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Introduction

Many Al systems, such as robots, must plan under time con-
straints. The most popular search approach in robotics so
far is anytime search (Likhachev and Ferguson 2009), in
which the algorithm quickly finds a suboptimal plan, and
then continues to find better plans as time passes, until even-
tually converging on an optimal plan. However, the time
until the first plan is returned is not controllable, so such
methods inherently involve idling the system’s operation be-
fore ‘real’ execution can begin. Real-time search methods
provide hard real-time bounds on action selection time, yet
to our knowledge, they have not yet been demonstrated for
robotic systems. In this work, we compare anytime and real-
time heuristic search methods in their ability to allow agents
to achieve goals quickly. Our results suggest that real-
time search is more broadly applicable and often achieves
goals faster than anytime search, while anytime search finds
shorter plans and does not suffer from dead-ends.

Our central performance metric is goal achievement time
(GAT), which measures the time starting from when the
agent receives a goal specification and begins planning to
achieve it and ending when the agent reaches a goal state
and is done with the task (Kiesel, Burns, and Ruml 2015).
This metric provides a natural way to compare anytime al-
gorithms, which form a complete plan before beginning ex-
ecution, with on-line algorithms like real-time search.

One of the most well-known anytime search algorithms
is Anytime Repairing A* (Likhachev, Gordon, and Thrun
2004) which runs a series of weighted A* searches. As soon
as the first plan is found, the agent starts moving. However,
in order for the previous search effort to remain applicable as
the search continues for better plans, the search is actually
performed starting at the goal state and searching towards
the agent. This means that, even though the agent moves,
the g-values (cost to a node from the original goal state) are
still useful in the subsequent searches.

There are three important limitations of anytime search
for concurrent planning and acting. First, searching back-
ward from the goal requires the domain to have a predeces-
sor function, which may be non-trivial. In contrast, real-time
search can be used with any domain in which a forward sim-
ulator is available. Second, the agent cannot start moving
until the first complete plan is formulated. In some systems,
a delay in starting execution is merely undesirable, but in

others such as fixed-wing aircraft, it is inherently infeasible.
Third, because the time it will take for the search to find a
new plan is not known in advance, it is not obvious what the
goal state for the backwards search should be. In practice, a
state along the current plan that is some predefined distance
ahead of the agent can be selected, but this is ad hoc.

Real-time search algorithms, such as LSS-LRTA*
(Koenig and Sun 2009), expand the search space until a
hard real-time bound is reached, at which point the agent
will commit to one or more steps towards the edge of the ex-
panded search space. The heuristic values of expanded states
are then updated by propagating information backward from
the lookahead frontier. While the selected actions are being
executed, the search computes the next action to take. In this
way, the agent iteratively constructs a trajectory.

Real-time search suffers from two important limitations.
First, it is incomplete in any domain in which there are dead
end states from where the goal is unreachable. For exam-
ple, the agent must be able to look far enough ahead to de-
tect a fatal collision. Second, errors (‘local minima’) in the
heuristic function can cause real-time search algorithms to
visit the same states many times (‘scrub’), in order to update
the heuristic values inside the minimum. If the lookahead
is smaller than the size of the minimum, repeated scrubbing
can be required (Sturtevant and Bulitko 2014). This behav-
ior appears irrational to an outside observer and is unde-
sirable in many applications, including robotics (Likhachev
2016).

Experimental Results

We compared the performance of anytime and real-time
heuristic search algorithms implemented in Kotlin using the
IBM J9 Virtual Machine in several simulated domains: four-
way grid pathfinding, grid pathfinding with inertia (Barto,
Bradtke, and Singh 1995, ‘racetrack’), a point robot in con-
tinuous space, a point robot with inertia (‘double integra-
tor’), and an underactuated double pendulum (Murray and
Hauser 1991, ‘Acrobot’). Adherence to time bounds was
strictly checked. Heuristics were simple, such as Man-
hattan distance or Euclidean distance divided by the max-
imum velocity. Some of the results can be seen at https:
//youtu.be/oPTQuvDEFVIU.

Our study found that using real-time heuristic search plan-
ning algorithms can have significant benefits, even in com-
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Figure 1: Left: Open box, H-box, and tiny slalom instances. The orange box marks the start and the blue circle the goal state.
Middle: GAT on a slalom map with a double integrator. Right: GAT for grid pathfinding in the open box map.

plicated domains. In almost all instances in each of the do-
mains used, real-time search outperforms anytime search in
terms of goal achievement time (see Figure 1 for example).
The initial delay incurred by anytime search outweighs the
typically shorter path to the goal in terms of the overall goal
achievement time.

The one major exception to this was the open box instance
(Figure 1). In this instance, ARA* greatly benefited from
planning backwards from the goal because the start state is
in a large heuristic minimum. ARA* should perform well on
domains in which heuristic values near the goal are more ac-
curate than near the start and planning backwards is advan-
tageous. However, when the backwards planning advantage
was removed by creating a symmetric hbox instance (Figure
1), ARA* performed similarly to the real-time algorithms.

One disadvantage of real-time search is that it is suscepti-
ble to dead ends. This was especially evident with a double
integrator domain in instances that have long open spaces
since real-time search will attempt to increase its velocity as
much as possible towards the goal but if there are obstacles
between the agent and the goal, the agent may not be able to
slow down in time causing a collision.

ARA* could not be run on the acrobot because planning
backwards from the goal requires calculating predecessor
states, which is non trivial.

Finally, our results showed that, as the action durations
are increased, the goal achievement times of the algorithms
converge as all of the algorithms have a sufficient time to
plan and find good solutions.

Discussion

To our knowledge, this is the first time heuristic search has
been used for the robotics-oriented double integrator and
Acrobot domains, and the first time that real-time heuristic
search has been implemented to follow a strict hard real-time
bound. The results show that real-time search generally out-
performs anytime search in terms of goal achievement time
in the domains we tested. Anytime search is currently the
leading heuristic search approach taken in advanced robotics

work where time is important, so these results suggest that
further investigation of the real-time approach is warranted.
The main drawback of real-time search illustrated in our re-
sults is their incompleteness in the presence of dead ends;
developing methodologies to tie lookahead time to safety
given a vehicle’s dynamics is a promising area for future
work.
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