –
indicating that the algorithm must continue to iterate.

The correctness of this algorithm exploits the monotonic-
ity requirement of bailout actions; i.e. that delaying the start
of a bailout action may reduce its duration, but may not lead
to a net reduction in the time at which the action can end.
If this were not the case, then search would be needed at
line 11: we would lose the ability to determine an admissi-
ble lower-bound on the end time of an action based on its
start time and the duration it would have at that time, as a
better end-time may be attainable by delaying the start.

The algorithm is guaranteed to converge due to the be-
havior of the feasibility cuts. For the cuts delaying the ends
of actions, the cuts on one iteration dominate those in the
previous iteration: the ends of actions are iteratively de-
layed, but never made earlier. Delaying the ends of ac-
tions may in turn delay the starts of other actions; and in-
creasing the start time of an action only ever reduces the
range [min dur ,max dur] until there is only one option
left – i.e. the duration is no longer time-dependent. Then,
as dur = min dur = max dur , the cut added to Ttd on
line 12 guarantees that on subsequent iterations, the duration
constraint will always be satisfied. At the limit, all actions
are assigned their latest possible time-dependent duration,
so none of the duration constraint checks at line 13 will lead
to converged being set to >; so the loop terminates.

Empirical Evaluation
In order to empirically evaluate our approach to replanning,
we evaluated it on problems from the Robocup Logistics
League (RCLL) Simulation (Niemueller, Lakemeyer, and
Ferrein 2015; Niemueller et al. 2016), and on a real robotic
system. We compare our approach to a baseline which can
only replan from a static state. Thus, we formulate a plan-
ning problem whose initial state is the state that will hold
when all currently executing actions finish. However, we use
a situated temporal planner (Cashmore et al. 2018) which
can plan while the currently executing actions finish. We
force this planner to only start executing after all currently
executing actions finish by adding a new fact e (which stands
for execute), which is added by a TIL when all currently ex-
ecuting actions finish, and is a start condition of all actions.

We remark that an even more naive baseline, which does
not require situated temporal planning, would be to only

1 Robot 2 Robots 3 Robots
R B R B R B

5 9.635 9.635 0.05 0.35
15 45.158 45.654 100.961 54.258 77.46
18 15.55 15.551 34.131 38.1 1.041 1.041
28 63.998 60.527 144.902 49.325 49.325
32 62.267 56.488 60.331 16.79 18.102
34 129.301 83.464 57.541 73.139 124.393
35 82.102 82.429 63.517 47.817 31.401 31.401
39 55.526 179.377 162.422
52 60.78 41.672
55 18.299 18.3 132.501 136.862
56 52.746 42.526 51.004 57.145
57 43.959 43.948 69.007 5.942 5.942
64 41.899 46.577 16.698 26.688 100.72 165.269
68 59.974 59.256 123.063 108.989 74.078
71 60.992 50.979 9.564 9.564
73 22.76 22.76 44.677 85.833 84.632
78 52.162 222.93 112.392
80 0.803 0.803 46.24 46.24 71.078 72.462
81 66.478 98.285 54.74 27.62 27.62
86 134.195 97.714 95.733 84.247 155.941
89 12.038 12.038 134.84 48.361 146.077
91 133.342 127.479 55.047 76.08 52.872 69.099
99 66.826 65.996

SOLVED 21 23 15 17 13 17
Avg. GAT 56.34 51.53 60.99 60.07 44.13 50.11

Table 1: Goal Achievement Time on RCLL Instances for
Baseline (B) and Our Replanning Approach (R) for In-
stances with no Deadline

start planning after all currently executing actions have fin-
ished. However, this is clearly inferior to the baseline we
used, and thus we omit it from the experiment.

We now describe each of these experiments in detail.

RCLL
The Robocup Logistics League Challenge presents a plan-
ning problem where 3 robots must fulfill orders that arrive
dynamically by feeding workpieces to 6 different machines.
Each machine can perform one type of processing step, and
fulfilling an order requires performing a series of process-
ing steps on different machines. Each order can also have a
deadline — we ran one experiment on a version with dead-
lines and another on a version without deadlines.

In order to trigger replanning, we first generate a plan to
solve the original problem. Then we randomly choose some
point in the plan (using a uniform distribution), choose one
of the machines at random (also uniformly), and trigger re-
planning by simulating a failure of the chosen machine. Un-
like in the original challenge, we assume that when the ma-
chine fails, it will be fixed at some known time in the future,
which is also chosen randomly between 10% to 30% of the
makespan of the original plan. As we do not modify robot
behaviors here, we did not implement a bail out action gen-
erator, and we assume actions are non-interruptible.

For this experiment, we started with 100 random RCLL
instances generated for a previous paper (Schaepers et al.
2018). For each of these problems we have 3 versions: with
1, 2, or 3 robots. We only used the 23 instances which were
solved within our time limit of 200 seconds for all 3 versions
of the problem. We triggered replanning for all 3 versions
of each of these 23 instances, and compare our proposed
approach here with the baseline.

1 Robot 2 Robots 3 Robots
R B R B R B

5 1.791 1.791 0.05 0.28 10.456 10.456
15 8.702 8.702 57.258 80.907 149.369
18 55.39 54.412 57.189 97.039 66.225
28 44.316 45.669 149.862 51.997 83.426
32 34.751 34.751 46.474 78.681
34 36.054 36.054 64.219 69.711 59.348 57.063
35 114.534 116.784 48.013 68.772
39 67.44 45.394 67.384 56.848
52 43.267 47.299 108.064 56.795 59.125
55 66.745 56.732
56 18.947 18.948 86.399 97.877 36.816 71.843
57 46.221 26.152 26.152 59.144 59.144
64 92.747 111.351 91.723 65.061
68 49.312 51.866 32.655 32.655
71 106.72 99.832 72.467
73 52.142 72.753 72.285 125.065
78 8.756 8.756 55.687 70.239 146.216
80 59.327 58.357 79.032 76.492
81 132.003 61.396 51.084 58.399 70.166
86 2.707 2.707 17.911 17.912
89 42.057 46.896 4.144 4.144 33.411 33.411
91 114.602 123.41 53.322 60.394 68.341
99 50.697 50.697 84.643 86.475 106.005

SOLVED 21 23 14 17 14 17
Avg. GAT 54.8 51.51 53.77 59.92 44.68 55.42

Table 2: Goal Achievement Time on RCLL Instances for
Baseline (B) and Our Replanning Approach (R) for In-
stances with Deadline

The experiments were run on a virtual machine running
on powerful laptop (Intel Core-i7 8750H CPU). 6 planners
were run in parallel using the parallel tool (Tange 2011),
each with a time limit of 200 seconds and no memory limit
(the VM had 16 GB of virtual memory).

The results for problems without a deadline are described
in Table 1 and those for the version with a deadline in
Table 2. Both of these tables show the goal achievement
time (GAT) from when replanning was triggered, as well as
the total number of problems solved and the average GAT
(which is taken over the instances solved by both approaches
for each number of robots).

The picture in both tables is similar and as expected: for
1 robot, there is no benefit in our replanning approach. This
is because each robot can only execute a single action at any
given moment, and thus there is no benefit to using our more
sophisticated replanning approach. The overhead of our ap-
proach, which creates a larger planning problem, is also evi-
dent here with the smaller number of problems solved. How-
ever, as the number of robots increases, our approach ben-
efits, as it has more opportunities to start executing actions
with one or two robots while the others complete their cur-
rently executing actions.

Real Robotic System: Office Delivery
In our second experiment, we used a real robotic system,
where a Turtlebot 2 robot serves as a delivery robot in an of-
fice environment. In the scenario, the robot is used to trans-
port objects between areas. Deliveries must be completed
within deadlines, and the robot must monitor its battery level
and recharge when it becomes too low (this triggers replan-
ning with the added constraint that the robot must immedi-

Problem 1 2 3 4 5 6 7 8
Bailout 777.568 824.573 841.183 620.600 339.760 514.008 795.625 901.881

Baseline - - - - - - - -
Problem 9 10 11 12 13 14
Bailout 1587.022 1177.209 1177.207 1656.577 1061.984 1098.133

Baseline - 1169.432 - - 1136.626 -

Table 3: GAT for problems in the Office Delivery scenario. Times in seconds. ”-” denotes that the problem was made unsolvable
due to deadlines passing while waiting for actions to complete.

Figure 3: The Turtlebot 2 platform used in the second exper-
iment to perform delivery tasks.

ately recharge).
The domain for the robot includes navigation actions be-

tween waypoints, actions for requesting and waiting for hu-
man assistance, and assisted pick and place actions. In addi-
tion the domain includes actions for docking to recharge, un-
docking, and localizing the robot, which must be performed
after each recharge and before navigation can begin. Replan-
ning typically occurs while the robot is navigating between
two locations and the charge level drops below the replan-
ning threshold.

As this is a real robotic system, we also implemented a
bail out action generator for the navigation actions the robot
performs. The bailout action generator for moving from A
to B along some path p generates a bailout action of going
to some other waypoint C. This is implemented as follows:

1. Sample points along the current path p at intervals of 4
meters.

2. From each sampled point x, a collision-free path is com-
puted by the default global planner of the ROS navigation
package. This path planner applies Dijkstra’s algorithm to
the global 2D costmap.

3. The duration of the bailout action is time-dependent: we
compute the time of arrival ti to each sampled point xi
along the original path p. While the time from when
move(A,B) started is between ti−1 and ti, the duration
of bailing out to C is the sum of ti and the duration of
following the computed path from xi to C. We remark
that even though the path planner is not optimal, we did
not have to perform the post processing described above
to enforce monotonicity of the ending times.
Using the bail out action generator allows the robot to de-

cide, when replanning is triggered, to cancel the currently

executing action and instead execute the bailout action.
To perform this experiment, we integrated the approach

we describe here, as well as the new planner which sup-
ports time-dependent durations, with ROSPlan (Cashmore
et al. 2015). As ROSPlan has already been integrated with
the Turtlebot 2, no extra effort was required there. The only
programming required for integrating the research described
here with ROSPlan was extending the system such that the
bailout action generator described above is called every time
replanning is triggered (by ROSPlan, this time). To do this
the ROSPlan Problem Interface was extended to call the
bailout generator. This node generates the PDDL problem
instance to be solved by the planner. The planning problem
that is generated is solved by calling the new planner. To
integrate the new planner, no changes needed to be made.

The goal achievement time is shown in Table 3. The ex-
periment consists of 14 problems, each containing 4-5 deliv-
ery goals. The delivery destinations and deadlines were ran-
domized, with deadlines between 3 and 25 minutes. We used
two sets of problems. In the first set (problems 1 – 8, in the
upper half of Table 3), there was only one possible bail out
destination: the dock. In the second set of problems (prob-
lems 9 – 14, in the lower half of Table 3), there were multiple
possible bail out destinations: the dock and all other charg-
ing stations throughout the office. For each problem, replan-
ning was triggered manually immediately after dispatching
the first navigation action. As these results show, using the
baseline approach of waiting for the currently executing ac-
tion to complete renders the problem unsolvable due to the
deadlines on the delivery tasks in almost all cases.

Summary and Future Work
In this paper, we have addressed replanning for situated
agents. The contributions of this paper are threefold: First,
we framed the problem of situated replanning with execut-
ing actions as a temporal planning problem with a dynamic
initial state, utilizing TILs. Second, we introduced the notion
of bail out action generators, which bridge the gap between
the high-level model used for planning and the low-level re-
alistic model, and allow us to interrupt currently executing
actions. These bail out actions lead to actions with time-
dependent durations, and thus our third contribution deals
with temporal reasoning with time-dependent durations.

As expected, and confirmed by our empirical evaluation,
our approach is beneficial in situations where there is enough
time to come up with a plan, and start executing it, before the
currently executing actions finish. Furthermore, if we can

not interrupt currently executing actions, and each agent is
limited to performing only one action at a time, then our
approach is only beneficial if there are multiple agents, and
thus one agent can start executing actions even before all the
other agents have finished their actions. As the experiment
on real robots shows, our approach is especially useful with
long action durations.

Finally, we remark that although this paper addresses re-
planning, we have not made use of the previous plan. In
future work, we will explore ways of exploiting the previ-
ous plan, by integrating some plan reuse or repair techniques
(Fox et al. 2006) into our framework.

References
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
planning with preferences and time-dependent continuous
costs. In Proceedings of the 22nd International Conference
on Automated Planning and Scheduling (ICAPS).
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtós, N.; and Carreras, M.
2015. Rosplan: Planning in the robot operating system. In
Proceedings of the 25th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 333–341.
Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2018. Temporal planning while
the clock ticks. In de Weerdt, M.; Koenig, S.; Röger,
G.; and Spaan, M. T. J., eds., Proceedings of the Twenty-
Eighth International Conference on Automated Planning
and Scheduling, ICAPS 2018, Delft, The Netherlands, June
24-29, 2018., 39–46. AAAI Press.
Cimatti, A.; Do, M.; Micheli, A.; Roveri, M.; and Smith,
D. E. 2018. Strong temporal planning with uncontrollable
durations. Artif. Intell. 256:1–34.
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing concurrency in temporal planning us-
ing planner-scheduler interaction. Artificial Intelligence
173(1):1–44.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Proceedings of
the 20th International Conference on Automated Planning
and Scheduling (ICAPS), 42–49.
Cresswell, S., and Coddington, A. 2003. Planning with
timed literals and deadlines. In Proceedings of 22nd Work-
shop of the UK Planning and Scheduling Special Interest
Group, 23–35.
Cushing, W., and Kambhampati, S. 2005. Replanning: a
new perspective. In Proceedings of ICAPS-05.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61–95.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. Technical Report 195, University of Freiburg.
Fox, M., and Long, D. 2003. PDDL2.1: an extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research (JAIR) 20:61–124.

Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In Proceedings of
ICAPS-06, 212–221.
Ghallab, M., and Laruelle, H. 1994. Representation and con-
trol in IxTeT, a temporal planner. In Proceedings of AIPS-94,
61–67.
Lavalle, S. M.; Kuffner, J. J.; and Jr. 2000. Rapidly-
exploring random trees: Progress and prospects. In Algo-
rithmic and Computational Robotics: New Directions, 293–
308.
Lemai, S., and Ingrand, F. 2004. Interleaving temporal plan-
ning and execution in robotics domains. In AAAI, 617–622.
Löhr, J.; Eyerich, P.; Winkler, S.; and Nebel, B. 2013. Do-
main predictive control under uncertain numerical state in-
formation. In Proceedings of the Twenty-Third International
Conference on Automated Planning and Scheduling, ICAPS
2013, Rome, Italy, June 10-14, 2013.
Löhr, J.; Wehrle, M.; Fox, M.; and Nebel, B. 2014. Symbolic
domain predictive control. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27
-31, 2014, Québec City, Québec, Canada., 2315–2321.
Myers, K. 1999. Cpef: A continuous planning and execution
framework. AI MAgazine.
Niemueller, T.; Karpas, E.; Vaquero, T.; and Timmons, E.
2016. Planning Competition for Logistics Robots in Simu-
lation. In ICAPS Workshop on Planning and Robotics (Plan-
Rob).
Niemueller, T.; Lakemeyer, G.; and Ferrein, A. 2015. The
RoboCup Logistics League as a Benchmark for Planning in
Robotics. In WS on Planning and Robotics (PlanRob) at Int.
Conf. on Aut. Planning and Scheduling (ICAPS).
Pell, B.; Gat, E.; Keesing, R.; Muscettola, N.; and Smith,
B. 1997. Robust periodic planning and execution for au-
tonomous spacecraft. In Proceedings of IJCAI-97.
Ruml, W.; Do, M. B.; Zhou, R.; and Fromherz, M. P. J. 2011.
On-line planning and scheduling: An application to control-
ling modular printers. Journal of Artificial Intelligence Re-
search 40:415–468.
Schaepers, B.; Niemueller, T.; Lakemeyer, G.; Gebser, M.;
and Schaub, T. 2018. ASP-based time-bounded planning
for logistics robots. In Proceedings of the 28h Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Tange, O. 2011. Gnu parallel - the command-line power
tool. ;login: The USENIX Magazine 36(1):42–47.

