Beyond Cost-to-go Estimates in Situated Temporal Planning

Andrew Coles,¹ Shahaf S. Shperberg,² Erez Karpas,³ Solomon Eyal Shimony,² Wheeler Ruml⁴

¹King's College London, UK
²Ben-Gurion University, Israel
³Technion — Israel Institute of Technology, Israel
⁴University of New Hampshire, USA

Introduction					
■ The Problem					
■ ICAPS-18					
AAAI-19					
■ AE2 Analysis					

■ Greedy

New Work

Conclusion

'planning while the clock ticks', 'time-aware planning'

Example: planning a route involving a bus ride

- 'take 10:00 bus' action <mark>expires</mark> at 10:00 subtree of plans becomes invalid consider only if sufficient time to complete plan
- exploring 'take 9:47 bus' action can invalidate 10:00 action searching under multiple nodes means less time for each
- plan expiration time uncertain until plan is complete but completion effort and final feasibility also uncertain
- which plans to explore?

Introduction						
The	Problem					

- ICAPS-18
- AAAI-19
- AE2 Analysis
- Greedy

New Work

Conclusion

'planning while the clock ticks', 'time-aware planning'

Example: planning a route involving a bus ride

- 'take 10:00 bus' action <mark>expires</mark> at 10:00 subtree of plans becomes invalid consider only if sufficient time to complete plan
- exploring 'take 9:47 bus' action can invalidate 10:00 action searching under multiple nodes means less time for each
- plan expiration time uncertain until plan is complete but completion effort and final feasibility also uncertain
- which plans to explore?

Previous planner (ICAPS-18) just pruned. Recent work (AAAI-19) showed problem is hard.

Introduction						
The Problem						
■ ICAPS-18						

- AAAI-19
- AE2 Analysis
- Greedy

New Work

Conclusion

'planning while the clock ticks', 'time-aware planning'

Example: planning a route involving a bus ride

- 'take 10:00 bus' action <mark>expires</mark> at 10:00 subtree of plans becomes invalid consider only if sufficient time to complete plan
- exploring 'take 9:47 bus' action can invalidate 10:00 action searching under multiple nodes means less time for each
- plan expiration time uncertain until plan is complete but completion effort and final feasibility also uncertain
- which plans to explore?

Previous planner (ICAPS-18) just pruned. Recent work (AAAI-19) showed problem is hard.

We implement an approximate hack and find it can work.

Previous work: the Time-Predictive Planner (ICAPS-18)

Introduction The Problem ICAPS-18 AAAI-19 AE2 Analysis Greedy

New Work

Conclusion

based on OPTIC (Benton, Coles, and Coles, ICAPS-12) uses STN to track time flexibly

- encodes external events as TILs
- constrains actions to happen after now
- prunes infeasible nodes
 - estimates if plan can be completed in time (temporal RPG)
- two open lists, prefers complete-able

Previous work: the Time-Predictive Planner (ICAPS-18)

Introduction The Problem ICAPS-18 AAAI-19 AE2 Analysis

■ Greedy

New Work

Conclusion

based on OPTIC (Benton, Coles, and Coles, ICAPS-12) uses STN to track time flexibly

- encodes external events as TILs
- constrains actions to happen after now
- prunes infeasible nodes
- estimates if plan can be completed in time (temporal RPG)
- two open lists, prefers complete-able

better than OPTIC assuming a fixed planning time

but used usual cost-based search order!

Allocating Effort when Actions Expire (AE2, AAAI-19)

Introduction

The Problem

■ ICAPS-18

AAAI-19

```
AE2 Analysis
```

Greedy

New Work

Conclusion

n partial plans/nodes/processes to share CPU, discrete time For each process *i*, given **termination CDF** $M_i(t) =$ probability *i* requires CPU time $\leq t$ like heuristic for effort required **success probability** $P_i =$ probability *i* results in solution without considering time found **deadline CDF** D(t) = probability *i* expires before well time *t*

deadline CDF $D_i(t) =$ probability *i* expires before wall time *t* not certain until solution is complete

Find schedule for processes that

- maximizes probability of finding a solution
- that is still valid when found

can be formulated as an MDP (see paper)

Analysis of the AE2 MDP (AAAI-19)

Introduction

The Problem

■ ICAPS-18

AAAI-19

AE2 Analysis

Greedy

New Work

Conclusion

policy = time allocation = time-aware planning strategy

Theorem. With known deadlines, there exists a linear contiguous policy that is an optimal solution.

Theorem. Finding the optimal (linear contiguous) policy for the case of known deadlines is NP-hard.

Implies that solving the full AE2 MDP is NP-hard.

Theorem. With known deadlines and diminishing logarithm of returns, optimal policy can be computed in polynomial time. (algorithm given)

A Greedy Algorithm for AE2 (AAAI-19)

Introduction

The Problem

■ ICAPS-18

AAAI-19

■ AE2 Analysis

Greedy

New Work

Conclusion

 $m_i(t)$ = probability *i* completes after *t* units of computation = $M_i(t) - M_i(t-1)$

$$f_{i}(t) = \text{probability } i \text{ succeeds after } t \text{ units of computation}$$
$$= P_{i} \sum_{t'=0}^{t} m_{i}(t')(1 - D_{i}(t'))$$
$$e_{i} = \text{'most effective' computation time for } i$$
$$\log(1 - f_{i}(t))$$

$$= \operatorname{argmin}_{t} \frac{\log(1 - f_i(t))}{t}$$

Greedy algorithm: prioritize soonest deadline and greatest improvement per unit computation

maximize
$$Q(i) = \frac{\alpha}{E[D_i]} - \frac{\log(1 - f_i(e_i))}{e_i}$$

tested on standalone AE2 problems

Wheeler Ruml (UNH) Beyond Cost-to-go Estimates in Situated Temporal Planning – 6 / 19

New Work

- New Greedy
- Results

Conclusion

New Work

Wheeler Ruml (UNH) Beyond Cost-to-go Estimates in Situated Temporal Planning – 7 / 19

A Modified Greedy Algorithm for Use in Planning

Introduction

New Work

New Greedy
Results

Conclusion

original greedy: maximize $Q(i) = \frac{\alpha}{E[D_i]} - \frac{\log(1 - f_i(e_i))}{e_i}$

but don't have M, P, and D distributions for f_i and e_i new modified approach:

- estimate $E[D_i]$ using slack in temporal RPG time before current plan + relaxed plan must start
- approximate e_i with estimated remaining search time under i estimated search distance times expansion delay
- I replace $-\log(1 f_i(e_i))$ with $E[D_i] e_i$ slack beyond expected planning time

New greedy algorithm: prioritize soonest deadline and greatest planning slack

new: maximize
$$\hat{Q}(i) = \frac{\alpha}{\max(E[D_i], t_{10})} + \frac{\max(0, E[D_i] - e_i)}{e_i}$$

Experimental Results

Introd	luction
muou	uction

New Work

■ New Greedy

Results

Conclusion

42 Robocup Logistics League problems Time-Predictive Planner (ICAPS-18) with different search orders

most failures were missed deadlines

New Work

Conclusion

■ Summary

Conclusion

Summary

Introduction
New Work
Conclusion

Planning while time passes is extra hard!

- just formalizing the problem is non-trivial
- metareasoning must be cheap

A greedy approach can perform well!

- even if highly simplified and approximated
- for problems with deadlines, searching on time beats cost!

Further directions

- more benchmarks
- consider solution cost

New Work

Conclusion

Backup Slides

■ Solving AE2

■ Diminish. Returns

■ 4 Types of Algs

■ Exp. Set-up

Results 1

Results 2

Backup Slides

h+rod	luction
introa	luction

New Work

Conclusion

Backup Slides

■ Solving AE2

■ Diminish. Returns

■ 4 Types of Algs

■ Exp. Set-up

Results 1

Results 2

State space exponential in n.

المجيدة ما	
murou	uction

New Work

Conclusion

Backup Slides

■ Solving AE2

- Diminish. Returns
- 4 Types of Algs
- Exp. Set-up
- Results 1
- Results 2

State space exponential in n.

Restricted cases:

- 1. Linear policies (no feedback): (1, 1, 2, 1, 1, 3, ...)
- 2. Linear contiguous policies: (1, 1, 1, 2, 2, 3, 3, 3, ...)
- 3. Known deadlines

New Work

Conclusion

Backup Slides

■ Solving AE2

Diminish. Returns

4 Types of Algs

Exp. Set-up

Results 1

Results 2

State space exponential in n.

Restricted cases:

- 1. Linear policies (no feedback): (1, 1, 2, 1, 1, 3, ...)
- 2. Linear contiguous policies: (1, 1, 1, 2, 2, 3, 3, 3, ...)
- 3. Known deadlines

Good news:

Theorem. With known deadlines, there exists a linear contiguous policy that is an optimal solution.

New Work

Conclusion

Backup Slides

■ Solving AE2

Diminish. Returns

4 Types of Algs

■ Exp. Set-up

Results 1

Results 2

State space exponential in n.

Restricted cases:

- 1. Linear policies (no feedback): (1, 1, 2, 1, 1, 3, ...)
- 2. Linear contiguous policies: (1, 1, 1, 2, 2, 3, 3, 3, ...)
- 3. Known deadlines

Good news:

Theorem. With known deadlines, there exists a linear contiguous policy that is an optimal solution.

Bad news:

Theorem. Finding the optimal (linear contiguous) policy for the case of known deadlines is NP-hard.

Implies that solving the full AE2 MDP is NP-hard.

New Work

Conclusion

Backup Slides

■ Solving AE2

Diminish. Returns

4 Types of Algs

■ Exp. Set-up

Results 1

Results 2

State space exponential in n.

Restricted cases:

- 1. Linear policies (no feedback): (1, 1, 2, 1, 1, 3, ...)
- 2. Linear contiguous policies: (1, 1, 1, 2, 2, 3, 3, 3, ...)
- 3. Known deadlines

Good news:

Theorem. With known deadlines, there exists a linear contiguous policy that is an optimal solution.

Bad news:

Theorem. Finding the optimal (linear contiguous) policy for the case of known deadlines is NP-hard.

Implies that solving the full AE2 MDP is NP-hard.

However...

Diminishing Returns

Diminishing Returns

Theorem. With known deadlines and diminishing logarithm of returns, optimal policy can be computed in polynomial time.

Wheeler Ruml (UNH) Beyond Cost-to-go Estimates in Situated Temporal Planning – 15 / 19

Introd	uction
Introa	uction

New Work

Conclusion

Backup Slides

Solving AE2

Diminish. Returns

■ 4 Types of Algs

Exp. Set-up

Results 1

Results 2

Optimal: solve MDP directly

Simple Heuristics: run 'most promising' until failure; round robin; random

DiminishingReturns: optimal for DR

Greedy: inspired by DR, basically at each step select most likely to succeed

metric: probability a non-expired solution is found

Experimental Set-up

Introduction

New Work

Conclusion

Backup Slides

■ Solving AE2

Diminish. Returns

■ 4 Types of Algs

Exp. Set-up
Results 1

Results 1

Results 2

synthetic $M_i(t), P_i, D_i(t)$

distributions: exponential (diminishing returns!), normal, uniform

tried range of parameters

temporal planning problems

- OPTIC planner (as in ICAPS-18) on Robocup Logistics League
- search trees used to generate snapshots

known and unknown deadlines

Results with Known Deadlines

Introduction	dist	n	Greedy	DR	MP
	В	2	0.61	0.67	0.70
New Work		5	0.72	0.82	0.61
Conclusion		10	0.60	0.88	0.71
		100	0.81	0.99	0.91
Backup Slides	Ν	2	0.56	0.45	0.33
Solving AE2		5	0.83	0.72	0.27
Diminish. Returns		10	0.93	0.41	0.09
■ 4 Types of Algs		100	1.00	0.70	0.23
Exp. Set-up	U	2	0.61	0.65	0.50
Results 1		5	0.90	0.88	0.75
Results 2		10	0.98	0.98	0.66
		100	1.00	1.00	0.80
	Р	2	0.72	0.79	0.01
		5	0.78	0.81	0.79
		10	1.00	0.87	0.99
		100	1.00	0.91	0.86
		avg	0.82	0.78	0.58

simple 'Most Promising' not so good

Results with Known Deadlines

Introduction	dist	n	Greedy	DR	MP
	В	2	0.61	0.67	0.70
New Work		5	0.72	0.82	0.61
Conclusion		10	0.60	0.88	0.71
		100	0.81	0.99	0.91
Backup Slides	N	2	0.56	0.45	0.33
■ Solving AE2		5	0.83	0.72	0.27
Diminish. Returns		10	0.93	0.41	0.09
■ 4 Types of Algs		100	1.00	0.70	0.23
Exp. Set-up	U	2	0.61	0.65	0.50
Results 1		5	0.90	0.88	0.75
Results 2		10	0.98	0.98	0.66
		100	1.00	1.00	0.80
	Р	2	0.72	0.79	0.01
		5	0.78	0.81	0.79
		10	1.00	0.87	0.99
		100	1.00	0.91	0.86
	ć	avg	0.82	0.78	0.58

simple 'Most Promising' not so good DR optimal for DR, okay with known deadline

Results with Known Deadlines

atroduction		dist	n	Greedy	DR	MP
		В	2	0.61	0.67	0.70
Jew Work			5	0.72	0.82	0.61
onclusion			10	0.60	0.88	0.71
			100	0.81	0.99	0.91
Backup Slides		Ν	2	0.56	0.45	0.33
Solving AE2			5	0.83	0.72	0.27
Diminish. Returns			10	0.93	0.41	0.09
4 Types of Algs			100	1.00	0.70	0.23
Exp. Set-up		U	2	0.61	0.65	0.50
Results 1			5	0.90	0.88	0.75
Results 2			10	0.98	0.98	0.66
			100	1.00	1.00	0.80
		Р	2	0.72	0.79	0.01
			5	0.78	0.81	0.79
			10	1.00	0.87	0.99
			100	1.00	0.91	0.86
		av	vg	0.82	0.78	0.58
		I. (N.A			,	
	cimp			romicir	\mathbf{n}	

simple 'Most Promising' not so good DR optimal for DR, okay with known deadline Greedy quite respectable

Wheeler Ruml (UNH) Beyond Cost-to-go Estimates in Situated Temporal Planning – 18 / 19

Results with Unknown Deadlines

Introduction		dist	n	Greedy	DR	MP
	-	В	2	0.61	0.35	0.64
New Work			5	0.65	0.36	0.63
Conclusion			10	0.70	0.45	0.66
			100	0.70	0.44	0.65
Backup Slides	-	Ν	2	0.63	0.37	0.20
■ Solving AE2			5	0.70	0.35	0.09
Diminish. Returns			10	0.65	0.30	0.15
■ 4 Types of Algs			100	0.76	0.32	0.06
■ Exp. Set-up	-	U	2	0.68	0.39	0.53
■ Results 1			5	0.70	0.43	0.57
Results 2			10	0.78	0.46	0.59
			100	0.86	0.52	0.59
	_	Р	2	0.61	0.24	0.46
			5	0.90	0.54	0.45
			10	0.90	0.32	0.62
			100	0.85	0.77	0.38
	-		avg	0.73	0.41	0.45

DR poor for unknown deadlines

Results with Unknown Deadlines

Introduction	dist	n	Greedy	DR	MP
	В	2	0.61	0.35	0.64
New Work		5	0.65	0.36	0.63
Conclusion		10	0.70	0.45	0.66
		100	0.70	0.44	0.65
Backup Slides	Ν	2	0.63	0.37	0.20
■ Solving AE2		5	0.70	0.35	0.09
Diminish. Returns		10	0.65	0.30	0.15
■ 4 Types of Algs		100	0.76	0.32	0.06
■ Exp. Set-up	U	2	0.68	0.39	0.53
Results 1		5	0.70	0.43	0.57
Results 2		10	0.78	0.46	0.59
		100	0.86	0.52	0.59
	Р	2	0.61	0.24	0.46
		5	0.90	0.54	0.45
		10	0.90	0.32	0.62
		100	0.85	0.77	0.38
	avg		0.73	0.41	0.45

DR poor for unknown deadlines Greedy still respectable

Wheeler Ruml (UNH) Beyond Cost-to-go Estimates in Situated Temporal Planning – 19 / 19