
Evaluating Distributional Predictions of Search Time: Put Up or Shut Up Games
Sean Mariasin1, Andrew Coles2, Erez Karpas3,

Wheeler Ruml4, Solomon Eyal Shimony1, Shahaf Shperberg1

1Ben-Gurion University,
2King’s College London,

3Technion,
4University of New Hampshire

seanmar@post.bgu.ac.il, andrew.coles@kcl.ac.uk, karpase@technion.ac.il
ruml@cs.unh.edu, shimony@cs.bgu.ac.il, shperbsh@bgu.ac.il

Introduction
In many real-world applications, heuristic search may take
longer to complete than the remaining time before execu-
tion must begin. Recognizing such situations is important,
as then fallbacks can be employed: opting for a suboptimal
solution rather than an optimal one, beginning to execute a
partially developed plan while continuing the search, or even
declaring failure early, hoping to ‘cut your losses’.

A metalevel controller seeking to make such decisions
needs a reliable prediction of whether such search is tak-
ing too long. For example, situated planners (that plan ‘on-
line’ while time is passing) need to assess the probability
that a candidate partial plan will be executable at the time
search terminates, thus requiring a distribution over remain-
ing search time. Currently, basic distribution estimates are
available, such as one based on one-step-error (Shperberg
et al. 2021). While there is a body of work on attempting
to predict the remaining amount of search effort (Thayer,
Stern, and Lelis 2012; Sudry and Karpas 2022), typically
these methods deliver a single number corresponding to the
expected value, or other point estimate, of this quantity.

Developing distribution estimators raises the question
of how to evaluate them. Testing in the context of met-
alevel control is unattractive, as most metareasoning control
schemes are hard to analyze. But gauging the accuracy of
the distribution estimate in isolation is also problematic, as a
ground truth distribution is not available. The distribution of
the remaining search time that we wish to model is over all
possible problem instances consistent with the observations
made so far, which is not realistically obtainable. Instead, we
exploit the subjectivist Bayesian interpretation of probabil-
ity, in which a rational agent that believes that some event e
will occur with probability p must accept a bet where it pays
less than p to gain a reward of 1 if e occurs.

Put Up or Shut Up Games
We propose ’put up or shut up’ games as a measure of the
quality of a subjective probability of remaining runtime. A
given search algorithm (e.g. A∗, with a known heuristic h)
runs on a given problem instance. An agent observes the
search algorithm run up to a certain point and then, given

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a deadline, has to bet whether to 1) quit (shut up) or 2) pay
a sum (put up) and collect a reward if the search ends suc-
cessfully before the deadline.

Definition 1 (BPSG). Basic put-up or shut-up game: given
a search algorithm A running on a problem instance I , ob-
servations O, a remaining time target t. Should we (shut up)
stop the computation, avoiding any cost or gain, or (put up):
paying an ante of θ, to get a known reward of R (thus net
gain R− θ) iff A solves instance I before t time passes?

To play the game rationally, we must estimate the subjec-
tive probability p̂ = P (t(A, I) ≤ t|O), the probability that
algorithm A will solve instance I in remaining time t(A, I)
that is less than t, given our observations O. The rational
agent should not put up unless p̂ ≥ θ

R . The latter ratio is
also called betting odds of θ to R− θ.

This paper assumes an expansion-step-based search algo-
rithm and that time is in units of expansion steps. Success
at BPSG hinges on having a reliable error model; merely
achieving a better prediction (such as a lower RMSE on a
numerical estimate) is insufficient — a predictor more ac-
curate in expected error may perform on average worse in
BPSG than a predictor with a higher RMSE:
Example: Suppose that search algorithm A will run for an-
other 100 or 101 expansions, each with probability 0.5. This
is unknown to the agent, which relies on predictors to gauge
the anticipated remaining search time, thereby informing
its decision on whether to prolong or terminate the search,
which must conclude within 100 more expansions to be us-
able. We have two predictors: predictor a is an accurate point
estimator that has an unbiased error of at most 1, uniformly
distributed. Importantly, the agent is unaware of the true un-
derlying error model, and incorrectly assumes that predictor
a delivers exactly the correct value. That is, when the true
remaining number of expansions is 100, a will predict either
99, 100, or 101, each of these predictions having a proba-
bility of 1

3 of being made, and the agent will believe that
the predicted value is exact. Predictor b has an unbiased er-
ror of at most 2 expansions, uniformly distributed. Yet, un-
like a, predictor b outputs a distribution. The returned dis-
tribution results from randomly drawing a value uniformly
from within the range of ±2 expansions from the true value,
then constructing a uniform distribution within ±2 around
the predicted value. For instance, if the true expansion value

is 100, Predictor b would base its prediction around a value
v ∈ [98, 99, 100, 101, 102], each having a probability of be-
ing the base of 1

5 , and then b returns a uniform distribution
over the 5 values [v − 2, v − 1, v, v + 1, v + 2].

First, consider even betting odds, i.e. the ante is θ = 1
and the reward is R = 2. Consider predictor a first. If the
true value is 100 (probability 0.5), a will predict 99 or 100
with probability total 2

3 in this case, and because it is sure
its prediction is correct, the metareasoner will decide to ante
up and collect the reward, gaining 1. When the true value is
101 (probability 0.5), a will predict 100 with probability 1

3 ,
and the metareasoner, believing that the prediction is correct,
will ante up and lose. So at even odds, using predictor a, the
metareasoner will gain 0.5(23 − 1

3) =
1
6 .

Now consider predictor b. With a true value of 100, b re-
turns a uniform distribution over [v−2, v−1, v, v+1, v+2]
(with v ∈ [98, 99, 100, 101, 102] each with probability 1

5).
For v = 98, the probability of timely completion (≤ 100
more expansions) is 1. For v = 99, that probability is 0.8,
etc. so all in all for v ∈ [98, 99, 100, 101, 102] the corre-
sponding probabilities of success are [1, 0.8, 0.6, 0.4, 0.2].
With the true number of expansions being 101, we have
v ∈ [99, 100, 101, 102, 103] and the corresponding proba-
bilities of success will be [0.8, 0.6, 0.4, 0.2, 0]. The decision
now depends on the betting odds. At even odds, the metar-
easoner using b will ante up and collect in 3 cases (total
probability 3

5) and will ante up and lose in 2 cases, for a to-
tal expected gain of 1

10 . As expected, at even odds using a
the agent scores better on average than using b.

With different odds, say an ante θ = 5 and reward R = 6
(again total gain 1), using a the agent makes the same deci-
sions, now gaining 1 in 2 cases and losing 5 in one case; total
expected loss is 1

2 . Using b the agent only antes up when its
subjective probability of winning is better than 5

6 , so only
antes if b’s prediction has v = 98, where it is certain that
the true value is ≤ 100; thus its total expected gain is 1

10 .
Conversely, with an ante of θ = 1 and reward R = 6 (poten-
tial gain of 5), a similar calculation shows an expected gain
using a of 9

6 , and with b we get 21
10 , again better than a.

Comparing Estimation Methods
In this work we compare one existing distribution predic-
tor, several existing point estimators naively converted into
distributions, and some new schemes we have developed.

The only scheme of which we are aware that does output a
distribution is based on the one-step error (Dionne, Thayer,
and Ruml 2011; Shperberg et al. 2021), which we consider
as one type of baseline (osed).

Several point-based predictors exist. Expansion de-
lay (Dionne, Thayer, and Ruml 2011) measures the time be-
tween when a node is expanded and when its parent was ex-
panded. Multiplying by an estimate of the number of steps
to the goal using hmin yields the expansion-delay based
predictor ded. Another scheme (Hiraishi, Ohwada, and Mi-
zoguchi 1998) measures velocity: rate (in units of time, or
expansions) at which hmin decreases. Dividing hmin by
the velocity yields a velocity based predictor dv . The NN
method estimates the current fraction of the of the search al-

Figure 1: Mean Relative Score vs. progress pred. RMSE

ready performed with deep NN learning (Sudry and Karpas
2022). NN appears to be the state of the art w.r.t. RMSE. All
these predictors can be naively converted into distributions
by treating the prediction as absolutely certain.

Our novel contribution is to generate a relative-error dis-
tribution over instances of problems solved by A* for some
point predictors; then use the error distribution to create a re-
maining A* runtime distribution from the point predictors.

All these methods play the BPSG over 20 odds ranging
from 0.05 to 0.95, and average scores are computed over nu-
merous problem instances, for sliding tile puzzle and pan-
cake domains. Typical results are shown in Figure 1, for
pancake using the Gap heuristic. Our new error-distribution
corrected predictors ded and deed achieved the best BPSG
scores. More important, however, is that in terms of RMSE
the NN-based scheme (dNN) was the winner, but still scored
significantly worse than the (much simpler) distribution-
based methods. This shows that apparent anomalous cases
as shown in the above example actually occur in practice.

Acknowledgements
We are grateful for support from the US-Israel BSF (grant
2019730), US NSF (grant 2008594), EPSRC project CO-
HERENT (EP/V062506/1), and Frankel Center at BGU-CS.

References
Dionne, A. J.; Thayer, J. T.; and Ruml, W. 2011. Deadline-
Aware Search Using On-Line Measures of Behavior. In
SoCS.
Hiraishi, H.; Ohwada, H.; and Mizoguchi, F. 1998. Time-
Constrained Heuristic Search for Practical Route Finding.
In PRICAI. Springer.
Shperberg, S. S.; Coles, A.; Karpas, E.; Ruml, W.; and
Shimony, S. E. 2021. Situated Temporal Planning Using
Deadline-aware Metareasoning. In ICAPS.
Sudry, M.; and Karpas, E. 2022. Learning to Estimate
Search Progress Using Sequence of States. In ICAPS.
Thayer, J.; Stern, R.; and Lelis, L. 2012. Are We There Yet?
— Estimating Search Progress. In SoCS.

