
No Free Lunch: On the Increased Code Reuse
Attack Surface of Obfuscated Programs

Naiqian Zhang∗, Daroc Alden∗, Dongpeng Xu∗, Shuai Wang†, Trent Jaeger‡, Wheeler Ruml∗
∗University of New Hampshire

†Hong Kong University of Science and Technology
‡The Pennsylvania State University

Abstract—Obfuscation has been widely employed to protect
software from the malicious reverse analysis. However, its secu-
rity risks have not previously been studied in detail. For example,
most obfuscation methods introduce large blocks of opaque code
that are black boxes to normal users. In this paper, we show
that, indeed, obfuscation can increase the attack risk. Existing
gadget search tools, while able to find more gadgets in obfuscated
code, do not succeed in assembling them into more exploits.
However, these tools use strict pattern matching, greedy searching
strategies, and only very simple gadgets. We develop Gadget-
Planner, a more flexible approach to building code-reuse attacks
that overcomes previous limitations via symbolic execution and
automated planning. In a study across both benchmark and real-
world programs, this approach finds many more exploit payloads
on obfuscated programs, both in terms of number and diversity.

Index Terms—Software Security, Code Obfuscation, Code-
Reuse Attack, Partial-Order Planning

I. INTRODUCTION

In the last decade, software obfuscation has become a
successful technique for protecting legitimate software against
reverse engineering. Its fundamental methodology is to cam-
ouflage the real program behaviors with a huge amount of
opaque code, which is generated and injected by the obfus-
cator. A variety of obfuscation methods, e.g., control flow
flattening, opaque predicate, virtualization, have been widely
implemented in academic and industrial tools [1]–[5]. Industry
giants, e.g., Intel, DELL, and Siemens, are all well-known
users of obfuscators [6].

While recent research from the security community focuses
on the obfuscation and deobfuscation [7]–[11], the safety
of obfuscation techniques themselves is little studied. All
obfuscation tools inject tons of useless code into normal
programs to hide the real program behavior [12]. For example,
after Obfuscator LLVM obfuscation, the code size expands
twice as large as the original program. Moreover, the users
of these obfuscators have no knowledge about these newly
injected codes, so users have to treat them as black-box and
simply trust their safety. Previous work [13] has pointed out
that a large number of programs crashed after obfuscation.
Harshvardhan et al. [14], [15] find the number of Return-
Oriented-Programming (ROP) gadgets increases in the obfus-
cated programs. This work hinted that the injected code from
obfuscation might potentially increase the software attacking
surface, but no research has been conducted to bridge this gap.

In this paper, we address this open problem by thoroughly
studying the code-reuse attacks introduced by software obfus-

cation, and the final conclusion demonstrates that obfuscation
indeed increases the attack risks. First, we apply popular
obfuscators to a benchmark and then use existing code-reuse
searching tools to find feasible payloads. The result shows that
the number of gadgets increases significantly in the obfuscated
programs.

However, a severe defect of existing code-reuse search tools
is that they have very limited capability to build valid gadget
chains from the obfuscated programs. Our further analysis
reveals three reasons: restricted patterns, greedy searching
strategies, and complex obfuscated gadgets. Consequently,
they offer very limited help on studying the code-reuse attacks
in obfuscated code.

To overcome this, we developed a new technique to re-
siliently search and build gadget chains from obfuscated
programs. In outline, our method first symbolically analyzes
each gadget candidate and pre-builds a pool of functional
and diverse gadgets. Next, we use a search technique called
automated planning to build gadget chains toward meaningful
attack behavior. The gadgets are incrementally selected to
address a need in the plan and infer ordering constraints over
those gadgets based on their effects. In this way, our method
comprehensively processes all types of gadgets without as-
suming any specific gadget patterns or searching strategies,
overcoming the limitations of existing tools.

We have implemented the approach as a prototype called
Gadget-Planner. Compared to peer tools, Gadget-Planner suc-
cessfully constructs up to 30X more gadget chains from
obfuscated program benchmarks. It also successfully finds 16
payloads on netperf, a real-world obfuscated program.

Contribution. In summary, our contributions are:

• We thoroughly inspect the risks of code-reuse attacks in
obfuscated programs. The study result shows that obfus-
cation techniques introduce a huge number of gadgets;
however, present automated tools cannot effectively con-
struct code-reuse attack chains. We find that the restricted
gadget patterns and searching strategies are the main
reasons.

• We design a novel method to perform comprehensive and
resilient searches for code-reuse attacks on obfuscated
code. Our approach leverages symbolic execution and
partial-order planning without any specific assumption on
gadget patterns and searching strategies.



• We implement the proposed technique as a prototype
tool and successfully use it to construct gadget chains on
obfuscated programs, overcoming the limitations of other
existing tools. The source code and evaluation benchmark
are available at the following link Github.

II. BACKGROUND

A. Software Obfuscation

In general, software obfuscation performs a semantics-
preserving transformation on a normal program and outputs
a complex form that is much more difficult to understand.
It plays a crucial role in the protection of software intel-
lectual property against malicious reverse engineering. Since
Collberg’s cornerstone obfuscation work [16], a variety of
obfuscation strategies have been developed and packed into
popular obfuscation tools such as Obfuscator-LLVM [1] and
Tigress [2]. Several representative ones are listed as follows.

(1) Instructions Substitution replaces arithmetic or bitwise
calculation with functionally equivalent but more complex
instructions. For example, the xor calculation ⊕ can be sub-
stituted by other bitwise operations as follows.

a⊕ b = (¬a ∧ b) ∨ (a ∧ ¬b)

(2) Bogus Control Flow complicates the program’s control
flow by inserting conditional jumps that do not change the
program semantics. For example, the condition is always-true,
where the false branch is junk code, and the true branch is
the original code. Usually, the path condition uses opaque
predicates [17], [18], i.e., complex math expressions that
always evaluated to the same value but are difficult to analyze.

(3) Control Flow Flattening breaks the normal program control
flow into a dispatch structure inside a loop, where a control
variable decides the program states [19].

(4) JIT Dynamic translates a function into a series of interme-
diate code representations. During runtime, this intermediate
representation will be just-in-time compiled to machine code
and start execution.

(5) Self-Modification inserts some special code at the head
of the program. Each time the program runs, this code will
change other parts of the executable code.

(6) Encode Data replaces integer variables, integer arithmetic,
and integer and string literals with more complex expressions
and opaque representations.

(7) Virtualization, a translation-based obfuscation, translates a
program from one programming language to a heterogeneous
language to hide the original program semantics. For example,
The virtualization in Tigress translates a function written in
C into a custom bytecode, which is further interpreted by a
virtual machine during run-time. Consequently, the original
program’s behaviors are camouflaged within the complex
virtual machine execution. Virtualization has been generally
recognized as one of the most advanced obfuscation techniques
to impede reverse engineering [20], [21].

B. Code-Reuse Attack

To date, code-reuse attacks still remain one of the most
common software attacks [22]. The basic idea is to reuse
small code snippets, i.e., “gadgets”, in a benign program
and combine them together to perform malicious behavior.
Starting from re-using small-size gadgets and ending with
a ret instruction, Shacham’s original work [23] has shown
code-reuse attacks can be powerful, indeed Turing-complete.
Since then, subsequent work has enriched the types of gadgets,
such as using complex control flow structures [24], [25], call-
preceded gadgets [22], multiple-architectures [26], [27], and
dispatcher-gadgets [28], [29].

In the real world, a successful code-reuse attack aims to gain
(root) control of the victim machine. They are often finished
with manipulating the system-level resources such as:

• Invoke the system call execve to run shell /bin/sh or
other programs on the victim machine controlled by the
attackers.

• Invoke the system call mprotect to mark a page con-
taining attacker-controlled content as executable and then
redirect the program execution toward that tampered
page.

• Invoke the system call mmap or mremap to map an
attacker-controlled file as executable and then redirect the
execution to that tampered file.

Building Code-Reuse Attacks. Traditionally, code-reuse at-
tacks are manually constructed, which requires the attacker
to be familiar with instruction architecture and have reverse
engineering expertise. This manual procedure is tedious and
error-prone, so people are seeking methods that automate the
gadget-finding and payload-building procedure. These meth-
ods can be categorized into three types according to their
design principles:

• Pattern Matching. ROPGadget [30] was one of the first
code-reuse searching tools. It first searches for the oc-
currence of a set of pre-defined gadget patterns. Then the
gadget candidates are chained together according to some
built-in templates.

• Symbolic Execution. Angrop [31] leverages symbolic
execution to recognize code-reuse gadgets inside binary
code. It matches the symbolic execution result with the
pre-defined semantics signatures of the gadgets. In this
way, Angrop is more resilient than simple syntax-level
pattern matching.

• Program Synthesis. SGC [32] is the state-of-the-art
generic approach for building code-reuse payloads. It
synthesizes logical formulas to encode the CPU and
memory states at the beginning and end of a gadget chain.
Then it queries an SMT solver to check whether a gadget
chain satisfies the state transition.

III. CODE-REUSE ATTACKS IN OBFUSCATED PROGRAMS

In this section, we carefully investigate the code-reuse
attacks in obfuscated programs and report interesting findings.

2

https://github.com/zhangnaiqian/Gadget-Planner-DSN.git


We are especially interested in answering the following ques-
tions.

• Q1: Does obfuscation introduce exploitable code-reuse
gadgets?

• Q2: Can existing code-reuse exploit tools automatically
construct attacks leveraging these new gadgets?

• Q3: What are the vital factors of constructing a feasible
code-reuse attack in obfuscated programs?

We answer these questions by running various obfuscators
on a benchmark and then using gadget-searching tools to scan
them.

A. Threat Model

Our threat model involves an obfuscated binary file with
a known stack memory write vulnerability, which means the
author can write any value to the stack area. We also assume
the attacker can find the gadget’s address, e.g., through an
information leak from certain vulnerabilities. Attackers are
aware of these vulnerabilities that can be used as a starting
point for code reuse attacks.

Note that we assume the memory vulnerabilities in the
code/data presented in the binary file, probably in the ob-
fuscation code, original program, or even the library func-
tions. Identifying the memory vulnerabilities, which can be
accomplished through a variety of automated vulnerability
discovery tools [33]–[36] or through fuzzing [37]–[39], is not
the purpose of this work.

Control Flow Integrity (CFI) [40]–[43], shadow stack [44],
[45] are common techniques to counter code-reuse attack.
Existing works already show that these defense methods are
not safe [22], [25], [46]–[48], However, these techniques can
hardly be used in obfuscated programs because the control
flow in obfuscated programs is heavily mangled, which breaks
the fundamental assumptions of these defense methods, lead-
ing to overwhelming false positives. Therefore, in this work,
we assume that the obfuscated program is not protected a CFI
or shadow stack system.

Address Space Layout Randomization (ASLR) seek to make
code-reuse attack more difficult by adding randomness to
the location of code while the program is running. However,
numerous papers have shown that there are ways to use various
side channels to leak ASLR information [49]–[52]. Therefore,
we assume that the ASLR can be worked around or turned
off.

B. Experiment Setup

Running this experiment requires a set of obfuscators, an
obfuscation benchmark, and the code-reuse search tools.
Obfuscators. We use Tigress [2] and Obfuscator-LLVM [1],
two popular obfuscators for software protection in academia
and industry. They provide a variety of obfuscation schemes
covering those presented in Sec. II.

More specifically, Obfuscator-LLVM adds obfuscation to
LLVM intermediate representation. It provides three types of
obfuscation strategies: instructions substitution, bogus control
flow, and control flow flattening. Tigress is a source-to-source

obfuscator for the C programming language. It directly trans-
lates the original C source code and produces the obfuscated
C source code. In addition to the obfuscations in Obfuscator-
LLVM, it supports more abundant obfuscation options, like
virtualization, self-modification, and JIT dynamic.

To get the most obfuscated programs in our experiments,
we turn on all possible obfuscation options provided by these
tools. We also try each of them separately to observe their
individual effect on code-reuse gadgets. Both Obfuscator-
LLVM and Tigress provides command-line options to turn
each obfuscation method on/off.

Benchmark. We adopt a third-party obfuscation benchmark
from Banescu et al. [53]. This benchmark set: (1) includes
sufficient diverse program functionalities and layouts; (2)
provides scripts to automate the obfuscation and compilation
procedure; (3) consists of C programs, which Tigress and
Obfuscator-LLVM can correctly process.

Machine. Our experiments are performed on a server with the
following configuration.

• CPU: Intel Xeon W-2123 4-Core 3.60GHz
• Memory: 64GB 2666MHz DDR4 RAM
• Hard Drive: 2.5TB SSD
• Operating system: Ubuntu 18.04

Code-Reuse Search Tools. We test three popular tools for
searching code-reuse attacks: ROPGadget [30], Angrop [31],
and SGC [32]. They are the representative tools corresponding
to three categories shown in Sec. II-B.

The option ropchain in ROPGadget enables the ROP
chain building. It also provides additional options like defin-
ing the number of bytes per gadget and we keep them at
the default values. Angrop is implemented on top of the
binary analysis platform Angr [54] with the VEX intermediate
representation. The gadget chain building involves functions
such as find_gadgets, write_to_memory, set_regs, and
print_payload_code. After configuring these parameters,
Angrop will automatically search the possible ROP chains.
SGC builds logical formulas to encode the execution state and
then queries an SMT solver to synthesize a valid gadget chain.
We first modify the exploits configuration file based on our
target binary to set up the preconditions and post-conditions,
then run extractor to extract all functions and disassemble
all gadgets. Then we use synthesizer with default settings
to synthesize a gadget chain for those gadgets. We set up one
hour for each benchmark program as the time-out threshold.

C. Findings

For every program in the benchmark, we first compile the
normal version without any obfuscation. Next, we apply the
obfuscators and output the obfuscated version. We use code-
reuse search tools to find gadgets and try to build a valid
gadget chain for a code-reuse attack.

Number of Gadgets. We observed that the number of gadgets
increases substantially in the obfuscated programs. Fig. 1
shows a detailed comparison of the number of gadgets between

3



Original Program Obfuscated Program

39,388

20 20

72,380Number of Gadgets
Number of Chains

0

40

80

120

160

0

200

1.5

3

4.5

6

7.5
N

um
be

r 
of

 G
ad

ge
ts N

um
ber of C

hains

x 104

Fig. 1: Comparing the number of gadgets and the number of
payloads (chains) found by existing tools from the original
and obfuscated programs.

the original program on one type of obfuscated program (In-
structions Substitution provided by Obfuscator-LLVM). The
average increasing rate for all types of obfuscation methods
in Sec. II-A is about 38.7%. All gadgets number are counted
by ROPGadget because of its strong strength in searching
gadgets. Therefore, obfuscation tools indeed introduce a large
number of valuable gadgets into programs.

Gadget Chain. Surprisingly, existing tools cannot find more
gadget chains in the obfuscated programs. Fig. 1 shows that
these tools still generate the same number of gadget chains as
the original programs. This result is counter-intuitive because
the obfuscated programs include so many more gadgets that
the tools should be able to generate more chains. The conflict
leads us to inspect how those automated tools construct gadget
chains and discover their limitations.

D. Limitations of Existing Chain-Building

A successful code-reuse attack triggers one of the system
calls described in Sec. II-B. To achieve this goal, the search
tool needs to find proper gadgets to set up the parameters for
the system call. For example, suppose the attacker wants to call
execve to spawn a shell. Under the x86 calling convention,
the system call number 0x3b must be placed in the rax
register. Registers rdi, rsi and rdx store the arguments of
execve. rdi stores the starting address of a character string.
Usually, this is the full path of a program that the attacker
would like to run, e.g., “/bin/bash”. The character string
can be part of the payload written into the stack; rsi saves the
argument list passed to the executable program; rdx saves a
pointer pointing to the environment variables, which is usually
set as a NULL pointer.

We identify the following limitations of the chain-building
procedure of existing automatic searching tools.

Strict Syntax Pattern Matching. Some tools rely on strict,
hard-coded patterns on the syntax level to find gadgets. A
chain is formed only when all the exact gadgets are found
in the targeted binary. ROPGadget is in this category. As an

example, Fig. 2(a) is one strict syntax pattern. The chain built
from this pattern triggers an execve through the interruption
int 0x80. reg2 stores the system call number. It is initialized
as 0 by the xor reg2, reg2 gadgets and increases to the
required value by the inc reg2 gadget. A valid chain can
be successfully built only when all these gadget patterns are
matched in the program, so it largely limits the possibilities
of constructing valid chains.

Semantic Pattern Matching. To overcome the weakness
above, some other searching tools adopt semantic patterns,
which allow users to describe the patterns or the final attacking
goal. Then the tool will automatically search for chains to sat-
isfy the description. Both Angrop and SGC leverage semantic
patterns.

Although appearing to be more flexible than the syntax
level pattern matching, these pre-defined descriptions and
the matching process still heavily impede the chain-building
process. For example, suppose the goal is to assign the value
0x3b the register rax. Semantic pattern matching only checks
common gadget sequences like “pop rax; ret;”. However,
the matching fails if the target binary program does not include
these types of gadgets. Fig. 2b shows another way to build
the value 0x3b by adding 0x30 and 0xb. However, semantic-
pattern matching is incapable of building gadget chains like
this.

Searching Strategy. We also find that current tools only
aim at building simple and short chains [30], [31], avoiding
searching for more complex possibilities. They limit the size
of the gadgets and the number of gadgets in each chain.
This greedy strategy may be good for performance, but it
misses many opportunities for building feasible chains. For
example, Angrop only uses the pure pop and ret gadgets for
assignments, ignoring other alternative gadgets that contain
some irrelevant instructions.

Gadgets from Obfuscation. Another important observation
is that existing tools rarely use the new gadgets injected
by obfuscations. We found that this is because obfuscations
introduce many complex gadgets that cannot be processed
by existing tools. For example, many gadgets in obfuscated
programs contain conditional jumps and indirect jumps. Ta-
ble I shows that the number of gadgets with conditional jumps
after obfuscation is 60% more than before, and the number
of gadgets with indirect jumps after obfuscation increased
50% more than before. We carefully studied the common
gadgets used by the ROPGadget, Angrop, and SGC in gadget
chains, and we found that none of them used any gadgets
with conditional jumps or indirect jumps. ROPGadget and
Angrop only use gadgets ending with “ret”. Some gadgets
from SGC’s results include indirect jumps, but no direct jumps
or conditional jumps are found.

E. Conclusion

In summary, to answer the three questions at the beginning
of this section:

4



TABLE I: The types of the gadgets and average total number of each type found by ROPGadget in original programs and
obfuscated programs. U means unconditional; C means conditional; DJ means direct jump; IJ means indirect jump. The
Original means the program before obfuscation. Obfuscated means the program after obfuscation. IR means increasing rate.

Gadget Type Description Example Original Obfuscated IR

Return The gadget end with a ret instruction pop rax; ret; 9,231 16,868 82.70%
UDJ Jump to a constant address without condition pop rax; jmp 0x401235; 40,034 57,110 42.65%
UIJ Jump to a register or memory without condition pop rbp; mov edi, 0x601030; jmp rax; 3,216 5,255 63.40%
CDJ Jump to a constant address with condition test eax,eax; jg 0x14b3; jmp 0x13fd; 5,294 8,727 64.84%
CIJ Jump to a register or memory with condition je 0x4003e2; call rax; 1,988 3,184 60.16%

// Set syscall number
xor eax, eax
ret
inc eax (add eax, 1)
ret

// Set syscall arguments
pop ebx
ret
pop ecx
ret
pop edx
ret

// Trigger syscall
int 0x80

(a) Syntax pattern matching.

// The logic pattern 1
rax = 0x3b
rdi = 0x4018b2
rsi = 0x0
rdi = 0x0

// The logic pattern 2
rax = 0x30
rbx = 0x0b
rax = rax + rbx (rax = 0x3b)
rdi = 0x4018b2
rsi = 0x0
rdi = rsi (rdi = 0x0)

(b) Semantic pattern matching.

Fig. 2: The pattern matching methods for building gadgets.
ROPGadget uses syntax patterns and Angrop uses semantic
patterns.

• Software obfuscation methods introduce a large number
of code-reuse gadgets into a program. Existing gadget-
detection tools can easily find these gadgets indicating high
risks of potential code-reuse attacks.

• However, existing searching tools have very limited capa-
bility to chain these gadgets into valid payloads on certain
types of obfuscation.

• The reasons are due to the strict syntax and semantic
patterns, searching strategy, and the diverse gadget types
in the obfuscated programs.

IV. GADGET-PLANNER

To overcome the limitation of existing code-reuse exploita-
tion tools, we propose a new method, Gadget-Planner, to
comprehensively explore code-reuse attacks in an executable
file. Our method does not rely on any syntax/semantic patterns.
This section first discusses the overall workflow and then
elaborates on each component.

A. Overview

The core idea of Gadget-Planner is to leverage the power
of symbolic execution and partial-order planning, an artificial
intelligence (AI) method to find a sequence of actions from
one system state to the desired goal state [55], [56]. Given
a program binary, we first perform symbolic execution and
constraint solving to generate the “semantic metadata” for
every gadget candidate. Next, a planner selects and assembles

those gadgets, which attempts to construct a complete gadget
chain forming a successful code-reuse attack.

Strength. Our method overcomes the limitation of previous
works from two aspects: (1) Gadget-Planner does not rely on
any syntax/semantic patterns. The planner can construct the
gadget chain freely based on any gadgets collected from the
binary program. (2) Gadget-Planner can handle all types of
gadgets in Table I, regardless of direct/indirect and condition-
al/unconditional.

Challenge. The major challenge rises from the enormous
number of possible gadgets in a binary program. As Fig. 1
shows, obfuscated programs include more possible gadgets
than original programs. Blindly searching among those huge
amounts of gadgets will inevitably cause the state-explosion
problem.

Gadget-Planner has two strategies to alleviate this challenge.
First, we only apply symbolic execution and constraint solving
on short code snippets such as a part of basic block, avoiding
the heavy overhead from running them on large programs.
Second, several heuristic search optimizations are adopted to
help guide the planner in gradually assembling smaller gadgets
toward the final attacking goal.

Workflow. As shown in Fig. 3, Gadget-Planner’s overall
workflow contains four main stages.
1) Gadget Extraction. Gadget-Planner extracts gadgets from

the target binary code. It seeks to decode from the valid
starting position of each basic block in the control flow
graph of binary code until reaching a jump instruction.
From the list of potential gadgets, Gadget-Planner deter-
mine whether the gadgets end in a controllable indirect
jump or a direct jump. All the gadgets ending with a direct
jump are joined with the gadget starting from that location;
the merged gadget will be treated as a single gadget.

2) Subsumption Testing. This stage winnows the list of gadgets
down to a minimal subset. Gadget-Planner run symbolic
execution on the gadgets and use solvers to check their
equivalence. Only one gadget is kept in its equivalent class.

3) Partial-order Planning. Gadget-Planner uses partial-order
planning to chain the identified gadgets together. Starting
from the final attacking state, the planner attempts to build
a gadget chain, essentially in a backward direction, until it
reaches a valid initial memory state which can be injected
into stack memory.

4) Post-processing. Last, Gadget-Planner transforms the plan-
ning result into a memory payload, which can be directly

5



Gadget-Planner

0101001
1010101
0111000
1000010

Binary file
Payload 2Gadgets Merge

?
=

Subsumption 
Testing

=+

Planning
Post

Processing

ef 12 33 28
17 2a 30 1b
81 11 a0 6fGadget 

Extraction

Plan 1

Plan 2

24 a3 12 2c
70 2d 22 7e

Payload 1

Fig. 3: High level overview of Gadget-Planner’s architecture.

TABLE II: The record for describing a gadget.

Field Description
len Measures the gadget length in bytes
location The address of the first instruction in each gadget in

the binary file
jmp-type The jump instruction at the end of the gadget
clob-reg The registers whose contents are overwritten
ctrl-reg The registers can be controlled through the gadget
pre-cond Symbolic constraints required for gadget to run

successfully, e.g., register contents must be set to
specific values.

post-cond Symbolic constraints representing the effects of the
gadget

placed on the victim’s stack to trigger the desired code-
reuse exploitation.

B. Gadget Extraction

Taking a binary file as the input, our first task is to seek
available gadgets in the file as the candidate for constructing
a code-reuse attack. We disassemble the raw binary file and
start searching at any position within a basic block. This
strategy can detect unaligned instructions and use them for
future chain-building procedures. It also accepts parameters to
ignore the first N instructions and search from an arbitrary
position in the middle of a basic block.

The gadgets are further analyzed by symbolic execution to
create the pre-condition and post-condition. Generally, a pre-
condition describes the condition that guarantees the gadget’s
functionality. A post-condition is related to the execution result
of this gadget.

For each gadget, we create a record storing information
like gadget length, location, jump type, the registers being
changed or controlled, pre-condition, and post-condition. A
detailed description is shown in Table II. These records contain
sufficient information, so all future analyses are performed on
them.
Conditional Jump. Processing conditional jumps are a dis-
tinct feature of our gadget extraction stage. Gadget-Planner can
extract the gadgets with both indirect and direct conditional
jump, e.g., jg <address> or jne ebx. In contrast with our
method, existing gadget-searching tools only consider gadgets
ending with unconditional jumps. This feature significantly
enriches the gadget pool, which will be further processed for
exploitation generation.

xor rax, rax
ret

(a)

inc rax,
sub rdx, rbx
jnz 0x1234
ret

(b)

mov rax, rbx
test rcx, rcx
jz 0x5678
...

0x5678:
pop rbx
ret

(c)

Fig. 4: Conditional jumps in gadgets.

TABLE III: The record for the conditional gadgets in Fig-
ure 4(b).

Field Value
len 16
loc 0x4321
jmp-type ret
clob-reg rax, rdx
ctrl-reg rax
pre-cond rbx == rdx
post-cond raxafter == raxbefore + 1

The jump condition is placed into the precondition extracted
by symbolic execution. When constructing the gadgets chain,
these gadgets are used if the precondition is satisfied.

Figure 4 compares the normal gadgets with two different
situations of gadgets with conditional jumps. Figure 4(a)
first presents traditional return-ended gadgets without any
conditional jumps. Figure 4(b) shows one gadget with a
conditional jump jnz 0x1234 in the middle. To ensure the
functionality of this gadget, the conditional jump must not
be taken, which means, the condition “rdx-rbx != 0” must
be false. Therefore, we must guarantee “rdx == rbx” to use
this gadget. Figure 4(c) shows another situation also involving
conditional jumps, where the first half of the gadget ends with
a conditional jump that must be taken to jump to the second
half. This time, the jump condition must be true to trigger the
jump, i.e., “rcx == 0” must hold.

Table III shows the value of each field in the record
of Figure 4(b)’s gadget. These values provide an abstract
description of the gadget’s functionality. The pre-condition and
post-condition usually involve two sets of symbolic variables
representing the program states which contain register and

6



memory symbol values before and after the gadget execution.
raxbefore is the value in the rax register before the gadget
execution. For simplicity, Table III uses a C-like syntax to
present the constraints.

Those constraints generated by memory operations like
mov between registers and memory require a value working
as a “pointer” to a readable or writable memory area. To
express this, we add a new type in the constraint description
language called POINTER, to distinguish it from normal bit-
vectors. For example, when triggering the execve() syscall,
we need to pass an argument list to this call; those are
all passed with a pointer type, so under our new type of
constraint, the target state of calling an execve() can be de-
scribed as {’rax’: 57, ’rdi’: path/to/executable,
’rsi’: Pointer(to=0), ’rdx’: Pointer(to=0)}.

Since analyzing whether an arbitrary address is readable or
writable is difficult in general, we restrict these reads or writes
to occur only on the stack if the value of a register depends
on a read from memory that we control (e.g. the payload area
on the stack), the after the variable is left unconstrained so
that it is free to take on whatever value is necessary for the
rest of the plan.
Unconditional Direct Jump. Our method can process those
gadgets ending with direct jumps as well, like jmp 0x1234,
and use them to construct chains. The keystone is to check the
instructions at the target address. We follow the direct jump
and merge the gadget ending with a direct jump with the one at
the targeting address. The two gadgets are considered together
in the following stages.

C. Subsumption Testing

The gadget extraction stage usually produces an enormous
number of available gadgets from an obfuscated program. We
conduct subsumption testing to avoid repeat searching among
the gadgets with the same functionality. The high-level idea is
to remove redundant equivalent gadgets because if two gadgets
perform the same function, then we only need one copy of
them. For every pair of gadgets A and B, if A can subsume
the semantics of B, then B is deemed a redundant gadget that
can be safely removed without undermining the expressiveness
of the whole gadget collection from this binary.

Let gadget g1’s pre-condition as pre1 and post-condition
as post1. Similarly, let gadget g2’s pre-condition as pre2 and
post-condition as post2. To decide whether g1 exhibits seman-
tics subsuming g2, we check if pre1 is a superset of pre2 and
if post1 equals post2. This means g1 is functionally equivalent
with g2 and on a looser pre-condition. For example, if a gadget
has a pre-condition rbx >= rdx, which is a superset of rbx
== rdx as in Table III, and the post-conditions are equivalent,
then it subsumes the gadget in Fig. 4(b).

To this end, we construct the constraint (1) as below to
perform the subsumption testing. The first clause asserts that
pre2 is a subset of pre1, while the second clause asserts that
post2 equals post1. If it is true, then g2 can be safely removed.

(pre2 → pre1) ∧ (post1 = post2) (1)

The subsumption testing guarantees to keep exactly one
gadget for one functionality. If there is a tie (i.e. g1 subsumes
g2 and g2 subsumes g1), it means g1 and g2 are equivalent.
We randomly keep one of them in the gadget pool.

D. Partial-order Planning

With the gadgets processed from previous phases, we now
apply a technique called partial-order planning to find a
sequence of gadgets from the library that forms a valid code-
reuse attack. The goal is to trigger one of the attacks in
Sec. II-B and we are seeking a plan to achieve this goal,
utilizing the gadgets as actions in the plan.

Background. Planning is a traditional area of artificial in-
telligence focusing on finding a sequence of actions that
takes a system from a specified initial state to a desired goal
state [55], [56]. Planning methods have been widely adopted in
robotics [57] and other artificial intelligence applications [55].

One common planning problem is finding a path in a
directed graph of discrete states [58]. More formally, an arc
from state s1 to state s2 exists if there is a valid action in state
s1 that results in state s2. Hence a state-space search problem
can be described as a tuple 〈S, s0, SG, A, c(a, s)〉 where:

• S is a finite set of states s,
• s0 ∈ S is the starting state,
• SG ⊆ S is a set of goal states,
• A(s) ⊆ A is the set of actions applicable to each state
s ∈ S, and

• c(a, s) calculates the cost of performing action a at the
state s.

The planning procedure searches the graph for a solution,
i.e., a state’s transition trajectory from the starting state to
a goal state. More accurately, a solution is a sequence of
state transitions s0

a0→ s1
a1→ . . . ,

an−1→ sn so that sn ∈ SG

and ai ∈ A(si). The solution is optimal if the total cost∑n−1
i=0 c(ai, si) is minimum.
An intuitive search procedure is a breadth-first search, which

first examines every applicable action at the initial state s0,
then every applicable action at the successor states, and so on
until a goal is reached. For a specific problem, we often have
heuristics that give an approximation of how far away from a
goal a state is. They can guide the graph search to find a goal
more quickly.

Gadget-Planner. In our planning problem, each discrete state
corresponds to a specific combination of values in registers
and memory. Triggering a system call like execve is a goal
state. Each gadget corresponds to an action that transitions the
state of the system. The planner’s task is to find a sequence
of gadgets that takes the system from its initial state to a goal
state. In partial-order planning, a plan is not required to be a
totally ordered sequence; each gadget must come before those
that depend on it, but non-interfering gadgets may be allowed
to occur in either order relative to one another. Because a
single partial order is compatible with many total orderings,
the space of partially-ordered plans is smaller than that of
sequences, allowing a faster search for a valid plan. Once

7



found, a partially-ordered solution plan is linearized to form
the attack.

Formally, the planning process operates on a 5-tuple prob-
lem state 〈α, β, γ, δ, ε〉, each of which represents a (possibly
incomplete) attack plan:

• α is a set of gadgets {g1, g2, . . . , gn} selected so far for
the exploit.

• β is a set of gadget orderings. Each ordering 〈gi, gj〉
describes a data dependency requiring that the gadget
gi must precede gj . One common example is that gj
overwrites the data written by gi.

• γ is a set of gadget pairs describing the causal links. A
causal link between two gadgets gi and gj means that the
post-condition of gi fulfills the pre-condition of gj .

• δ is a set of pre-conditions that have not yet been fulfilled.
• ε is a set of causal links that are currently unsafe, meaning

that there exists a gadget gk ∈ α that would negate the
previous post-condition of the causal link and could be
ordered between gi and gj with violating some gadget
ordering.

Essentially, the planning process is a backward search from
the goal, i.e., one code-reuse attack described as a constraint.
The planner iteratively selects a plan, which is a set of gadgets
that can result in the searching goal, from its current set of
partial incomplete plans, selects an open pre-condition from
that plan’s δ, and tries to find gadgets from α that can fulfill
it. If it fails, the plan is a dead-end and can be discarded.
Otherwise, we generate a successor plan for each gadget
whose post-condition fulfills the open pre-condition. Then the
fulfilled pre-condition is removed from δ, and the new gadget’s
pre-condition is added. The new causal link is added to γ.
The data dependency between the new and existing gadgets is
analyzed, and β is updated accordingly.

Note that the gadget pairs in β and γ represent a partial-
order, so the new gadgets can be inserted between these pairs
to construct the gadget chain. This design gives the planner
abundant freedom to build diverse gadget chains.

Plan Completion. When there are no unfulfilled pre-
conditions, i.e. δ = ∅, the new successor plan represents
a complete plan that leads to a valid code-reuse exploit.
Otherwise, the new partial plan is added to the planner’s
set of incomplete plans based on the order of the priority
queue, which is sorted by some heuristic values, such as the
number of remaining dependencies. Usually, incomplete plans
with the fewest remaining dependencies are preferred. Gadget-
Planner does not stop when finding one gadget chain; it keeps
searching for more diverse gadget chains as many as possible.

Unsafe Causal Link Elimination. Generating a successor
plan in this way may result in a plan where ε 6= ∅. We then
need to eliminate all the unsafe causal links in ε by finding a
partial order that doesn’t violate any of the dependencies of
the gadgets in β. To test the dependencies, we check every
register’s dependency on the current gadget and compare their
values with all previous gadget’s register values. The order
must be changed if the current value changes any previous

Algorithm 1 Gadget-Planner algorithm.

1: Input: A goal G, and a library of gadgets L.
2: function SEARCH(G,L)
3: Q← InitPriorityQueue()
4: P ← InitPlan(G)
5: Q.Add(P )
6: while Q is not empty do
7: best ← pop(Q)
8: precond ← GetPreCond(best)
9: gadgets ← PickIfSatisfy(precond, L)

10: for g ∈ gadgets do
11: plan ← AddToPlan(gadget, best)
12: if ∃ constraint UNSAT in plan then
13: continue
14: else if Dependency(plan) = ∅ then
15: Output plan
16: end if
17: Add plan to Q
18: end for
19: end while
20: return Failure
21: end function

value. If a dependency cannot be solved by reordering the
gadgets, the plan is invalid so it will be discarded from the
current planning queue.

Planning Algorithm. Putting these ingredients together, Al-
gorithm 1 presents the pseudo-code for the whole planning
process. The for loop beginning on line 8 enumerates the
possible successor plans. Since the search starts from the
desired exploit and works backward, we first consider the plan
consisting only of the pre-condition to trigger the exploit. The
algorithm starts by inserting that initial state into a priority
queue (lines 4 and 5). We use a greedy best-first search,
meaning that the priority queue is ordered by the heuristics
specified below. Each iteration of the search loop at line 6 pops
a partial plan from the priority queue, generates the successor
plans, and inserts them into the queue. Lines 9 through 15
explain how the successor plans are evaluated and added to
the queue. The whole procedure continues and prints out a
complete plan (line 13) until the search space is exhausted
and the queues emptied (line 18), so Gadget-Planner can find
multiple different plans from the pool of candidate gadgets.

Heuristics. The priority queue is sorted based on the following
heuristics. The weights are from high to low.

• Number of remaining pre-conditions. The search prefers
a partial plan with fewer remaining pre-conditions. This
leads the planner to first check the plans that appear
almost complete.

• Number of constraints. We prefer plans with fewer con-
straints because they are likely to be easier to satisfy and
hence cheaper to enumerate and elaborate. Similarly, the
planner prefers fewer symbolic variables.

8



• Complexity. The planner prefers simpler gadgets because
it is usually easier to build a chain using simple incre-
ments and mathematical operations combinations.

E. Post-processing
After finding the valid plans, we get a partial-order sequence

of gadgets. As the last step, we generate a stack payload
for this gadget sequence. The payload is a binary sequence
that can be placed on the stack when the executable file is
running to trigger the attack. The partial order gives flexibility
in changing the order of some gadgets in the payload.

V. IMPLEMENTATION

The implementation of Gadget-Planner contains approxi-
mately 1,500 lines of Python code on the basis of the Angr
binary code analysis framework [54]. Angr facilitates lifting
binary code from various architectures into the VEX interme-
diate representation and performs symbolic execution. Gadget-
Planner employs the popular constraint solver Z3 [59] to define
symbolic variables in bit-vectors and solve constraints.

Gadget-Planner can search and generate payload for trig-
gering the three types of attacks in Sec. II-B. These gadget
chains precisely set the contents of specific registers and then
jump to a syscall instruction.

Inside Gadget-Planner, gadgets are represented as a separate
data structure to facilitate passing gadget information and
referencing the same gadget multiple times unambiguously
during planning.

In particular, Gadget-Planner represents the gadget library
as a dictionary keyed on the register name, i.e., indexing the
available gadgets by the registers they affect. This implemen-
tation allows the planning phase to easily select the gadgets
that are relevant for achieving a given goal. Selecting gadgets
in this way, instead of considering all gadgets in all states,
substantially reduces the branching factor of the search.

VI. EVALUATION

This section aims to answer three research questions (RQs)
regarding Gadget-Planner:

• RQ1: Comparing to existing work, how effective is
Gadget-Planner in constructing code-reuse gadgets from
obfuscated and un-obfuscated programs? (effectiveness)

• RQ2: How does the code obfuscation affect code-reuse
attack chains in obfuscated programs? (effectiveness)

• RQ3: Can Gadget-Planner generate code-reuse payloads
for obfuscated real-world programs? (practicability)

• RQ4: How much overhead does Gadget-Planner intro-
duce? (performance)

As the answer to RQ1, we apply Gadget-Planner to the
same obfuscation benchmark in Sec. III, then report the
result of constructing valid gadget chains on obfuscated and
un-obfuscated programs. For RQ2, we run Gadget-Planner
on obfuscated programs with different obfuscation methods
to check the generated gadget chains. To answer RQ3, we
successfully build a code-reuse payload for a real-world ob-
fuscated application. In response to RQ4, we report Gadget-
Planner’s searching time and memory usage.

A. Code-Reuse Attacks in the Benchmark

We apply Gadget-Planner to the benchmark programs (orig-
inal and obfuscated) and compare the result with the peer tools.
The time threshold is set to 2 hours for each program.
Number of Gadgets. The “Number of Gadgets” columns
in Table IV show how many gadgets are collected by each
tool. We count the total number in the gadgets pool and the
number of gadgets in the chain. The data shows that the peer
tools collect tens of thousands of gadgets but can only use
very few of them when building the chain. On the contrary,
Gadget-Planner’s gadgets collection is less than the peer tools
because of the gadget combination and subsumption testing.
Concatenating smaller gadgets to larger gadgets enriches the
functionalities of the gadgets inside the searching pool, and
the subsumption testing filters out the gadgets with the same
behavior. Also, the planning algorithm does not assume any
particular patterns, so it can comprehensively build different
gadget chains. Consequently, Gadget-Planner efficiently con-
structs a smaller gadget pool and builds more chains from
them.
Number of Code-Reuse Payload. Gadget-Planner finds many
more code-reuse payloads than the peer tools. Table IV shows
the experiment result. On the obfuscated programs, Gadget-
Planner can find 30X more payloads than ROPGadget, 10X
than Angrop, and 2X than SGC.

We observe that the factors limiting existing tools are strict
patterns, searching strategies, and complex obfuscated gad-
gets. More specifically, ROPGadget only matches the execve
pattern, which is hard-coded as syntax-level searching and
thus strictly limits the capability for building the payloads.
Similarly, all gadget chains constructed by Angrop share
identical patterns. For instance, it only uses pop reg; ret;
to assign a value to registers regardless of all other equivalent
gadget variants. SGC uses a gadget selection function to
reduce the search area, so the gadget candidates pool is similar
in different searches. Distinct from all these existing tools,
Gadget-Planner resiliently searches gadgets and builds code-
reuse payloads broadly for obfuscated programs.
Gadget Diversity and Complexity. We further compare the
payloads generated by Gadget-Planner with others and find
that Gadget-Planner can build the most diverse code-reuse
chains. Table V compares the percentage of the four types of
gadgets that appeared in the chains: return, indirect jump, di-
rect jump, and conditional jump. ROPGadget and Angrop only
use gadgets ended with return instructions. SGC can construct
chains with gadgets ended with return and indirect jumps.
However, none of them handles direct jumps or conditional
jump instructions. Instead, Gadget-Planner uses all types of
gadgets to construct a diverse collection of chains.

Unlike existing exploitation tools that only use simple gad-
gets, Gadget-Planner can build diverse chains with complex
gadgets. More precisely, the chains include various gadgets,
and each gadget contains more instructions. To quantify the
diversity and complexity, we measure two metrics: the gad-
gets’ length and the chains’ length. Overall, longer gadgets

9



TABLE IV: A comparison of the number of gadgets and payloads between Gadget-Planner and the peer tools on obfuscated
and non-obfuscated programs. The parenthesized numbers count the number of payloads newly introduced by the obfuscation.

Obfuscation Number of Gadgets (Total/Used) Attack Number of Payloads

ROPGadget Angrop SGC Gadget-Planner ROPGadget Angrop SGC Gadget-Planner

Original 39,388 / 6 12,958 /18 2,460 / 61 885 / 40

execve 1 1 6 8
mprotect - 1 5 6
mmap - 1 5 6
Total 1 3 16 20

LLVM-Obf 62,989 / 6 33,484 / 18 4,779 / 61 1,490 / 185

execve 1 (0) 1 (0) 6 (0) 15 (7)
mprotect - 1 (0) 5 (0) 10 (4)
mmap - 1 (0) 5 (0) 12 (6)
Total 1 (0) 3 (0) 16 (0) 37 (17)

Tigress 50,459 / 6 27,036 / 18 3,911 / 61 1,224 / 205

execve 1 (0) 1 (0) 6 (0) 16 (8)
mprotect - 1 (0) 5 (0) 16 (10)
mmap - 1 (0) 5 (0) 9 (3)
Total 1 (0) 3 (0) 16 (0) 41 (21)

TABLE V: The gadget chain properties. The gadget length
and chain length are measured by the average number of
instructions. The remaining columns describe the percentage
of each gadget type in the chain. The “Ret”, “IJ”, “DJ”, “CJ”
refer to return type, indirect jump, direct jump, and conditional
jump.

Tool Gadget Len Chain Len Ret IJ DJ CJ

ROPGadget 2.1 12.6 100% 0% 0% 0%
Angrop 2.3 13.8 100% 0% 0% 0%
SGC 5.8 23.2 68% 32% 0% 0%
Gadget-Planner 6.7 33.5 38% 10% 12% 40%

and chains indicate that the tool can handle more complex
gadgets and search deeply in the gadget space. Table V shows
that Gadget-Planner builds longer gadget chains using larger
gadgets than the peer tools do. The average chain length is 1.5
times than SGC and 3 times than ROPGadget and Angrop.

Unobfuscated Programs. The “Original” row in Table IV
compares Gadget-Planner and other tools on the unobfuscated
benchmark programs. The result shows that Gadget-Planner
can also build more gadget chains on unobfuscated programs.
The reason is that Gadget-Planner does not rely on any specific
structures inside obfuscated programs. Instead, the symbolic
execution and automated planning in Gadget-Planner capture
the generic features in code-reuse gadgets and chains.

B. Obfuscation and Code-Reuse Risks

The parenthesized numbers at the rightmost column in
Table IV shows the number of chains that are newly introduced
by the obfuscations. Gadget-Planner is the only tool can find
these gadget chains.

Another important finding is that the number of code-reuse
attacks varies on the obfuscation methods, which means some
obfuscations bring more code-reuse attack risks than others.
Fig. 5 shows the number of payloads on different obfuscations,
where the top three, bogus control flow, control flow flatten,
and virtualization, are marked as red. They introduce a high
code-reuse risk because they inject a huge number of jump
instructions that are easier to use for the attack. Therefore,
users must cautiously adopt these three obfuscations.

0

5

10

15

20

25

30

Orig
inal

Bogus C
ontro

l F
low

Contro
l F

low Flat
ter

ning

Instr
ucti

ons S
ubsti

tutio
n

Jit
-D

yn
am

ic

Self
-M

odific
ati

on

Enco
de D

ata

Virtu
ali

za
tio

n

8

24

21

9
8 8

11

27

N
um

be
r 

of
 C

ha
in

s

Fig. 5: Comparing the number of chains from the original
program and different types of obfuscated programs.

C. Real-World Applicability

To evaluate Gadget-Planner in real-world scenarios, we run
Gadget-Planner with the peer tools on SPEC 2006 benchmark
programs [60]. Also, we trigger a code-reuse attack on a buggy
version of netperf using the payload constructed by Gadget-
Planner.

SPEC Benchmark. We apply the obfuscators to all programs
in the SPEC benchmark and successfully produce four obfus-
cated programs from LLVM-Obfuscator and two from Tigress.
The main reasons for the failed cases are: 1) some programs
are written in Fortran and thus cannot be processed by LLVM-
Obfuscator or Tigress; 2) several old programs depend on
obsolete libraries and we encounter difficulties when building
them on modern machines; 3) some data structures, like the
builtin type _Complex, are not supported by LLVM or Tigress.
We apply Gadget-Planner and other peer tools to the non-

10



TABLE VI: Comparing the number of gadgets and chains between Gadget-Planner and the peer tools on the original and
obfuscated programs from the SPEC benchmark. “RG” means ROPGadget and “GP” is Gadget-Planner. “-” means Tigress
fails to obfuscate the program.

Benchmark Original LLVM-Obf Tigress

Gadgets RG Angrop SGC GP Gadgets RG Angrop SGC GP Gadgets RG Angrop SGC GP

401.bzip2 3,896 0 0 2 3 13,825 0 0 2 5 3,667 0 0 2 3
429.mcf 2,501 0 0 0 3 14,891 0 0 1 8 3,158 0 0 1 1
445.gobmk 32,847 0 1 4 7 33,319 0 1 4 12 - - - - -
456.hmmer 10,964 0 1 4 5 41,840 0 1 4 7 - - - - -

Gadget 1:
0x4a8462: pop rsi

test rax, rax
jg 0x483848
add rbx, 4
pop rbx
pop rbp
ret

Gadget 2:
0x4707f2: pop rax

test rax, rax
je 0x42cebd
pop rdi
add rsp, 8
jmp rdi

Gadget 3:
0x484af5: pop rdx

cmp rbx, 0x190
jne 0x484960
add rsp, 4
pop rbx
ret

Gadget 4:
0x4ab46c: call rbx

Fig. 6: A gadget chain from 429.mcf built by Gadget-Planner.
It cannot be built by any existing tool.

obfuscated and obfuscated programs. The search time is set to
2 hours for each program.

The result in Table VI shows that Gadget-Planner outper-
forms the peer tools in terms of finding more attack payloads
from both the original and the obfuscated programs. Exist-
ing tools cannot find the exploit chain because their search
strategies are too simple, and the alternative gadget pool is
not diverse enough. ROPGadget and Angrop heavily depends
on strict patterns. Once a gadget in the pattern is missing, the
whole search will fail. For example, if pop rdx; ret does
not exist in the current program, Angrop fails to set a value
to this register. Due to using some gadgets with an indirect
jump, SGC will find exploit chains that the other two existing
tools cannot find in some situations.

Gadget-Planner’s diverse gadget pool and flexible search
strategy enable it to find many more chains that other tools
cannot find. Fig. 6 shows a chain example built by Gadget-
Planner from the 429.mcf in SPEC. Note that none of the
other tools find any chains from that program. After carefully
checking the chain-building procedure, we find that the reason
is due to the lack of one special gadget pop rsi; ret, so
the target value cannot be assigned to rsi correctly. On the
other hand, Gadget-Planner successfully connects two separate

1 void break_args(char *s, char *arg1, char *arg2)
2 {
3 char *ns;
4 ns = strchr(s,’,’);
5 if (ns) {
6 *ns++ = ’\0’;
7 while ((*arg2++ = *ns++) != ’\0’);
8 }
9 else {

10 ns = s;
11 while ((*arg2++ = *ns++) != ’\0’);
12 };
13 while ((*arg1++ = *s++) != ’\0’);
14 }

Fig. 7: The stack overflow vulnerability in the break_args
function from netperf.

gadgets together with a conditional jump, such as the Gadget
1 in Fig. 6, achieving the same functionality as the missing
specific pattern.

Netperf Case Study. To demonstrate the payloads constructed
by Gadget-Planner is useful in practice, we conduct a case
study on netperf [61], a software providing network bandwidth
testing between client and server. The version 2.6.0 contains
a stack overflow vulnerability when running the client with
command line arguments ‘-a’. The function break_args
copies the contents from optarg to arg1 and arg2 without
length checking, as shown in Fig. 7. This vulnerability allows
attackers to inject any length of the payload of gadget chains
to get a system shell and thus is suitable for triggering code-
reuse attacks. We assume ASLR and canary protection have
been disabled.

Gadget-Planner successfully finds 16 gadget chains from
the obfuscated program. In our experiment, we use LLVM-
Obfuscator with all three obfuscation strategies to generate
the obfuscated program. Fig. 8 shows one example chain.
It spawns a shell after being passed as an argument when
running netperf with the ‘-a’ option. It triggers the syscall
execve(&"/bin/sh", 0, 0) to open a shell. The registers
rdi, rsi, rdx hold the parameters being passed to execve
and rax holds the system call number 0x3b. These are the
goal for our planning procedure. After the goal state is set
up, our planner focuses on those gadgets which are changing
specific registers’ values in the current state, then adds the
new pre-conditions in the successor plans for the next round
of planning until all needed register states fulfill the goal state.

11



Gadget 1:
0x49cc0a: pop rax

test rax, rax
je 0x49cc7d
add rsp, 8
jmp rax

Gadget 2:
0x61482f: pop rsi

pop rdi
test rax, rax
jg 0x61480a
add rsp, 8
pop rbx
pop rbp
pop r12
pop r13
ret

Gadget 3:
0x634745: pop rdx

test r8d, r8d
je 0x634750
add rsp, 8
ret

Gadget 4:
0x4b37d8: pop rax

ret

Gadget 5:
0x4b3a33: call rbx

Fig. 8: A gadget chain built by Gadget-Planner from netperf.

TABLE VII: The performance of every component in Gadget-
Planner and the peer tools when analyzing the obfuscated
netperf.

Tools Stages Time (S) Memory (GB)

Angrop
Gadgets Finding 482 4.45
Chain Generating 9 2.11
Total 491 -

SGC
Disassembly 2,445 5.33
Chaining 3,600 11.36
Total 6,045 -

GP

Gadget Extraction 2,223 4.16
Subsumption Testing 2,104 5.73
Planning 1,771 8.43
Total 6,098 -

D. Performance

We run Gadget-Planner and the peer tools on the obfuscated
netperf program and report the execution time and memory
usage in Table VII. More specifically, we present the time and
memory usage of the main components in each tool. The total
analysis of Gadget-Planner takes around 100 minutes. The
most time-consuming component is the gadget identification
procedure, which is mainly related to the number of branches
inside a program. Subsumption testing runs symbolic execu-
tion and constraint solving on every gadget, so its execution
time depends on the complexity and number of the gadgets.
Surprisingly, the planning component takes the least time.
The main reason is that the two previous procedures have
effectively reduced the search space. Empirically, they reduce

the set of gadgets by an average factor of 2.97, which yields
a gadget collection with a tractable size for the planning
stage. Angrop is the fastest because it only focuses on hard-
coded patterns. SGC takes a similar time as Gadget-Planner,
where the most time and memory-consuming part is the gadget
chaining using program synthesis. Overall, the performance
of Gadget-Planner is competitive, especially considering the
complexity and diversity chains it is able to build.

VII. RELATED WORK

Planning has been used for program synthesis, although
usually at a relatively high level and not to our knowledge in
the context of code-reuse attacks. For example, Bhansali [62]
uses hierarchical planning and analogical reasoning to gen-
erate simple Unix shell scripts from high-level specifica-
tions. Ireland and Stark [63] use proof planning and partial-
order planning to generate correct imperative programs from
specifications. Planning has also been used to automatically
synthesize workflows of web services [64]. In the context of
computer security, planning has been used to generate attacks
on models of computer systems and networks as an aid in
penetration testing [65], [66]. None of these works focus on
code at the assembler level or on code-reuse attacks.

Ropper [67], RP++ [68], and Ropc [69] implement very
similar gadget-finding functionality as ROPGadget, but less
powerful, so we use ROPGadget in this work. BOPC [29]
builds code-reuse attacks following CFI requirements. We did
not compare with it because CFI does not work well with
obfuscated programs. P-shape [70] has a very detailed paper
but no available code.

VIII. CONCLUSION

Software obfuscation techniques hide program logic by
adding complex data or controlling structure flow. Most ex-
isting works only focus on reversing the obfuscation but
neglect the potential harm introduced by the obfuscation
techniques. To answer this question, we first study the code-
reuse vulnerability introduced by obfuscation methods and
the result shows that it introduces a significant number of
gadgets. However, we also reveal that existing tools cannot
effectively construct code-reuse attacks due to the limited pat-
terns, searching strategy, and complex gadgets from obfuscated
programs. Hence we further propose a new technique to search
code-reuse gadgets and payloads by leveraging the strength of
symbolic execution and partial-order planning. We have imple-
mented this method as a prototype called Gadget-Planner and
evaluated it with popular obfuscators on benchmark programs
and real-world open-source software. Compared with existing
peer tools, Gadget-Planner can find much more code-reuse
chains in obfuscated programs, demonstrating the potential
risks introduced by software obfuscation.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
helpful feedback. This research was supported by NSF grant
CNS-1948489, CNS-2022279, and CNS-2211905.

12



REFERENCES

[1] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM
– software protection for the masses,” in Proceedings of the IEEE/ACM
1st International Workshop on Software Protection, SPRO’15, Firenze,
Italy, May 19th, 2015, 2015.

[2] C. Collberg, “The Tigress C Obfuscator,” https://tigress.wtf, [online].
[3] Oreans Technologies, “Code Virtualizer: Total Obfuscation against Re-

verse Engineering,” http://oreans.com/codevirtualizer.php, [online].
[4] VMProtect Software, “VMProtect software protection,” http://vmpsoft.

com, [online].
[5] Oreans Technologies, “Themida: Advanced Windows Software Protec-

tion System,” https://www.oreans.com/themida.php, [online].
[6] Stunnix, “Stunnix,” http://stunnix.com/about/customers.shtml, 2022.
[7] R. Rolles, “Unpacking virtualization obfuscators,” in Proceedings of the

3rd USENIX Workshop on Offensive Technologies (WOOT’09), 2009.
[8] K. Coogan, G. Lu, and S. Debray, “Deobfuscation of Virtualization-

Obfuscated Software: A Semantics-Based Approach,” in Proceedings of
the 18th ACM Conference on Computer and Communications Security
(CCS’11), 2011.

[9] J. Kinder, “Towards Static Analysis of Virtualization-Obfuscated Bi-
naries,” in Proceedings of the 19th Working Conference on Reverse
Engineering (WCRE’12), 2012.

[10] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A Generic
Approach to Automatic Deobfuscation of Executable Code,” in Proceed-
ings of the 36th IEEE Symposium on Security and Privacy (S&P’15),
2015.

[11] D. Xu, J. Ming, Y. Fu, and D. Wu, “VMHunt: A Verifiable Approach
to Partial-Virtualized Binary Code Simplification,” in Proceedings of
the 25th ACM Conference on Computer and Communications Security
(CCS’18), 2018.

[12] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and
E. Weippl, “Protecting software through obfuscation: Can it keep pace
with progress in code analysis?” ACM Computing Surveys (CSUR),
vol. 49, no. 1, pp. 1–37, 2016.

[13] P. Wang, S. Wang, J. Ming, Y. Jiang, and D. Wu, “Translingual
Obfuscation,” in Proceedings of the 1st IEEE European Symposium on
Security and Privacy (Euro S&P’16), 2016.

[14] H. P. Joshi, A. Dhanasekaran, and R. Dutta, “Trading off a vulnerability:
does software obfuscation increase the risk of rop attacks,” Journal of
Cyber Security and Mobility, pp. 305–324, 2015.

[15] ——, “Impact of software obfuscation on susceptibility to return-
oriented programming attacks,” in 36th IEEE Sarnoff Symposium, 2015,
pp. 161–166.

[16] C. Collberg, C. Thomborson, and D. Low, “A Taxonomy of Obfuscating
Transformations,” The University of Auckland, Tech. Rep., 1997.

[17] J. Ming, D. Xu, L. Wang, and D. Wu, “LOOP: Logic-Oriented Opaque
Predicate Detection in Obfuscated Binary Code,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS’15), 2015.

[18] D. Xu, J. Ming, and D. Wu, “Generalized Dynamic Opaque Predicates:
A New Control Flow Obfuscation Method,” in Proceedings of the 19th
Information Security Conference (ISC’16), 2016.

[19] T. László and Á. Kiss, “Obfuscating c++ programs via control flow flat-
tening,” Annales Universitatis Scientarum Budapestinensis de Rolando
Eötvös Nominatae, Sectio Computatorica, 2009.

[20] R. Manikyam, J. T. McDonald, W. R. Mahoney, T. R. Andel, and S. H.
Russ, “Comparing the Effectiveness of Commercial Obfuscators Against
MATE Attacks,” in Proceedings of the 6th Workshop on Software
Security, Protection, and Reverse Engineering (SSPREW’16), 2016.

[21] M. Polychronakis, Reverse Engineering of Malware Emulators.
Springer US, 2011, ch. Encyclopedia of Cryptography and Security.

[22] N. Carlini and D. Wagner, “Rop is still dangerous: Breaking modern
defenses,” in Proceedings of the 23rd USENIX Conference on Security
Symposium, 2014.

[23] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM Conference on Computer and Communications Security, 2007.

[24] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security (AsiaCCS), 2011.

[25] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security, 2010.

[26] A. Francillion and C. Castelluccia, “Code injection attacks on harvard-
architecture devices,” in CCS ’08: Proceedings of the 15th ACM Con-
ference on Computer and Communications Security. ACM, 2008.

[27] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good
instructions go bad: Generalizing return-oriented programming to risc,”
in Proceedings of the 15th ACM conference on Computer and commu-
nications security (CCS’08), 2008.

[28] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in IEEE Symposium on Security and Privacy (SP), 2016.

[29] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented
programming: Automating data-only attacks,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018.

[30] J. Salwan, “Ropgadget,” http://shell-storm.org/project/ROPgadget, 2011.
[Online]. Available: http://shell-storm.org/project/ROPgadget/

[31] A. team, “Angrop – a rop gadget finder and chain builder,” https://github.
com/angr/angrop, 2021.

[32] M. Schloegel, T. Blazytko, J. Basler, F. Hemmer, and T. Holz, “Towards
automating code-reuse attacks using synthesized gadget chains,” in
European Symposium on Research in Computer Security, 2021.

[33] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu,
K. Chen, and W. Zou, “Revery: From proof-of-concept to exploitable,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018.

[34] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley, “Automatic exploit generation,” Communications of the
ACM, 2014.

[35] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in 2012 IEEE Symposium on Security and
Privacy. IEEE, 2012.

[36] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic
generation of data-oriented exploits,” in 24th {USENIX} Security Sym-
posium ({USENIX} Security 15), 2015.

[37] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing.” in NDSS, 2017.

[38] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” IEEE Transactions on Software Engi-
neering, 2017.

[39] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017.

[40] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security, 2005.

[41] A. J. Mashtizadeh, A. Bittau, D. Mazieres, and D. Boneh, “Cryptograph-
ically enforced control flow integrity,” 2014.

[42] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow
integrity through binary hardening,” in Detection of Intrusions and
Malware, and Vulnerability Assessment, M. Almgren, V. Gulisano, and
F. Maggi, Eds., 2015.

[43] V. Pappas, “kbouncer: Efficient and transparent rop mitigation,” http:
//www.cs.columbia.edu/~vpappas/papers/kbouncer.pdf, 2012.

[44] S. Sinnadurai, Q. Zhao, and W. Fai Wong, “Transparent runtime shadow
stack: Protection against malicious return address modifications,” https:
//zatoichi-engineer.github.io/assets/docs/10.1.1.120.5702.pdf, 2008.

[45] L. Davi, A.-R. Sadeghi, and M. Winandy, “Ropdefender: a detection tool
to defend against return-oriented programming attacks,” in AsiaCCS,
2011.

[46] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in Proceedings of the 23rd USENIX Conference on Security
Symposium, 2014.

[47] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in IEEE Symposium on
Security and Privacy, 2014.

[48] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Por-
tokalidis, “Size does matter: Why using gadget-chain length to prevent
code-reuse attacks is hard,” in The 23rd USENIX Security Symposium,
2014.

13

https://tigress.wtf
http://oreans.com/codevirtualizer.php
http://vmpsoft.com
http://vmpsoft.com
https://www.oreans.com/themida.php
http://stunnix.com/about/customers.shtml
http://shell-storm.org/project/ROPgadget
http://shell-storm.org/project/ROPgadget/
https://github.com/angr/angrop
https://github.com/angr/angrop
http://www.cs.columbia.edu/~vpappas/papers/kbouncer.pdf
http://www.cs.columbia.edu/~vpappas/papers/kbouncer.pdf
https://zatoichi-engineer.github.io/assets/docs/10.1.1.120.5702.pdf
https://zatoichi-engineer.github.io/assets/docs/10.1.1.120.5702.pdf


[49] R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, S. Crane,
C. Liebchen, P. Larsen, L. Davi, M. Franz, A.-R. Sadeghi, and
H. Okhravi, “Address-oblivious code reuse: On the effectiveness of
leakage-resilient diversity,” in NDSS Symposium 2017, 2017.

[50] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in 2013 IEEE Symposium
on Security and Privacy, 2013.

[51] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and
T. Walter, “Breaking the memory secrecy assumption,” in Proceedings
of the Second European Workshop on System Security, 2009.

[52] R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks
against kernel space aslr,” in 2013 IEEE Symposium on Security, 2013.

[53] S. Banescu, C. Collberg, and A. Pretschner, “Predicting the Resilience
of Obfuscated Code Against Symbolic Execution Attacks via Machine
Learning,” in Proceedings of the 26th USENIX Conference on Security
Symposium (USENIX Security’17), 2017.

[54] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

[55] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Pearson, 2020.

[56] M. Ghallab, D. Nau, and P. Traverso, Automated Planning and Acting.
Cambridge University Press, 2016.

[57] E. Karpas and D. Magazzeni, “Automated planning for robotics,” Annual
Review of Control, Robotics, and Autonomous Systems, 2020.

[58] S. Edelkamp and S. Schrödl, Heuristic Search: Theory and Applications.
Morgan Kaufmann, 2011.

[59] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems, 2008.

[60] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, 2006.

[61] R. Jones, “Netperf,” https://github.com/HewlettPackard/netperf, 2021.
[62] S. Bhansali, “Domain-based program synthesis using planning and

derivational analogy,” AI Magazine, 1991.
[63] A. Ireland and J. Stark, “Combining proof plans with partial order

planning for imperative program synthesis,” Automated Software En-
gineering, 2006.

[64] P. Bertoli, M. Pistore, and P. Traverso, “Automated composition of web
services via planning in asynchronous domains,” Artificial Intelligence,
2010.

[65] M. Boddy, J. Gohde, T. Haigh, and S. Harp, “Course of action gen-
eration for cyber security using classical planning,” in Proceedings of
the International Conference on Automated Planning and Scheduling
(ICAPS), 2005.

[66] J. Hoffmann, “Simulated penetration testing: From “dijkstra” to “turing
test++”,” in Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 2015.

[67] S. Schirra, “Ropper,” https://scoding.de/ropper, 2019. [Online].
Available: https://scoding.de/ropper/

[68] A. Souchet, “rp++,” https://github.com/0vercl0k/rp/, 2017. [Online].
Available: https://github.com/0vercl0k/rp/

[69] Pakt, “ropc: A turing complete rop compiler,” https://github.com/pakt/
ropc, 2013. [Online]. Available: https://github.com/pakt/ropc

[70] A. Follner, A. Bartel, H. Peng, Y.-C. Chang, K. Ispoglou, M. Payer,
and E. Bodden, “Pshape: Automatically combining gadgets for arbitrary
method execution,” in Security and Trust Management. Springer
International Publishing, 2016.

14

https://github.com/HewlettPackard/netperf
https://scoding.de/ropper
https://scoding.de/ropper/
https://github.com/0vercl0k/rp/
https://github.com/0vercl0k/rp/
https://github.com/pakt/ropc
https://github.com/pakt/ropc
https://github.com/pakt/ropc

	Introduction
	Background
	Software Obfuscation
	Code-Reuse Attack

	Code-Reuse Attacks In Obfuscated Programs
	Threat Model
	Experiment Setup
	Findings
	Limitations of Existing Chain-Building
	Conclusion

	Gadget-Planner
	Overview
	Gadget Extraction
	Subsumption Testing
	Partial-order Planning
	Post-processing

	Implementation
	Evaluation
	Code-Reuse Attacks in the Benchmark
	Obfuscation and Code-Reuse Risks
	Real-World Applicability
	Performance

	Related Work
	Conclusion
	References

