Best-First Heuristic Search for Multi-Core Machines

Ethan Burns\(^1\), Seth Lemons\(^1\), Rong Zhou\(^2\) and Wheeler Ruml\(^1\)

\(^1\) University of New Hampshire

\(^2\) Palo Alto Research Center

[NSF grant IIS-0812141]
Now we’re into the explicit parallelism multiprocessor era, and this will dominate for the foreseeable future. I don’t see any technology or architectural innovation on the horizon that might be competitive with this approach.

John Hennessy

President of Stanford University, Cofounder of MIPS Computer Systems

(A Conversation with John Hennessy and David Patterson, ACM Queue, December 2006)
Previous: Parallel Structured Duplicate Detection (Zhou and Hansen, 2007)

- Used abstraction to divide labor.
- Parallelized breadth-first search.
Previous: Parallel Structured Duplicate Detection (Zhou and Hansen, 2007)
- Used abstraction to divide labor.
- Parallelized breadth-first search.

New: Parallel Best NBlock First Search
- Each thread tries to expand the best nodes.
- Requires care to avoid livelock.
Previous: Parallel Structured Duplicate Detection
Naive Parallel Search

Introduction

Previous: PSDD

- Naive Method
- Abstraction
- Detection Scope
- Disjoint Scopes
- PSDD

New: PBNF

Empirical Evaluation

Conclusion
Naive Parallel Search

Introduction

Previous: PSDD

- Naive Method
 - Abstraction
 - Detection Scope
 - Disjoint Scopes
 - PSDD

New: PBNF

Empirical Evaluation

Conclusion
Work is divided among threads using a special hash function based on abstraction.

- Few possible destinations for children.
Work is divided among threads using a special hash function based on abstraction.

- Threads search groups of nodes called nblocks.
Work is divided among threads using a special hash function based on abstraction.

Disjoint duplicate detection scopes searched in parallel.
- Uses an abstract graph to decompose the search space.
- Uses an abstract graph to decompose the search space.
- Threads proceed breadth-first in parallel.
 - All threads search the same depth layer.
 - All threads synchronize before moving to the next depth.
Parallel Structured Duplicate Detection

- Uses an abstract graph to decompose the search space.
- Threads proceed breadth-first in parallel.
 - All threads search the same depth layer.
 - All threads synchronize before moving to the next depth.
- Heuristic cost-to-go information is used for pruning.
 - Requires an upper-bound or iterative-deepening.
Parallel Structured Duplicate Detection

<table>
<thead>
<tr>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous: PSDD</td>
</tr>
<tr>
<td>- Naive Method</td>
</tr>
<tr>
<td>- Abstraction</td>
</tr>
<tr>
<td>- Detection Scope</td>
</tr>
<tr>
<td>- Disjoint Scopes</td>
</tr>
<tr>
<td>PSDD</td>
</tr>
<tr>
<td>New: PBNF</td>
</tr>
<tr>
<td>Empirical Evaluation</td>
</tr>
<tr>
<td>Conclusion</td>
</tr>
</tbody>
</table>

- Uses an abstract graph to decompose the search space.
- Threads proceed breadth-first in parallel.
 - All threads search the same depth layer.
 - All threads synchronize before moving to the next depth.
- Heuristic cost-to-go information is used for pruning.
 - Requires an upper-bound or iterative-deepening.
- Only uses a single lock: when finding free disjoint scopes.
Parallel Structured Duplicate Detection

- Uses an abstract graph to decompose the search space.
- Threads proceed breadth-first in parallel.
 - All threads search the same depth layer.
 - All threads synchronize before moving to the next depth.
- Heuristic cost-to-go information is used for pruning.
 - Requires an upper-bound or iterative-deepening.
- Only uses a single lock: when finding free disjoint scopes.

We want a best-first ordering without layer-based synchronization and one lock.
New: Parallel Best NBlock First Search
Parallel Best \(N\)Block First

1. Search disjoint \(n\)blocks in parallel.
 - Maintain a heap of free \(n\)blocks.
 - Greedily acquire best free \(n\)block (and its scope).
1. Search disjoint n blocks in parallel.
 - Maintain a heap of free n blocks.
 - **Greedily** acquire best free n block (and its scope).

2. Each n block is searched in $f(n)$ order.
 - Switch n blocks when a better one becomes free.
 - Perform a minimum amount of work before switching.
 - **Approximates** best-first order.
Parallel Best NBlock First

1. Search disjoint n blocks in parallel.
 - Maintain a heap of free n blocks.
 - **Greedily** acquire best free n block (and its scope).

2. Each n block is searched in $f(n)$ order.
 - Switch n blocks when a better one becomes free.
 - Perform a minimum amount of work before switching.
 - **Approximates** best-first order.

3. Stop when the incumbent solution is optimal.
 - Prune nodes on the cost of the incumbent
 - Incumbent is optimal when all nodes are pruned.
Problem:
Problem:
Problem:
Problem:
Problem:
Problem:
Problem:
Problem:
Problem:

- Issues with parallel execution of processes.
Problem:
No guarantee that a given \(n \)block will become free.
- In infinite search spaces, there can be livelock.

Solution: check for *hot* \(n \)blocks
- Flag better \(n \)blocks as *hot*
- Release an \(n \)block to free an interfered hot \(n \)block.
Solution:
Solution:
Solution:
Solution:
Solution:
Empirical Evaluation
Empirical Evaluation

Software

- C++
- POSIX threads
- jemalloc (Grids and Tiles) / custom allocator (STRIPS planning)
- Fedora 9

Hardware

- Dual quad-core Intel Xeon E5320 1.86GHz 64-bits
- 16Gb RAM

Domains

- Grid pathfinding
 - Abstraction: coarser grid
- 15-puzzles (easy 43 of Korf’s 100)
 - Abstraction: ignore some tile numbers
- STRIPS planning
 - Abstraction: generated automatically
Previous Algorithms

Introduction

- Previous: PSDD

New: PBNF

Empirical Evaluation

- **Grids**
- **Tiles**
- **Planning**

Conclusion

PA

- Basic A* with a lock on open and closed lists.

Lock-free PA

- PA* with lock-free data structures.

KBFS (Felner et al., 2003)

- Expand the K best open nodes in parallel.

PRA (Evett et al., 1995)

- Hash nodes to distribute among processors.
- Synchronized message queues for “incoming” nodes.

PSDD (Zhou and Hansen, 2007)

- Abstraction to find disjoint portions of a search space.
- Breadth-first search
- All threads synchronize at each layer

IDPSDD

- PSDD with iterative-deepening for bounds.
Four-way Grid Pathfinding (Previous Algorithms)

- Introduction
- Previous: PSDD
- New: PBNF

Empirical Evaluation
- Grids
- Tiles
- Planning

Conclusion

Grid Unit 4-Way (Previous Algorithms)

Wall time (seconds)

Threads

- Lock-free PA*
- KBFS
- PA*
- PSDD
- PRA*
- A*
APRA*
- PRA* with a novel abstraction based hashing.
- Limits contention for message queues.

BFPSDD
- PSDD with $f(n)$ layers instead of depth layers.

PBNF
- Acquire the best free n block.

Safe PBNF
- PBNF with livelock prevention.
Four-way Grid Pathfinding (New Algorithms)

Introduction

Previous: PSDD
New: PBNF

Empirical Evaluation
- Grids
- Tiles
- Planning

Conclusion

Ethan Burns (UNH) Heuristic Search for Multi-Core – 18 / 25

Grid Unit 4-Way

wall time (seconds)

threads

Serial A*
APRA*
BFPSDD
SafePBNF
PBNF
Eight-way Grid Pathfinding

Introduction

Previous: PSDD
New: PBNF

Empirical Evaluation

- Grids
- Tiles
- Planning

Conclusion
Easy Sliding 15-Puzzles

Introduction
Previous: PSDD
New: PBNF

Empirical Evaluation
- Grids
- Tiles
- Planning

Conclusion
<table>
<thead>
<tr>
<th></th>
<th>threads</th>
<th>logistics-6</th>
<th>blocks-14</th>
<th>gripper-7</th>
<th>satellite-6</th>
<th>elevator-12</th>
<th>freecell-3</th>
<th>depots-7</th>
<th>driverlog-11</th>
<th>gripper-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.3</td>
<td>5.2</td>
<td>118</td>
<td>131</td>
<td>336</td>
<td>199</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>7.1</td>
<td>60</td>
<td>96</td>
<td>213</td>
<td>150</td>
<td>301</td>
<td>322</td>
<td>528</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.76</td>
<td>5.5</td>
<td>51</td>
<td>49</td>
<td>269</td>
<td>112</td>
<td>144</td>
<td>103</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.2</td>
<td>3.8</td>
<td>41</td>
<td>66</td>
<td>241</td>
<td>61</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>APRA*</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.84</td>
<td>3.7</td>
<td>28</td>
<td>49</td>
<td>169</td>
<td>40</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.2</td>
<td>3.8</td>
<td>41</td>
<td>66</td>
<td>241</td>
<td>61</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>0.84</td>
<td>3.7</td>
<td>28</td>
<td>49</td>
<td>169</td>
<td>40</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>7</td>
<td>0.53</td>
<td>2.6</td>
<td>8.6</td>
<td>17</td>
<td>27</td>
<td>36</td>
<td>M</td>
<td>M</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>PNBF</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.3</td>
<td>6.3</td>
<td>40</td>
<td>68</td>
<td>157</td>
<td>186</td>
<td>M</td>
<td>M</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.72</td>
<td>3.8</td>
<td>16</td>
<td>34</td>
<td>56</td>
<td>64</td>
<td>M</td>
<td>M</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.58</td>
<td>2.7</td>
<td>11</td>
<td>21</td>
<td>35</td>
<td>44</td>
<td>M</td>
<td>M</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.53</td>
<td>2.6</td>
<td>8.6</td>
<td>17</td>
<td>27</td>
<td>36</td>
<td>M</td>
<td>M</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>SafePBNF</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.2</td>
<td>6.2</td>
<td>40</td>
<td>77</td>
<td>150</td>
<td>127</td>
<td>156</td>
<td>154</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.64</td>
<td>2.7</td>
<td>17</td>
<td>24</td>
<td>54</td>
<td>47</td>
<td>63</td>
<td>60</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.56</td>
<td>2.2</td>
<td>11</td>
<td>17</td>
<td>34</td>
<td>38</td>
<td>43</td>
<td>39</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.62</td>
<td>2.0</td>
<td>9.2</td>
<td>14</td>
<td>27</td>
<td>37</td>
<td>35</td>
<td>31</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>BFPSDD</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.1</td>
<td>7.8</td>
<td>42</td>
<td>62</td>
<td>152</td>
<td>131</td>
<td>167</td>
<td>152</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.1</td>
<td>4.3</td>
<td>18</td>
<td>24</td>
<td>59</td>
<td>57</td>
<td>67</td>
<td>62</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.79</td>
<td>3.9</td>
<td>12</td>
<td>20</td>
<td>41</td>
<td>48</td>
<td>48</td>
<td>43</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.71</td>
<td>3.4</td>
<td>10</td>
<td>14</td>
<td>32</td>
<td>45</td>
<td>43</td>
<td>35</td>
<td>59</td>
<td></td>
</tr>
</tbody>
</table>

Wall time in seconds
Ethan Burns, Seth Lemons, Wheeler Ruml and Rong Zhou, *Suboptimal and Anytime Heuristic Search on Multi-Core Machines*, ICAPS 2009

- Proof of correctness.
- Bounded suboptimal PBNF.
- Anytime PBNF.
Ethan Burns, Seth Lemons, Wheeler Ruml and Rong Zhou, *Suboptimal and Anytime Heuristic Search on Multi-Core Machines*, ICAPS 2009

- Proof of correctness.
- Bounded suboptimal PBNF.
- Anytime PBNF.

Future Direction

- External memory PBNF.
New: Parallel Best N Block First.
New: Parallel Best N Block First.

- Fast
 - Beats all other algorithms used for comparison.
New: Parallel Best N Block First.

- Fast
 - Beats all other algorithms used for comparison.
- Scales well
 - Tested out to eight threads.
New: Parallel Best NBlock First.

- Fast
 - Beats all other algorithms used for comparison.

- Scales well
 - Tested out to eight threads.

- Easy to use
 - Only requires a user-provided abstraction.
New: Parallel Best NBlock First.

- Fast
 - Beats all other algorithms used for comparison.
- Scales well
 - Tested out to eight threads.
- Easy to use
 - Only requires a user-provided abstraction.
- “Hot nblocks”
 - Prevents livelock.
 - Not much overhead.
New: Parallel Best NBlock First.

- Fast
 - Beats all other algorithms used for comparison.

- Scales well
 - Tested out to eight threads.

- Easy to use
 - Only requires a user-provided abstraction.

- “Hot nblocks”
 - Prevents livelock.
 - Not much overhead.

- Source is freely available:
 http://www.cs.unh.edu/~eaburns
Tell your students to apply to grad school in CS at UNH!

- friendly faculty
- funding
- individual attention
- beautiful campus
- low cost of living
- easy access to Boston, White Mountains
- strong in AI, infoviz, networking, systems