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Abstract

To harness modern multi-core processors, it is im-
perative to develop parallel versions of fundamen-
tal algorithms. In this paper, we present a general
approach to best-first heuristic search in a shared-
memory setting. Each thread attempts to expand
the most promising open nodes. By using abstrac-
tion to partition the state space, we detect duplicate
states without requiring frequent locking. We al-
low speculative expansions when necessary to keep
threads busy. We identify and fix potential livelock
conditions in our approach, verifying its correct-
ness using temporal logic. In an empirical com-
parison on STRIPS planning, grid pathfinding, and
sliding tile puzzle problems using an 8-core ma-
chine, we show that A* implemented in our frame-
work yields faster search than improved versions of
previous parallel search proposals. Our approach
extends easily to other best-first searches, such as
Anytime weighted A*.

1 Introduction
It is widely anticipated that future microprocessors will not
have faster clock rates, but rather more computing cores per
chip. Tasks for which there do not exist effective parallel al-
gorithms will suffer a slowdown relative to total system per-
formance. In artificial intelligence, heuristic search is afun-
damental and widely-used problem solving framework. In
this paper, we develop a parallel version of best-first search,
a popular method underlying algorithms such as A*[Hart et
al., 1968].

In best-first search, two sets of nodes are maintained:open
and closed. Open contains the search frontier: nodes that
have been generated but not yet expanded. In A*, open nodes
are sorted byf value, the estimated lowest cost for a solution
path going through that node. Closed contains all previously
expanded nodes, allowing the search to detect duplicated
states in the search space and avoid expanding them mul-
tiple times. One challenge in parallelizing best-first search
is avoiding contention between threads when accessing the
open and closed lists. We will use a technique calledparallel
structured duplicate detection(PSDD), originally developed
by Zhou and Hansen (2007) for parallel breadth-first search,

in order to dramatically reduce contention and allow threads
to enjoy periods of synchronization-free search. PSDD re-
quires the user to supply an abstraction function that maps
multiple states to a single abstract state, called annblock.

In contrast to previous work, we focus on general best-first
search. Our algorithm is called Parallel Best-NBlock-First
(PBNF).1 It extends easily to domains with non-uniform and
non-integer move costs and inadmissible heuristics. Using
PSDD with best-first search in an infinite search space can
give rise to livelock, where threads continue to search but a
goal is never expanded. We will discuss how these conditions
can be avoided in PBNF using a method we callhotnblocks,
as well as our use of formal methods to validate its effec-
tiveness. We study the empirical behavior of PBNF on three
popular search domains: STRIPS planning, grid pathfinding,
and the venerable sliding tile puzzle. We compare against
several previously proposed algorithms, as well as novel im-
provements of them, using a dual quad-core Intel machine.
Our results show that PBNF yields faster search than all other
algorithms tested.

2 Previous Work
Early work on parallel heuristic search investigated depth-
first approaches[Powleyet al., 1990]. But because it does not
keep a closed list, depth-first search cannot detect duplicate
states and is thus doomed to failure on domains with many
duplicate states, such as grid pathfinding and some planning
domains.

The simplest approach to parallel best-first search is to
have mutual exclusion locks (mutexes) for the open and
closed lists and require each thread to acquire the lock be-
fore manipulating the corresponding structure. We call this
search ‘parallel A*’ (PA*). As we see below, this naive ap-
proach performs worse than serial A*. Parallel Retracting
A* (PRA*) [Evettet al., 1995] attempts to avoid contention
by assigning separate open and closed lists to each thread.
A hashing scheme is used to assign nodes to the appropriate
thread when they are generated. (Full PRA* also includes a
retraction scheme that reduces memory use in exchange for
increased computation time; we do not use that feature in this
paper.) The choice of the hashing function is crucial to the

1Peanut Butter ’N’ (marshmallow) Fluff, also known as a fluffer-
nutter, is a well-known children’s sandwich in the USA.



performance of the algorithm, since it determines the way
that work is distributed. Note that with PRA* each thread
needs a synchronized open list or message queue that other
threads can add nodes to. While this is less of a bottleneck
than having a single global, shared open list, we will see be-
low that it can still be expensive. We present two variationsof
this algorithm, the primary difference being hashing function.
While PRA* uses a simple representation-based node hash-
ing scheme , APRA* makes use of a state space abstraction.
We define an abstraction function with the goal of limiting
the number of successors, thus limiting the number of other
threads’ open lists a given thread will insert nodes into. Ab-
stract states are distributed evenly among all threads in hopes
that open nodes will always be available to each thread.

One way of avoiding contention altogether is to allow one
thread to handle synchronization of the work done by the
other threads.K-Best-First Search (KBFS)[Felneret al.,
2003] expands the bestk nodes at once, each of which can
be handled by a different thread. In our implementation, a
master thread takes thek best nodes from open and gives one
to each worker. The workers expand their nodes and the mas-
ter checks the children for duplicates and inserts them into
open. This allows open and closed to be used without lock-
ing, but requires the master thread to wait for all workers to
finish their expansions before handing out new nodes to ad-
here to a strictk best first ordering. The approach will not
scale if node expansion is fast compared to the number of
processors.

2.1 Parallel Structured Duplicate Detection
The intention of PSDD is to avoid the need to lock on every
node generation. It builds on the idea of structured duplicate
detection (SDD), which was originally developed for external
memory search[Zhou and Hansen, 2004]. SDD uses anab-
straction function, a many-to-one mapping from states in the
original search space to states in an abstract space. The ab-
stract node to which a state is mapped is called itsimage. An
nblock is the set of nodes in the state space that have the same
image in the abstract space. We will use the terms ‘abstract
state’ and ‘nblock’ interchangeably. The abstraction func-
tion creates anabstract graphof nodes that are images of the
nodes in the state space. If two states are successors in the
state space, then their images are successors in the abstract
graph.

For efficient duplicate detection, we can equip eachnblock
with its own open and closed lists. Note that two nodes repre-
senting the same states will map to the samenblockb. When
we expands, its children can map only tob’s successors in the
abstract graph. Thesenblocks are called theduplicate detec-
tion scopeof b because they are the onlynblocks whose open
and closed lists need to be checked for duplicate states when
expanding nodes inb.

In parallel SDD (PSDD), the abstract graph is used to find
nblocks whose duplicate detection scopes are disjoint. These
nblocks can be searched in parallel without any locking. An
nblock b is considered to befree iff none of its successors
are being used. Freenblocks are found by explicitly tracking
σ(b), the number ofnblocks amongb’s successors that are in
use by another processor. Annblock can only be acquired

when itsσ = 0. PSDD only uses a single lock, controlling
manipulation of the abstract graph, and it is only acquired by
threads when finding a new freenblock to search.

Zhou and Hansen[2007] used PSDD to parallelize
breadth-first heuristic search[Zhou and Hansen, 2006b]. In
each thread of the search, only the nodes at the current search
depth in annblock are searched. When the currentnblock has
no more nodes at the current depth, it is swapped for a free
nblock that does have open nodes at this depth. If no more
nblocks have nodes at this depth, all threads synchronize and
then progress to the next depth. An admissible heuristic is
used to prune nodes below the current solution upper bound.

2.2 Improvements to PSDD
As implemented by Zhou and Hansen, PSDD uses the heuris-
tic estimate of a node only for pruning; this is only effective
if a tight upper bound is already available. To cope with sit-
uations where a good bound is not available, we have imple-
mented a novel variation of PSDD that uses iterative deepen-
ing (IDPSDD) to increase the bound. As we report below, this
approach is not effective in domains such as grid pathfinding
that do not have a geometrically increasing number of nodes
within successivef bounds.

Another drawback of PSDD is that breadth-first search can-
not guarantee optimality in domains where operators have
differing costs. In anticipation of these problems, Zhou and
Hansen[2004] suggest two possible extensions to their work,
best-first search and a speculative best-first layering approach
that allows for larger layers in the cases where there are few
nodes (ornblocks) with the samef value. To our knowledge,
we are the first to implement and test these algorithms. Best-
first PSDD (BFPSDD) usesf value layers instead of depth
layers. This means that all nodes that are expanded in a given
layer have the same (lowest)f value. BFPSDD provides a
best-first search order, but may incur excessive synchroniza-
tion overhead if there are few nodes in eachf layer (as in grid
pathfinding or when using a weighted heuristic). To ame-
liorate this, we enforce that at leastm nodes are expanded
before abandoning a non-emptynblock. (Zhou and Hansen
credit Edelkamp and Schrödl[2000] with this idea.) When
populating the list of freenblocks for each layer, all of the
nblocks that have nodes with the current layer’sf value are
used or a minimum ofk nblocks are added wherek is four
times the number of threads. This allows us to add additional
nblocks to small layers in order to amortize the cost of syn-
chronization. The value four gave better performance than
other values tried. In addition, we tried an alternative imple-
mentation of BFPSDD that used a range off values for each
layer. This implementation did not perform as well and we
do not present results for it. With either of these enhance-
ments, threads may expand nodes withf values greater than
that of the current layer. Because the first solution found may
not be optimal, search continues until all remaining nodes are
pruned by the incumbent solution.

3 Parallel Best-NBlock-First (PBNF)
Ideally, all threads would be busy expandingnblocks that
contain nodes with the lowestf values. To achieve this,



1. while there is annblock with open nodes
2. lock;b← best freenblock; unlock
3. whileb is no worse than the best freenblock or
4. we’ve done fewer thanm expansions
5. n← best open node inb
6. if f(n) > f(incumbent), prune all open nodes inb
7. else ifn is a goal
8. if f(n) < f(incumbent)
9. lock; incumbent← n; unlock
10. else for each childc of n
11. insertc in the open list of the appropriatenblock

Figure 1: A sketch of basic PBNF search, showing locking.

we combine PSDD’s duplicate detection scopes with an idea
from the Localized A* (LA*) algorithm of Edelkamp and
Schrödl[2000]. LA*, which was designed to improve the
locality of external memory search, maintains sets of nodes
that reside on the same memory page. Decisions of which
set to process next are made with the help of a heap of sets
ordered by the minimumf value in each set. By maintaining
a heap of freenblocks ordered on their bestf value, we can
approximate our ideal parallel search. We call this algorithm
Parallel Best-NBlock-First (PBNF).

In PBNF, threads use the heap of freenblocks to acquire
the freenblock with the best open node. A thread will search
its acquirednblock as long as it contains nodes that are bet-
ter than those of thenblock at the front of the heap. If the
acquirednblock becomes worse than the best free one, the
thread will attempt to release its currentnblock and acquire
the better one. There is no layer synchronization, so the first
solution found may be suboptimal and search must continue
until all open nodes havef values worse than the incumbent.
Figure 1 shows pseudo-code for the algorithm.

Because PBNF is only approximately best-first, we can in-
troduce optimizations to reduce overhead. It is possible that
an nblock has only a small number of nodes that are better
than the best freenblock, so we avoid excessive switching
by requiring a minimum number of expansions. Our imple-
mentation also attempts to reduce the time a thread is forced
to wait on a lock by using thetry lock function whenever
possible. Rather than sleeping if a lock cannot be acquired,
try lock immediately returns failure. This allows a thread
to continue expanding its currentnblock if the lock is busy.
Both of these optimizations can introduce additional ‘specu-
lative’ expansions that would not have been performed in a
serial best-first search.

3.1 Livelock

The greedy free-for-all order in which PBNF threads acquire
freenblocks can lead to livelock in domains with infinite state
spaces. Because threads can always acquire newnblocks
without waiting for all open nodes in a layer to be expanded,
it is possible that thenblock containing the goal will never
become free. This is because we have no assurance that all
nblocks in its duplicate detection scope will ever be unused
at the same time. To fix this, we have developed a method
called ‘hotnblocks’ where threads altruistically release their
nblock if they are interfering with a betternblock. We call

this enhanced algorithm ‘Safe PBNF.’
We define theinterference scopeof annblockb to be those

nblocks whose duplicate detection scopes overlap withb’s.
In Safe PBNF, whenever a thread checks the heap of free
nblocks, it also ensures that itsnblock is better than any of
those in its interference scope. If it finds a better one, it flags
it as ‘hot.’ Any thread that finds a hotnblock in its interfer-
ence scope releases itsnblock in an attempt to free the hot
nblock. For eachnblock b, σh(b) tracks the number of hot
nblocks inb’s interference scope. Ifσh(b) 6= 0, b is removed
from the heap of freenblocks. This ensures that a thread will
not acquire annblock that is preventing a hotnblock from
becoming free.

There are three cases to consider when attempting to set an
nblock b to hot with an undirected abstract graph: 1) none
of the nblocks in the interference scope ofb are hot, sob
can be set to hot; 2) a betternblock in the interference scope
of b is already hot, sob must not be set to hot; and 3) an
nblock b′ that is worse thanb is in the interference scope of
b and is already hot. In this caseb′ must be un-flagged as hot
(updatingσh values appropriately) and in its placeb is set to
hot. (This reset is also done if threads ever notice a hotnblock
worse than themselves.) Directed graphs have two additional
cases: 4) annblock b′ hasb in its interference scope,b′ is
hot andb′ is worse thanb, then un-flagb′ as hot and setb
to hot; 5) annblock b′ hasb in its interference scope,b′ is
hot andb′ is better thanb, then do not setb to hot, leaveb′

hot. This scheme ensures that there are never two hotnblocks
interfering with one another and that thenblock that is set to
hot is the bestnblock in its interference scope. As we verify
below, this approach guarantees the property that if annblock
is flagged as hot it will eventually become free. Full pseudo-
code for Safe PBNF is given in Appendix A.

A Formal Model
To help ensure that the hotnblock method works properly,
we have constructed a formal model using the temporal logic
TLA+ [Lamport, 2002]. The model describes an abstract ver-
sion of the hotnblock procedure in which the abstract graph
is connected in a ring (eachnblock is connected to two ad-
jacentnblocks). Additionally we modelled the hotnblocks
method using a directed abstract graph with eightnblocks.
The search procedure itself is not modeled, since this is not
required to prove the desired properties. During a search ac-
tion in the model, a thread can optionally set anynblock that
it is interfering with to hot if thatnblock is not already hot, if
nothing in its interference scope is hot and if it is not in the
interference scope of another hotnblock. These cases corre-
spond to the five cases mentioned above, and the final one is
only required if the abstract graph is directed. After search-
ing, a thread will release itsnblock and try to acquire a new
freenblock.

While this model is a greatly abstracted version of the Safe
PBNF algorithm, it is actually able to show a stronger prop-
erty. Since the model does not take into account thef values
of nodes within eachnblock, a thread has the ability to set
anynblock it interferes with to hot (assuming that no hot in-
terference is created), rather than being restricted to “good”
nblocks. Using this model, we hope to prove that anynblock



that is set to hot (regardless of thenblock’s bestf value) will
eventually be added to the heap of freenblocks. We have
used the TLC bounded model checker[Yu et al., 1999] to
show that livelock arises in the plain (unsafe) algorithm and
that the hotnblock method is effective at fixing the livelock
for all cases of up to 12nblocks and three threads on the ring
abstraction and 8 nblocks and three threads on the directed
abstraction.

4 Empirical Evaluation
We have implemented and tested the parallel heuristic search
algorithms discussed above on three different benchmark do-
mains: grid pathfinding, the sliding tile puzzle, and STRIPS
planning. The algorithms were programmed in C++ using
the POSIX threading library and run on dual quad-core In-
tel Xeon E5320 1.86GHz processors with 16Gb RAM, ex-
cept for the planning results, which were written in C and
run on dual quad-core Intel Xeon X5450 3.0GHz processors
limited to roughly 2GB of RAM. All open lists and free lists
are binary heaps, and closed lists are hash tables. PRA* and
APRA* use queues for incoming nodes, and a hash table is
used to detect duplicates in both open and closed. For grids
and sliding tiles, we used the jemalloc library[Evans, 2006],
a special multi-thread-aware malloc implementation, instead
of the standard glibc (version 2.7) malloc, because we have
performed experiments demonstrating that the latter scales
poorly above 6 threads. We configured jemalloc to use 32
memory arenas per CPU. In planning, a custom memory man-
ager was used which is also thread-aware and uses a memory
pool for each thread. For the following experiments we show
the performance of each algorithm with its best parameter set-
tings (e.g., minimum number of expansions and abstraction
granularity) which we determined by experimentation.

4.1 Grid Pathfinding
We tested on grids 2000 cells wide by 1200 cells high, with
the start in the lower left and the goal in the lower right. Cells
are blocked with probability 0.35. We test two cost models
(discussed below) and both four-way and eight-way move-
ment. The abstraction function we used maps blocks of ad-
jacent cells to the same abstract state, forming a coarser ab-
stract grid overlaid on the original space. For this domain
we are able to tune the size of the abstraction and our results
show the best abstraction size for each algorithm where it is
relevant. SafePBNF, PBNF, BFPSDD use 64 minimum ex-
pansions. They and APRA* use 6400 nblocks. PSDD uses
625 nblocks. Each plot includes a horizontal line representing
the performance of a serial A* search.
Four-way Unit Cost: In the unit cost model, each move has
the same cost. The upper right plot in Figure 2 shows the per-
formance of previously proposed algorithms for parallel best-
first search on unit-cost four-way movement path planning
problems. The y-axis represents elapsed wall-clock time. Er-
ror bars indicate 95% confidence intervals on the mean and
algorithms in the legend are ordered on their average perfor-
mance. The figure in the upper right, shows only algorithms
that are above the A* line, while the figure in the upper left
shows the more competitive algorithms. While PSDD seems

to scale reasonably as threads are added, the lack of a tight
upper bound hurts its performance. We have implemented
the IDPSDD algorithm, but the results are not shown on the
grid pathfinding domains. The non-geometric growth in the
number of states when increasing the cost bound leads to very
poor performance with iterative deepening.

The upper left plot in Figure 2 shows our novel APRA*,
BFPSDD, PBNF and Safe PBNF algorithms on the same
unit-cost four-way problems. PBNF and Safe PBNF are su-
perior to any of the other algorithms, with steadily decreasing
solution times as threads are added and an average speed-up
over serial A* of greater than 4x when using eight threads.
The checking of interference scopes in Safe PBNF adds a
small time overhead. The BFPSDD algorithm also gives good
results on this domain, surpassing the speed of APRA* after
3 threads. APRA*’s performance gets gradually worse for
more than four threads.
Four-way Life Cost: Moves in the life cost model have a
cost of the row number of the state where the move was
performed—moves at the top of the grid are free, moves at
the bottom cost 1200. This differentiates between the short-
est and cheapest paths. The bottom left plot in Figure 2 shows
these results. PBNF and Safe PBNF have the best perfor-
mance for two threads and beyond. The BFPSDD algorithm
has the next best performance, following the same general
trend as PBNF. The APRA* algorithm does not seem to im-
prove its performance beyond four threads.
Eight-way Unit Cost: In our eight-way movement path plan-
ning problems, horizontal and vertical moves have cost one,
but diagonal movements cost

√
2. These real-valued costs

make the domain different from the previous two path plan-
ning domains. The top middle panel shows that PBNF and
Safe PBNF give the best performance. While APRA* is ini-
tially better than BFPSDD, it does not scale and is slower than
BFPSDD at 6 or more threads.
Eight-way Life Cost: This model combines the eight-way
movement and the life cost models; it is the most difficult
path planning domain presented in this paper. The bottom
middle panel shows that the two PBNF variants give the best
performance when using multiple threads. BFPSDD gives an
overall performance profile similar to PBNF, but consistently
slower. The APRA* algorithm gives slightly faster solution
speeds then BFPSDD, but it fails to scale after 5 threads.

4.2 Sliding Tile Puzzle
The sliding tile puzzle is a common domain for benchmarking
heuristic search algorithms. For these results, we use forty-
three of the easiest Korf 15-puzzle instances (ones that were
solvable by A* in 15GB of memory) because they are small
enough to fit into memory, but are difficult enough to differ-
entiate algorithmic performance.

We found that a smaller abstraction which only considers
the position of the blank and 1-tile did not produce a sufficient
number of abstract states for PBNF, IDPSDD, and APRA* to
scale as threads were added, so we used one which takes into
account the blank, the 1-tile, and the 2-tile. This is because
the smaller abstraction does not provide enough freenblocks
at many points in the search, and threads are forced to contend
heavily for the free list. BFPSDD, however, did better with
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Figure 2: Results on grid path planning and the sliding tilespuzzle.

the smaller abstraction, presumably because it did not require
switching betweennblocks as often because of the narrowly
defined layer values. In addition, BFPSDD uses 64 minimum
expansions, while PBNF and Safe PBNF only use 32.

The bottom right panel in Figure 2 shows the results for
BFPSDD, IDPSDD, APRA*, PBNF and Safe PBNF. The two
variants of PBNF show the best performance consistently.
The APRA* algorithm has very unstable performance, but
often performs better than A*. We found that APRA* had
a more difficult time solving some of the larger puzzle in-
stances, consuming much more memory at higher numbers of
threads. BFPSDD’s performance was poor, but it improves
consistently with the number of threads added and eventually
gets faster than A*. The IDPSDD algorithm performed much
worse than the other algorithms on average, but it exhibiteda
smooth performance increase as more threads were added.

4.3 STRIPS Planning
In addition to the path planning and sliding tiles domains,
the algorithms were embedded into a domain-independent
optimal sequential STRIPS planner using regression and the
max-pair admissible heuristic of Haslum and Geffner[2000].
Figure 3 presents the results for APRA*, PSDD, BFPSDD,
PBNF, and serial A* (for comparison.) A value of ’M’ indi-
cates that the program ran out of memory. The PSDD algo-
rithm was given the optimal solution cost as an upper bound

to perform pruning in the breadth-first heuristic search. The
best result on each problem is marked in bold. PSDD with
optimal pruning performed better than PBNF by 3% on one
problem. On average at seven threads, Safe PBNF takes 66%
of the time taken by PSDD. Interestingly, while plain PBNF
was often a little faster than the safe version, it failed to solve
two of the problems within our time bound. This is most
likely due to livelock, but could also simply be because the
hotnblocks fix allows Safe PNBF to follow a different search
order than PBNF. BFPSDD at 7 threads performs better on
average than PSDD, but does not always outperform it. It
only gives better speed than either variant of PBNF in the
one case where PSDD also does so, aside from the cases
where PBNF runs out of memory. We see APRA* follow-
ing the same trend as we have seen elsewhere, improving at
some points, but doing so erratically and often getting worse
as threads are added. It also suffered from a large memory
footprint, probably because nodes are not checked against the
closed list immediately, but only once they are transferred
from the queue to the open list.

The right-most column shows the time that was taken by
the PBNF and PSDD algorithms to generate the abstraction
function. The abstraction is generated dynamically on a per-
problem basis and, following Zhou and Hansen[2007], this
time was not taken into account in the solution times pre-
sented for these algorithms. The abstraction function is gen-
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erated by greedily searching in the space of all possible ab-
straction functions[Zhou and Hansen, 2006a]. Because the
algorithm needs to evaluate one candidate abstraction for
each of the unselected state variables, it can be trivially paral-
lelized by having multiple threads working on different can-
didate abstractions.

5 Discussion and Possible Extensions
We have shown that previously proposed algorithms for par-
allel best-first search can be much slower than running A* se-
rially. We presented a novel hashing function for PRA* that
takes advantage of the locality of a search space and gives
superior performance. While APRA* does not perform as
well as the best algorithms in our study, it does have the ad-
vantage of being very simple to implement. We also found
that the original breadth-first PSDD algorithm does not give
competitive behavior without a tight upper bound for prun-
ing. We implemented a novel extension to PSDD, BFPSDD,
that gives reasonable performance on all domains we tested.
Our experiments, however, demonstrate that the new PBNF
algorithm gives robust results and almost always outperforms
the other algorithms.

The PBNF algorithm outperforms the PSDD algorithm be-
cause of the lack of layer-based synchronization and a bet-
ter utilization of heuristic cost-to-go information. Another
less obvious reason why PBNF may perform better is be-
cause a best-first search can have a larger frontier size than
the breadth-first heuristic search used by the PSDD algorithm.
This larger frontier size will tend to create morenblocks con-
taining open search nodes there will be more disjoint dupli-
cate detection scopes with nodes in their open lists and, there-
fore, the possibility of increased parallelism.

Some of our results show that, even for a single thread,
PBNF can outperform a serial A* search (see Figure 3). This
can be attributed to the speculative behavior of the PBNF
algorithm. Since PBNF uses a minimum number of expan-
sions before testing if it should switch to annblock with bet-
ter f values, it will search some sub-optimal nodes that A*
would not search. In order to get optimal solutions, PBNF
acts as an anytime algorithm; it stores incumbent solutions
and prunes until it can prove that it has an optimal solution.
Zhou and Hansen show that this approach has the ability to
perform better than A*[Hansen and Zhou, 2007] because of
upper bound pruning. We are currently exploring the use of
a weighted heuristic function with the PBNF algorithm to in-
crease the amount of speculation. In our preliminary tests
with a PBNF variant modeled after Anytime weighted A*
[Hansen and Zhou, 2007] using a weight of 1.2, we were able
to solve some 15-puzzles twice as fast as standard Safe PBNF
and even solve some for which PBNF ran out of memory. The
use of PBNF as a framework for additional best-first heuristic
searches is an exciting area for future work.

6 Conclusion
We have presented Parallel Best-NBlock-First, a parallel
best-first heuristic search algorithm that combines the dupli-
cate detection scope idea from PSDD with the heap of sets
and speculative expansion ideas from LA*. PBNF approx-
imates a best-first search ordering while trying to keep all
threads busy. To perform PBNF safely in parallel, it is neces-
sary to avoid potential livelock conditions. For this purpose,
we presented a ‘hotnblock’ method and used model check-
ing to verify its correctness. In an empirical evaluation on
STRIPS planning, grid pathfinding, and the sliding tile puz-
zle, we found that the PBNF algorithm is most often the best
among those we tested across a wide variety of domains. It
is also easy to use the PBNF framework to implement addi-
tional best-first search algorithms, including weighted A*and
anytime heuristic search.
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Schrödl. Localizing A*. InAAAI-2000, pages 885–890.
[Evans, 2006] Jason Evans. A scalable concurrent malloc(3) imple-

mentation for FreeBSD. InProceedings of BSDCan 2006.
[Evettet al., 1995] Matthew Evett, Ambuj Mahanti, Dana Nau,

James Hendler, and James Hendler. PRA*: Massively parallel
heuristic search.J. Par. and Dist. Computing, 25:133–143, 1995.

[Felneret al., 2003] Ariel Felner, Sarit Kraus, and Richard E. Korf.
KBFS: K best-first search.Annals of Math. and A. I., 39:2003.

[Hansen and Zhou, 2007] Eric A. Hansen and Rong Zhou. Anytime
heuristic search.JAIR, 28:267–297, 2007.

[Hartet al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination of min-
imum cost paths. IEEE Transactions on Systems Science and
Cybernetics, SSC-4(2):100–107, July 1968.



[Haslum and Geffner, 2000] Patrik Haslum and Hctor Geffner. Ad-
missible heuristics for optimal planning. InICAPS, pages 140–
149, 2000.

[Lamport, 2002] Leslie Lamport. Specifying Systems: The TLA+
Language and Tools for Hardware and Software Engineers.
2002.

[Powleyet al., 1990] Curt Powley, Chris Ferguson, and Richard E.
Korf. Parallel heuristic search: two approaches. In V. Kumar,
P. S. Gopalakrishnan, and L. N. Kanal, eds,Parallel algorithms
for machine intelligence and vision, pp 42–65. Springer, 1990.

[Yu et al., 1999] Yuan Yu, Panagiotis Manolios, and Leslie Lam-
port. Model checking TLA+ specifications. InCorrect Hardware
Design and Verification Methods, pp 54–66. Springer, 1999.

[Zhou and Hansen, 2004] Rong Zhou and Eric A. Hansen. Struc-
tured duplicate detection in external-memory graph search. In
Proc. of AAAI-2004.

[Zhou and Hansen, 2006a] R. Zhou and E. Hansen. Domain-
independent structured duplicate detection. InProc. of AAAI-
2006, pages 1082–1087, 2006.

[Zhou and Hansen, 2006b] Rong Zhou and Eric A. Hansen.
Breadth-first heuristic search.AIJ, 170(4-5):385 – 408, 2006.

[Zhou and Hansen, 2007] Rong Zhou and Eric A. Hansen. Parallel
structured duplicate detection. InProc. of AAAI-2007.

A Pseudo-code for Safe PBNF
search(initial node)
1. insert initial node into open
2. for eachp ∈ processors, threadsearch()
3. while threads are still running,wait()
4. returnincumbent

threadsearch()
1. b← NULL
2. while not done
3. b← nextnblock(b)
4. exp← 0
5. while¬shouldswitch(b, exp)
6. n← best open node inb
7. if n > incumbentthen prunen
8. if n is a goal then
9. if n < incumbentthen
10. lock;incumbent← n; unlock
11. else ifn is not a duplicate then
12. children← expand(n)
13. for eachchild ∈ children
14. insertchild into open of appropriate nblock
15. exp← exp+ 1

shouldswitch(b, exp)
1. if b is empty then return true
2. if exp< min-expansionsthen return false
3. exp← 0
4. if best(freelist) < b or best(interferenceScope(b)) < b then
5. if best(interferenceScope(b)) < best(freelist) then
6. sethot(best(interferenceScope(b)))
7. return true
8. lock
9. for eachb′ ∈ interferenceScope(b)

10. if hot(b′) thensetcold(b′)
11. unlock
12. return false

sethot(b)
1. lock
2. if ¬hot(b) andσ(b) > 0
3. and¬∃i ∈ interferenceScope(b) : i < b ∧ hot(i) then
4. hot(b)← true
5. for eachn′ ∈ interferenceScope(b)
6. if hot(n′) thensetcold(n′)
7. if σ(n′) = 0 andσh(n′) = 0
8. andn′ is not empty then
9. freelist← freelist\ {n′}
10. σh(n′)← σh(n′) + 1
11. unlock

setcold(b)
1. hot(b)← false
2. for eachn′ ∈ interferenceScope(b)
3. σh(n′)← σh(n′)− 1
4. if σ(n′) = 0 andσh(n′) = 0 andn′ is not empty then
5. if hot(n′) then
6. setcold(n′)
7. freelist← freelist∪ {n′}
8. wake all sleeping threads

release(b)
1. for eachb′ ∈ interferenceScope(b)
2. σ(b′)← σ(b′)− 1
3. if σ(b′) = 0 andσh(b′) = 0 andb′ is not empty then
4. if hot(b′) then
5. setcold(b′)
6. freelist← freelist∪ {b′}
7. wake all sleeping threads

nextnblock(b)
1. if b has no open nodes orb was just set to hot then lock
2. else iftrylock() fails then returnb
3. if b 6= NULL then
4. bestScope← best(interferenceScope(b))
5. if b < bestScopeandb < best(freelist) then
6. unlock
7. returnb
8. release(b)
9. if (∀l ∈ nblocks : σ(l) = 0) andfreelist is empty then
10. done← true
11. wake all sleeping threads
12. whilefreelist is empty and¬done, sleep
13. if donethenn← NULL
14. else
15. n← best(freelist)
16. for eachb′ ∈ interferenceScope(n)
17. σ(b′)← σ(b′) + 1
18. unlock
19. returnn


