
Open World Planning for Robots via Hindsight Optimization

Scott Kiesel1 and Ethan Burns1 and Wheeler Ruml1 and J. Benton2 and Frank Kreimendahl1

1Department of Computer Science 2Smart Information Flow Technologies (SIFT), LLC
University of New Hampshire Minneapolis, MN USA

skiesel, eaburns, ruml, fri2 atcs.unh.edu jbenton@sift.net

Abstract

Classical planning makes the closed world assumption in
which all relevant aspects of the world are known at plan-
ning time. While this assumption holds in some domains, in
many practical robotics domains the existence of relevant ob-
jects or the states of relevant fluents are initially unknownand
must be actively discovered. Previous proposals for open-
world planning either employ complex and expensive knowl-
edge representations or depend on ad hoc assumptions. In this
paper, we show how hindsight optimization provides a sim-
ple and general approach to planning in open and partially
observable worlds. Hindsight optimization samples multi-
ple possible worlds that are consistent with the agent’s cur-
rent knowledge, generates a plan in each respective world,
and then selects the action that maximizes expected reward
over these samples. While this approach is approximate, we
demonstrate both in simulation and on a physical robot that
this simple technique performs well and is more scalable than
previous methods on standard benchmarks.

Introduction
Imagine a rescue robot entering a partially-destroyed build-
ing to search for survivors of an earthquake. The agent does
not know the initial layout of the building, what new ob-
structions may exist, the locations of potential victims, or
even how many victims there are. In open-world planning
problems like this, the agent is not given a complete de-
scription of the initial state of the world, but it can perform
sensing actions to determine the existence of relevant objects
and the values of important fluents. To be useful, the plan-
ner must be fast enough to not materially delay the actions
of the robot. It must be able to plan to discover and take
into account newly sensed information, and ideally it would
be expressive enough to handle soft goals, durative actions,
temporal constraints, and actions with uncertain outcomes.

In this paper, we propose a simple on-line planning ap-
proach that handles the requirements of open-world do-
mains. We call this new approachOptimization in Hindsight
with Open Worlds (OH-WOW). Rather than using tradi-
tional techniques that compute a policy or contingent plan
in advance, we estimate on-line at each step which action is
best in light of our current knowledge of the world. The OH-
WOW approach is domain agnostic and does not commit
to a particular representation for open-world knowledge or

goals. Instead, it can leverage any closed-world planner ap-
propriate for the underlying domain. Our central assumption
is that the agent possesses some knowledge, likely proba-
bilistic, about the domain. In our view, performing well in
an open-world depends on having expectations about that
world, e.g., building dimensions are typically tens or hun-
dreds of meters rather than centimeters or kilometers, or that
people are usually found in certain densities per square me-
ter, or are more often found in certain areas, such as offices.
This type of default or prior information can be overridden
by direct experience, but ought to play a role in planning
until it is discovered to be inaccurate. We use these expecta-
tions to generate possible states of the world consistent with
the agent’s current knowledge, use a closed-world planner to
estimate the future reward achievable in those worlds after
taking each currently-applicable action, and then select the
action with the highest expected reward.

After describing OH-WOW in detail, we contrast it with
previous work. We then report on the method’s empiri-
cal performance, both in simulated domains and when de-
ployed on a physical mobile robot fully integrated with the
Robot Operating System (ROS), Simultaneous Localization
And Mapping (SLAM) and standard navigation. Our expe-
rience indicates that the method is surprisingly general and
practical, achieving results as good as those of previous sys-
tems but with lower planning times and fewer ad hoc as-
sumptions. This work showcases the power of Monte Carlo
techniques and adds open-world planning to the list of non-
classical planning settings in which simple planners can be
leveraged to provide state-of-the-art performance.

A Hindsight Optimization Approach
Optimization in hindsight was originally developed for
scheduling and networking problems (Chong, Givan, and
Chang 2000; Mercier and van Hentenryck 2007; Wu,
Chong, and Givan 2002) and has recently been applied to
probabilistic planning (Yoon et al. 2008; 2010). In these
previous settings, sampling is used to resolve uncertaintyin
the outcome of actions. In our context of open-world plan-
ning, each sample forms a concrete hypothesis about the
world—which objects might exist and which fluents might
hold. While these will likely be revealed to the agent as it
performs actions that have, a priori, uncertain outcomes, the
sampling process for open-world planning is more involved

than choosing an outcome in a PPDDL (Younes and Littman
2004) action or RDDL (Sanner 2011) description. For ex-
ample, a rescue robot will generate possible world states
with conceivable floor plans for the building, each with sets
of victims distributed in various plausible locations. Each
of these sampled worlds may potentially determine the out-
come of multiple sensing actions during the course of the
corresponding planning episode. Demonstrating the prac-
ticality of this approach is the central contribution of this
paper.

While these samples of possible worlds are intentionally
not exhaustive, they are intended to provide useful relative
judgements on the expected value of actions. In order to es-
timate the value of an action, we apply that action in each of
the sampled possible worlds, find closed-world plans from
the resulting states, and average over the resulting plan costs.
The action with the lowest average plan cost over the sam-
pled worlds is chosen to be executed.

More formally, we define the value of being in a states1
as the minimum expected cost over plans that extend from
s1. That is, the minimum cost over all possible future action
sequences of the total cost over all expected future states:

V ∗(s1) = min
A=〈a1,...,a|A|〉

E
〈s2,...,s|A|〉

|A|
∑

i=1

C(si, ai)

whereC(s, a) represents the cost of performing actiona in
states. In open-world planning, these future states incorpo-
rate the sensed knowledge of the agent and the expectation is
over the distribution of sensing outcomes. The agent will ex-
pect different outcomes based on its beliefs about the world.
Given our expectations about sensing outcomes, we would
like to find the action sequenceA = 〈a1, ..., a|A|〉 that min-
imizes the expected sum of action costs. To computeV ∗

exactly, we would need to compute the expectation for each
of exponentially many plans.

In optimization in hindsight, we approximate the value
function by exchanging expectation and minimization, so
that we are taking the expected value of minimum-cost plans
instead of the minimum over expected-cost plans:

V̂ (s1) = E
〈s2,s3,...〉

 min
A=〈a1,...,a|A|〉

|A|
∑

i=1

C(si, ai)

This approximation ofV ∗(s) uses fixed sensing outcomes in
each minimization. As in other applications of optimization
in hindsight, the stochastic elements have been reduced to
known outcomes by sampling. For each possible outcome
in the expectation, the problem is to minimize cost given a
known world, i.e., standard, closed-world, cost-minimizing,
deterministic planning. In OH-WOW, fixed sensing out-
comes are generated using concrete hypotheses about the
state of the world. For each fully-known, deterministic
world hypothesis, the agent can compute the result of dif-
ferent sensing outcomes when solving the minimization in
the equation forV ∗. For example, the result of querying
a vision system to look for an injured person depends on
whether or not there is an injured person in the sensed por-
tion of the world—this is fully-known for each hypothesis.

OH-WOW(s = 〈agent ,world〉, N)
1. for i from 1 toN do
2. wi ← sample world(world)
3. foreach actiona applicable ins
4. s′ ← a(s)

5. c← (
∑N

i=1
solve(s′, wi))/N

6. Q(s, a)← C(s, a) + c
7. Returnargmina Q(s, a)

Figure 1: The OH-WOW algorithm.

The agent is aware of what features are truly known and
which are merely hypothesized, as a result the deterministic
problem can require sensing actions before the agent inter-
acts with hypothesized portions of the world. In this way,
the system will still be required to plan to sense. A dummy
precondition is added to all actions that involve a hypoth-
esized variable. This precondition enforces that the value
of that variable is sensed before actions requiring the value
are executed. This ensures that the resulting plan executes
sensing actions appropriately. More concretely, if the agent
hypothesizes that there is an injured person in a room, then
the deterministic planner will require a sensing action be-
fore that person can be reported. When a sensing action is
carried out in the physical world, its result may differ from
the hypothesis. This new information will be reflected in the
samples taken at the next planning step.

We define theQ-value to be the cumulative expected cost
of taking an actiona1 in states1:

Q(s1, a1) = C(s1, a1)+ E
〈s2,s3,...〉

[

min
A=〈a2,...,a|A|+1〉

|A|+1
∑

i=2

C(si, ai)

]

From this, we estimate the best action choice ins1 as
mina Q(s1, a). Using this technique, we are said to be per-
forming optimization with the benefit of ‘hindsight’ knowl-
edge about how future uncertainty will be resolved.

The pseudocode in Figure 1 summarizes the algorithm.
At each time step, the algorithm is used to find the next ac-
tion to execute from the current states, which includes in-
formation about both the agent’s current configuration and
its current knowledge about the world. First, we generate a
set ofN possible worlds that are consistent with the agent’s
current knowledge (lines 1–2). Next, for each currently ap-
plicable actiona, we consider the resulting states′ = a(s)
(line 4). Then, each possible worldwi is initialized with
the states′, generating a fully-known closed-world deter-
ministic planning problem. Recall that, to incorporate sens-
ing, the determinized problem requires the agent to sense
before interacting with hypothesized features of a sampled
world. Solving this problem provides an optimistic estimate
of the cost froms′. The mean cost across the set of sam-
ples (line 5) along with the cost of the actionC(s, a) is used
as theQ-value for each applicable actiona in the original
states (line 6). Finally, we return the action with the min-
imumQ-value (line 7), the agent takes the action, possibly
observing new facts and objects in the world, yielding a new
current state, and the cycles begins anew.

Related Work
Open world planning is a broad problem that has been at-
tacked from many angles. One issue is how to represent
knowledge and goals related to open-ended sets; Etzioni
and Weld (1994) and Babaian and Schmolze (2006) have
addressed this. We do not address this issue in this paper,
except to point out that the underlying planners used in our
approach are closed-world and do not require a particularly
expressive (and expensive) representation language. We do
require that the agent tracks what is currently known about
the world and that the world generator respects this knowl-
edge when sampling possible worlds.

In conformant planning (Cimatti, Roveri, and Bertoli
2004, inter alia), one requires plans that are guaranteed to
work without sensing. For most robotics domains, this is
overly restrictive and renders problems unsolvable. Contin-
gent planning (Meuleau and Smith 2003, inter alia) allows
for sensing, but computes a plan before beginning execu-
tion. In addition to handling open-worlds, we aim to scale
to domains in which the number of contingencies may be
very large (e.g., the number of possible floor plans), making
synthesis of branching plans prohibitively expensive.

In the POMDP literature, computing actions on-line is
recognized to provide increased scalability (Ross et al.
2008). However, many POMDP algorithms attempt to com-
pute future belief states of the agent, which can be expen-
sive and cumbersome. Optimization in hindsight represents
an extreme approach, disregarding future belief uncertainty
and assuming that the agent can achieve the cost accrued by
the plans for the fully-observed sampled worlds. Our work is
perhaps most closely related to work on sampling techniques
for POMDPs, where a particle filter approximates the be-
lief space during sampling (Silver and Veness 2010). Open
world planning goes beyond traditional factored POMDP
representations (Boutilier, Dean, and Hanks 2011) because
the structure of the world state requires representing a log-
ically infinite domain of discourse; the universe of objects
that exist and the possible relationships between them re-
main unknown to the agent (Doshi 2009).

There has been sustained interest from roboticists in open-
world planning. One way of handling open-world planning
in practice is to force the robot to move in one direction sim-
ply to explore without a concept of cost or reward. Such
simple ad hoc approaches cannot exploit the agent’s expec-
tations about goals (e.g., people are likely in offices) or take
sensed information into account (e.g., a hallway implies new
rooms to explore). Talamadupula et al. (2010) present an
approach where the planner assumes objects exist in order
to instantiate goals and motivate a search and rescue robot
to collect reward by discovering and reporting victims. As
new information arrives about the environment, the planner
replans. This can be seen as a degenerate form of our hind-
sight approach, where the robot operates on a single opti-
mistic “sample”. While it is simpler, it cannot generalize to
domains where uncertainty is a major component.

Joshi et al. (2012) use offline symbolic dynamic program-
ming with known goals but unknown numbers or locations
of objects, which does allow for reusable policies on any
instance of the domain. However, in their experiments the

number of possible objects was severely limited to retain
feasible computation times (they require 4 hours for their
3 room example), which makes the resulting policies subop-
timal. They also do not handle temporal constraints, action
costs, or goal rewards.

Evaluation
We evaluate OH-WOW by applying it in two domains: the
classic omelette benchmark for planning under uncertainty,
and urban search-and-rescue, which we investigate both in
simulation and using a physical robot.

Omelettes
In the omelette benchmark, introduced by Levesque (1996),
the agent is attempting to make a three-egg omelette with
ingredients of unknown freshness. The agent has four avail-
able actions. The agent canbreakan egg into a bowl,pour
the contents of a bowl into another bowl or the trash,washa
bowl, or sniff whether the eggs in a bowl are good. All ac-
tions are deterministic except for the sniff action. The goal
is to have exactly three good eggs in a specific bowl with no
trace of bad eggs. To make the domain more challenging,
we extended it to have both regular white eggs, which are
bad with a probability of 0.5, and local brown eggs, which
are bad with a probability of 0.1. The agent is able to ob-
serve the color of the next available egg without requiring a
sensing action.

We compared OH-WOW to a perfectly omniscient oracle
and also to a hand-coded controller. The controller puts eggs
into the goal bowl, sniffing after each addition and clean-
ing out bad eggs until it finds a good one. Then it does the
same routine using an extra bowl, pouring good eggs into the
goal bowl from the extra bowl until the goal is reached. We
generated three sets of 100 random instances, each set with
a different probability of the next egg being brown. OH-
WOW used a domain-dependentdeterministic planner based
on uniform-cost search.

Figure 2 (left) shows the distribution of the resulting plan
costs using box and whisker plots. Each box surrounds the
middle 50% of the data, with a horizontal line indicating the
median and whiskers indicating the range (values beyond
1.5× the inter-quartile range are shown as circles). The gray
vertical stripes inside each box show 95% confidence inter-
vals on the mean. The plot shows the increase in cost over
the optimal solution found by the oracle, of the hindsight
planner with 32 and 256 samples, and the hand-coded con-
troller (ctlr). The boxes are grouped by the probability of an
egg being brown (0.0, 0.5, and 1.0). We can see that, when
all eggs were white, the hindsight planner with 256 samples
had a median cost that was less than the hand-coded con-
troller (significant withp < 0.05 via the Wilcoxon signed-
rank test). As the probability of a brown egg increased, the
hindsight planner performed better, nearly dominating the
controller when all eggs were brown. This is likely because
the hindsight planner could recognize that brown eggs tend
to be good, and put multiple into a bowl before bothering to
smell, saving redundant sniff actions.

The average total planning time on a 3.1 GHz Core2 PC
for OH-WOW to reach the goal using 256 samples on a

co
st

 o
v
er

 o
p
ti

m
al 60

30

0

32 256 ctlr
0.0

32 256 ctlr
0.5

32 256 ctlr
1.0

10

5

0

32 256 ctlr

unbiased

32 256 ctlr

south

32 256 ctlr

southwest

Figure 2: Plan cost in the three-egg omelette domain (left),and the search and rescue domain (right).

problem without brown eggs was 12.9 seconds (standard
deviation 8.0 seconds). Each plan was an average of 24.9
actions long (standard deviation 13.7 actions) and each ac-
tion in the plan took an average of 0.52 seconds to select
(standard deviation 0.31 seconds) before executing it. This
compares favorably with the 185 seconds of offline plan-
ning reported for approximate RTDP (CPU unspecified) by
Bonet and Geffner (2001). Levesque (2005) also generates
full plans offline to solve the three-egg omelette in 1.4 sec-
onds but requires 1,681 seconds if the omelette is scaled to
four eggs. When using four eggs, OH-WOW’s costs rela-
tive to optimal were similar to the three-egg case, and total
computation time averaged only 76.7 seconds (standard de-
viation 43.6). Each plan was an average of 49 actions long
(standard deviation 27.3 actions) and each action in the plan
took an average of 1.57 seconds to select (standard devia-
tion 0.99 seconds) before executing. The plans found by
Levesque’s planner also contain strictly more actions than
our hand-coded controller (which in turn finds more costly
plans than OH-WOW on the median), as Levesque’s solu-
tion always uses the auxiliary bowl for staging and requires
an additional pour action to move the first good egg into the
goal bowl.

Search and Rescue

Now, we return to the motivating example of search and res-
cue robotics. The robot’s objective is to maximize the num-
ber of injured people it reports while still returning to its
starting location by a given hard deadline.

To generate possible worlds for OH-WOW, we need to
generate building layouts consistent with the robot’s cur-
rent map and hypothesize the possible locations of injured
people. We represent building layouts as rough topologi-
cal maps. We assume that undiscovered nodes will lie on a
uniform four-connected grid, and that a known node can be
extended if it has an adjacent grid cell that can be reached
without going through an obstacle or crossing an existing
edge in the map. We iteratively choose an extendable node,
generate a valid neighbor and connect them. We use a bias
toward extending the most recently added node, and toward
generating the neighbor that forms a straight line from the

Topological graph

Occupancy grid

Planner

Navigation

Figure 3: Architecture diagram.

chosen node’s parent. This was sufficient to yield plausible
building layouts with hallways. Victims are generated in-
dependently with fixed probability per hypothesized node.
The upper right panel of Figure 3 shows a very small exam-
ple map with hypothesized extensions shown in gray.

The base planner used by OH-WOW precomputes all-
pairs shortest-paths among nodes containing people and the
start location. It then uses depth-first search, considering at
each step to visit each unreported person or return home.
The available actions depend on the remaining time. For ef-
ficiency, we avoid considering time as a separate state vari-
able by incorporating it into the cost function (Phillips and
Likhachev 2011).

Simulation To test the planner in simulation, we created
100 random worlds with 100 nodes each. We considered
three victim distributions:unbiased, uniform probability of
0.1 per node;south, nodes south of the start location con-
tains a person with probability 0.2 and nodes north of the
start location 0; andsouthwest, southwest of the start 0.4

victims found
deadline 0 1 2 3
1 minute 4 6 0 0
5 minutes 0 7 3 0
10 minutes 0 3 4 3

Figure 4: Number of injured victims found and reported over
10 runs using a physical robot.

and 0 elsewhere. These distributions are representative of
helpful domain knowledge that can be leveraged when gen-
erating possible worlds. Skewing the probability of a vic-
tim’s existence to one side of the building could be used to
to represent the knowledge of a closed wing of the build-
ing or a scheduled company-wide event. We limit the total
number of victims to 10. The cost of a plan is the num-
ber of unreported people remaining when the agent returns
home and performs a dummyfinish action. We compared
OH-WOW to two different algorithms. The first is an oracle
that knows the exact configuration of the building and loca-
tion of all victims. The second is a hand-coded controller
that performed a depth-first exploration of the building, re-
porting people that it encountered and returning to the start
location when it had no more time to explore.

To gauge the complexity of these instances, we must con-
sider the number of possible configurations of maps and vic-
tims. Considering onlyn × n grids, there are2(n − 1)n
possible places for edges; our generator is limited to trees,
so it must pickn2 − 1. Forn = 10, this is

(

180

99

)

≈ 1052

maps. For each possible map, we must choose locations
for victims; for 10 victims, there are

(

100

10

)

≈ 1013 possi-
ble configurations on the map. Maintaining a belief over so
many possible worlds would be challenging. Thankfully, it
also seems unnecessary if we merely wish to estimate the
expected value of actions.

Figure 2 (right) shows results, grouped by the victim dis-
tributions. For the unbiased case, the hand-coded controller
gave the best performance, but OH-WOW was quite com-
petitive. With a biased distribution, OH-WOW was superior
as it was easily able to leverage prior knowledge about possi-
ble worlds. The average maximum per-action planning time
for OH-WOW with 256 samples was 2.7 seconds (standard
deviation 0.85 seconds). In order to compare with Joshi et
al. (2012), we also ran smaller instances with at most three
victims. The average maximum per-action time for 256 sam-
ples was 0.18 seconds (standard deviation 0.035 seconds),
which is negligible compared to typical mobile robot laten-
cies.

Physical Robot We also integrated OH-WOW with the
Robot Operating System (ROS,www.ros.org) on a 3.7
GHz quad-core i7 laptop on-board a Pioneer 3dx equipped
with a SICK LIDAR shown in Figure 3. We use the ROS
Gmapping SLAM stack to generate a fine-grained occu-
pancy grid, from which we extract a topological map with
edge lengths of 1 meter to provide to OH-WOW. Figure 5
shows a final topological map overlayed on the correspond-
ing SLAM map created during an experiment run of the

search and rescue application. In the topological map, nodes
are marked as either black, green, or pink. Pink nodes indi-
cate an area of the building where a victim was found and
reported. Green nodes are points in the map that can be ex-
tended when creating possible building layouts. The black
nodes indicate that the layout of the building can not be ex-
tended from this area.

The ROS Navigation stack is used to execute movement
actions, which are specified as the topological node to visit
next. These topological nodes are then mapped to a two di-
mensional point in the map built by SLAM before issuing
the move action to the robot. In some cases, the rough topo-
logical graph places a node very near to an obstacle and the
planner can not find a safe way to achieve the requested ac-
tion. We supplemented the navigation component in these
instances by issuing a set of perturbed points around the ini-
tial point before returning failure to the planner. This setwas
simply four points, one in each cardinal direction, one half
of a discretization away.

We performed experiments in a hallway of approximately
20 meters with between 2 and 5 open doors to offices and 3
victims. We simulated detection of a victim using the range
capability of the laser rangefinder. When the laser is able to
collect data and populate a portion of the map correspond-
ing to certain pre-selected locations (that were unknown to
the planner), we pass that detection information along to the
planner. In order to report a victim the robot must navigate
to the containing topological node.

We used three different deadlines, one minute, five min-
utes and ten minutes. As shown in Table 4, the performance
of the robot improves as it is given more time to search for
victims. In all experiments the robot returned within the hard
deadline we provided. At first, only given a short deadline of
one minute, the robot is able to find one out of the three vic-
tims in six of the ten trials before returning home. When the
deadline is increased to five minutes, the robot takes advan-
tage of this and performs more exploration and is able to find
two out of the three victims in two trials and one victim in
the remaining eight. When this deadline is further increased
to ten minutes, the robot is able to find all three victims in
two trials, two victims in four trials, and one victim in the
remaining four trials.

These results demonstrate that generating possible worlds
consistent with experience is feasible in practice, even as
the robot’s knowledge is being updated during exploration.
It also shows that under realistic conditions, OH-WOW
correctly trades off soft goals under temporal constraints,
but without the ad hoc goal handling of Talamadupula et
al. (2010) or the hours of preprocessing required by Joshi et
al. (2012).

Discussion
OH-WOW requires a generative model of plausible worlds.
We assume such expectations can be developed either man-
ually or through experience. When the world contradicts
the agent’s expectations, this can be interpreted as surprise,
which might naturally lead to increased learning. The fun-
damental vulnerability of sampling-based planners is when
unlikely worlds play a large role in determining action

Figure 5: Example SLAM and topological map.

value; importance sampling may help here. For exam-
ple, in the “Bombs in Toilets” domain (McDermott 1987;
Smith and Weld 1998), OH-WOW may never sample a
world in which a certain undunked package contains the
bomb. The probability of this, however, is small (7 · 10−11

for 6 packages and 128 samples). In any case, optimal be-
havior is unattainable if one insists on fast response timesin
dynamic domains.

While faster than many POMDP algorithms, OH-WOW
is much slower than a classical planner, as it must solve
one classical planning problem for each sampled world. In
our implementation, during each step, all planning problems
were solved serially. These problems are entirely indepen-
dent though and could trivially be solved in parallel to take
advantage of multiple processor cores. OH-WOW is more
general than standard off-line techniques as it can be used
on-line, as shown in the experiments, and also off-line by
simulating the domain to construct a branching plan. It is
possible to improve the performance of OH-WOW by ap-
plying some of the enhancements of Yoon et al. (2010). One
such technique is calledprobabilistically helpful actions. To
find probabilistically helpful actions, the planner evaluates
all samples from the current state of the agent instead of the
one step lookahead states. Actions that lead to optimal plans
starting from the current state are considered to be helpful
while the others are not. The samples are solved as nor-
mal from the one step lookahead states, but the only actions
that are considered are the ones that were deemed helpful.
Another improvement presented by Yoon et al. (2010) is to
save samples and plan prefixes that remain consistent with
the outcome of a selected and then executed action. In do-
mains with large amounts of determinism, this enhancement
can greatly reduce the amount of planning required by sav-
ing work across deterministic transitions.

In this paper, we assume that the world remains static as
we explore it and that non-sensing actions are deterministic.
OH-WOW however, is very general and immediately ap-
plies to dynamic worlds, stochastic actions, and on-line goal

arrival; this remains an exciting area for future work.

Conclusion
Open world planning is essential for many real-world
agents. We have shown how optimization in hindsight yields
a simple and general approach to open-world planning with
temporal constraints, decision-theoretic reasoning, andsoft
goals. While the technique is approximate, it is easy to im-
plement and our results suggest that it can be successful in
practice.

Acknowledgments
This work was supported in part by NSF (grant 0812141)
and the DARPA CSSG program (grant D11AP00242).

References
Babaian, T., and Schmolze, J. G. 2006. Efficient open world
reasoning for planning.Logical Methods in Computer Sci-
ence2(3).

Bonet, B., and Geffner, H. 2001. GPT: a tool for planning
with uncertainty and partial information. InProc. IJCAI-01
Workshop on Planning with Uncertainty and Partial Infor-
mation, 82–87.

Boutilier, C.; Dean, T. L.; and Hanks, S. 2011. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage.CoRRabs/1105.5460.

Chong, E.; Givan, R.; and Chang, H. 2000. A frame-
work for simulation-based network control via hindsight op-
timization. InIEEE Conference on Decision and Control.

Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Conformant
planning via symbolic model checking and heuristic search.
Artificial Intelligence159(1–2):127–206.

Doshi, F. 2009. The infinite partially observable markov de-
cision process. InNeural Information Processing Systems,
volume 22, 477–485.

Etzioni, O., and Weld, D. S. 1994. A softbot-based interface
to the internet.Communications of the ACM37(7):72–76.
Joshi, S.; Schermerhorn, P. W.; Khardon, R.; and Scheutz,
M. 2012. Abstract planning for reactive robots. InProceed-
ings of IEEE ICRA, 4379–4384.
Levesque, H. 1996. What is planning in the presence of
sensing? InProceedings of AAAI.
Levesque, H. J. 2005. Planning with loops. InProceedings
of IJCAI.
McDermott, D. 1987. A critique of pure reason.Computa-
tional Intelligence3(1):151–160.
Mercier, L., and van Hentenryck, P. 2007. Performance
analysis of online anticipatory algorithms for large multi-
stage stochastic programs. InProceedings of IJCAI.
Meuleau, N., and Smith, D. E. 2003. Optimal limited con-
tingency planning. InProceedings of UAI.
Phillips, M., and Likhachev, M. 2011. Planning in domains
with cost function dependent actions. InProceedings of
the fourth international symposium on combinatorial search
(SoCS-11).
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-draa, B. 2008.
Online planning algorithms for POMDPs.Journal of Artifi-
cial Intelligence Research32:663–704.
Sanner, S. 2011. Relational dynamic influence diagram lan-
guage (rddl): Language description.NICTA, Australia.
Silver, D., and Veness, J. 2010. Monte-carlo planning in
large POMDPs. InIn Advances in Neural Information Pro-
cessing Systems 23, 2164–2172.
Smith, D. E., and Weld, D. S. 1998. Conformant graphplan.
In Proceedings of AAAI, 889–896.
Talamadupula, K.; Benton, J.; Schermerhorn, P.; Kambham-
pati, S.; and Scheutz, M. 2010. Integrating a closed world
planner with an open world robot: A case study. InProceed-
ings of AAAI.
Wu, G.; Chong, E.; and Givan, R. 2002. Burst-level con-
gestion control using hindsight optimization.IEEE Trans-
actions on Automatic Control.
Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight.In
Proceedings of Conference on Artificial Intelligence (AAAI).
Yoon, S.; Ruml, W.; Benton, J.; and Do, M. B. 2010. Im-
proving determinization in hindsight for on-line probabilis-
tic planning. InProceedings of the Tenth International Con-
ference on Automated Planning and Scheduling (ICAPS-10).
Younes, H. L., and Littman, M. L. 2004. Ppddl1. 0: The
language for the probabilistic part of ipc-4. InProceedings
of the international planning competition, 46.

