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Abstract

In contrast to most academic work on AI planning, many poten-
tial applications have an on-line character. For example, the true
objective may not be to find the fastest plan, but to have solv-
ing plus plan execution end as soon as possible. Or additional
goals may arrive while previous plans are still being executed.
While specific planning systems have been built to address real-
world problems in such settings, the fundamental algorithmic
issues have often been obscured by the myriad complexities in-
herent in any deployed system. Basic questions regarding the
strengths and weakness of different planning approaches remain
unresolved in the on-line setting. To enable the systematic study
of this important area, we introduce a general simulation testbed
and demonstrate its power by highlighting the critical sensitivi-
ties of two popular planning approaches when they are adapted
to an on-line setting.

Introduction
The goal of planning is to synthesize a set of actions that, when
executed, will achieve the user’s goals. Most academic re-
search on general purpose planning has concentrated on off-
line planning, in which plan synthesis is considered separately
from plan execution. This separation was originally motivated
by the fact that even simplified off-line settings, such as se-
quential non-temporal planning, are intractable in the general
case and it has helped focus research in the field on core al-
gorithmic issues. In the last ten years, tremendous advances
have been made in domain-independent plan synthesis and, in
many domains, we now can find parallel temporal plans with
hundreds of actions in a few seconds.

However, currently deployed planners for real-world appli-
cations are frequently run in an on-line setting in which plan
synthesis and execution run concurrently. Such domains in-
clude manufacturing process control, supply chain manage-
ment, power distribution network configuration, transportation
logistics, mobile robotics, and spacecraft control. Despite the
importance of these on-line domains, the issues they raise re-
lated to wall clock time and plan execution have not been thor-
oughly explored. Indeed, during the ICAPS 2005 Festivus,
many prominent planning researchers proposed the weak con-
nection of academic work to industrial applications as the most
pressing issue facing the community today.

One reason for this disconnection is that real-world applica-
tions tend to be complex and messy. Another is that evaluat-
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ing an on-line planner is more complex than running a planner
off-line. In this paper, we address both these obstacles by in-
troducing a domain-independent simulator that takes a PDDL-
like description of a planning domain and then conducts an in-
teraction with a planner in real time. This allows easy testing
of an on-line planner and straightforward definition of simple
domains to probe the sensitivities of different approaches. We
describe a sample domain that captures key elements of a real
industrial application, on-line manufacturing, and show how it
provides insight into two popular planning approaches, state-
space progression and partial-order planning, that we adapt
to the on-line setting. Our preliminary results show that the
online progression planner returns a higher number of better
quality solutions in terms of wall-clock goal achievement time
or the total duration (planning time + makespan) to achieve the
goal.

On-line Planning
In the off-line setting, wall-clock time is not important and a
planner can assume the world stops during the planning pro-
cess. No distinction is drawn between the world state at the
start of planning and at the start of execution. This assumption
may be acceptable when the world is static during planning or
the planning time is insignificant compared to the duration of
actions in a plan. However, in many domains, those assump-
tions fail to hold. While an on-line setting raises many issues,
the ones we will directly address in this paper are:
Optimizing wall clock end time: In many applications, the
objective is to achieve the goal as quickly as possible, meaning
that the figure of merit is the sum of the planner’s computation
time and the plan’s execution time. Few existing planners op-
timize this metric. Rather, the field is divided between optimal
and suboptimal planners, with no clear way to compare them.
Imagine that on a particular problem an optimal planner takes
10 seconds to find a plan with a makespan of 2 seconds and a
suboptimal planner takes 0.1s to find a plan with a makespan
of 4s. The end time metric provides a clear way to compare
these results. There is also an algorithmic aspect to this prob-
lem. For example, imagine that the same optimal planner on
a different problem takes 10s to find a plan with makespan
100s, while the same suboptimal planner takes 0.1s to find a
plan with makespan 200s. Because the suboptimal planner ig-
nores the concept of wall time, it can perform worse than the
optimal planner.
Deadlines: In addition to merely achieving a goal, it can
sometimes be important to achieve it at or before a specified



time. In a situation with multiple goals, the order the plan-
ner considers them in may be important. This leads to the
question of bounds on computation time and intelligent use of
time. That issue has already arisen in the International Plan-
ning Competition. For all planners that terminate within a
specified time bound, the plan with the lower makespan wins,
even if its competitors take only a fraction of the time. Yet few
planning algorithms are cognizant of deadlines.
Asynchronous goals: In many real-world settings, goals are
not neatly divided into separate episodes. Rather, new goals
may arrive while plans for previous goals are still executing. A
planner may need to replan or work around the existing com-
mitments it has made. Relevant issues are: should we keep the
previous plans or cancel them and replan from scratch? What
if there are action retraction costs (Cushing and Kambhampati
2005)? One might view this as just a special case of exoge-
nous events, but note that current work in planning does not
address it. For example, the timed initial literals of PDDL2.2
are timed relative to the start of plan execution, not wall clock
time.
Execution failure: There has been much work on planning
under different forms of uncertainty, but even after two iter-
ations of the probabilistic planning track of the international
planning competition there remains controversy over evalua-
tion methodology. On-line evaluation measuring wall clock
time for achieving the goal provides a clear and useful way
to compare approaches for handling execution uncertainty,
putting policy pre-computation on level ground with replan-
ning.
Duration uncertainty: In many applications, the exact dura-
tion of an action is not known until it executes. This issue has
received some treatment by those involved in applications, but
has not yet found its way into planner evaluation.

There have, of course, been many planning systems de-
signed and deployed to handle variations of these issues in
specific on-line applications. However, these systems invari-
ably reflect the size and complexity of the real-world domains
they address, making it difficult for academic researchers to
study, compare, and modify the systems. For example, such
systems often use formalisms quite different from PDDL, the
standard among academic researchers. And sometimes the
systems cannot be distributed. Furthermore, such individual
point solutions do not give us an understanding of the design
space, the underlying principles, or the inherent trade-offs be-
tween various approaches to the same on-line problem. We
propose studying simple domains that stay close to PDDL and
do not require complete reimplementation of existing off-line
planners, but that incorporate carefully chosen features of the
on-line setting. This will allow the emergence of common
benchmarks on which multiple approaches can be studied and
compared.

Related Work
There has been work on approximating on-line planning issues
in the off-line setting. For example, Fox et al. (2006) discuss
the problem of plan stability when the arrival of new goals ne-
cessitate the repairing of the previously found plan. While the
setting is on-line in the sense that new goals arrive continu-
ally, wall-clock time is not considered and the plan generation
and plan execution processes are still completely separate. As

noted above, planning with timed initial literals does not suf-
fice to capture existing commitments, both because the literals
are not timed relative to wall time and they preclude the op-
tion of changing previous choices when warranted. Ruml and
Do (2007) present preliminary work on optimizing for wall
clock end time, although their planner has not been publicly
distributed.

There is work on on-line stochastic scheduling problem
(Bent and Hentenryck 2004; Bidot et al. 2007) in which
scheduling and execution are interleaved. Scheduling is the
closest field to planning. However, planning problems inves-
tigate selecting actions that make up the plan to achieve the
goals and this is not tackled in scheduling. In our work, we
want to create the on-line environment where selecting a con-
sistent plan satisfying real-time constraints takes center stage.

The European Network of Excellence in Planning Research
(PLANET) have established the Technical Coordination Unit
(TCU) for On-Line Planning and Scheduling (Verfaillie 2002).
In addition to raising awareness of important on-line applica-
tions, the TCU organized an On-Line Planning and Schedul-
ing Workshop at the AIPS-2002 conference. There are many
important on-line planning/scheduling work, mostly on real-
world system, published in this workshop. However, none of
them is in the setting that is easily accessible to off-line plan-
ners that take standard PDDL planning language. Our work
tries to capture some of the most important on-line planning
constraints and provide a simulation environment that do not
require substantial changes to the off-line planners input lan-
guage to handle the new problem.

desJardins et al. (1999) surveys “distributed continual plan-
ning” in which planning and execution are interleaved and can
be distributed across multiple agents. We focus here on just
the continual part, providing an environment allowing for easy
migration for researchers of off-line planning.

There is extensive work on on-line planning for space appli-
cations at the NASA’s Ames and JPL research centers (Chien
et al. 2000), (Dorais and Gawdiak 2002), and (Pell et al.
1997); the planning approaches involve both plan repairing
techniques and constraint-based planning. While discussing
the mixed initiative on-line planner for NASA mobile robot,
Dorais and Gawdiak (2002) were willing to provide the simu-
lation environment that can help research in on-line planning.
However, it’s application and simulator are complicated and its
input language differs from STRIPS planning and PDDL-like
languages.

Pollack and Ringuette (1990) introduced Tileworld, a simu-
lation testbed for research on planning and plan management
in dynamic environments. However, critiques of Tileworld
(Al-Badr and Hanks 2001; Hanks et al. 1993) have noted that
its handling of time can be awkward, as the simulation is not
real-time, and that the simulation and the planner must be in-
tegrated together in the same Lisp process with access to a
shared data structure.

SimPlanner is perhaps the closest system to our work
(Sapena and Onaindia 2003). It provides both a PDDL plan-
ner and an executor to interact with the planner. However, the
simulation is not with respect to wall clock time, actions are
not durative, and new plans cannot execute in parallel with
previous commitments.
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Figure 1: Our simulation architecture.

A Simulation Testbed
We have developed an on-line planning simulation environ-
ment to facilitate research on on-line planning. Figure 1 shows
the simulation architecture in which the simulator and planner
communicate in real-time. In the implementation, the planner
is run as a child process of the simulator, communicating with
it using plain text messages via standard I/O. This is very sim-
ple, as long as care is taken to flush output buffers. It is also
portable across platforms, and language independent. As the
simulator requires very little memory and CPU time, it is rea-
sonable to run it on the same machine as the planner. (Using
a stub planner that communicates through sockets to reach a
real planner on a different machine is certainly a possibility.)
Simulator: Upon starting, the simulator takes as input: (1) a
domain specification; (2) an initial state specification (prob-
lem file); (3) a timed goal specification file. Simple examples
are discussed below. The domain and problem files are simi-
lar to the domain and problem files given to conventional off-
line planners, following the same syntax as PDDL2.1 STRIPS-
style durative actions (Fox and Long 2003). Each new goal
g specified in the goal file has an associated time point tg at
which it is to be sent. Goals can also specify deadlines by
which they must be achieved or utility functions that define
their value based on when they are achieved. When they are
sent to the planner, goals have a syntax similar to a PDDL2.1
problem file, as they specify new fluents, the initial values of
the fluents and the goals to be achieved.

The simulation begins with the initial state specification.
When a plan p is received from the planner, the simulator will
simulate the execution of p and check for plan validity by de-
tecting action precondition satisfaction and interferences with
concurrent plans of other goals that are currently executing at
the same wall-clock time. This is done by checking at the
scheduled starting time of each action if any of its precondi-
tions will not be satisfied due to previous action failure. If an
action fails to execute, its effects will not be activated and can
thus affect the executability of other actions scheduled later.
The simulator notes the wall-clock time at which each goal is
achieved in order to measure plan quality. The simulator stops
executing at the wall-clock time when all goals are satisfied
(or after a time-out if the planner has not provided any plan).

Although we do not exercise it in this paper, the simulator is
also capable of simulating random action execution failure. In
this case, it notifies the planner and removes all unexecuted ac-
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Figure 2: Example of a Manufacturing Plant.

tions affected by this failure from future execution. Command
line options are provided for such tasks as random seed setting
(to provide some degree of repeatability), and debugging out-
put. Note that because the simulator and planner are running
in real time, subject to OS scheduling and multiprogramming,
there is no absolute guarantee of repeatability. We like to re-
gard this as a benefit, in that one is encouraged to verify the
statistical significance of any observed effect.
On-Line planner: Upon receiving the new goal g at time tg,
a planner needs to produce a (complete or partial) plan Pg in-
tended to satisfy g and send it back to the simulator. If the
planner takes tp to find Pg , and sends the plan to the simu-
lator at time ts ≥ tg + tp, then the starting time ta of each
action a ∈ Pg needs to satisfy ta > ts. Note that tp is an
elapsed time while all the other timing instances tg, ts, and ta
are wall-clock times.

This simulation testbed clearly addresses the issues of op-
timizing wall clock end time, goal deadlines, asynchronous
goals, and execution failures. We intend to extend the simula-
tor in the near future to handle execution duration uncertainty.
Given that the inputted information provided to the planners
are of the standard PDDL2.1 format that is used many aca-
demic off-line planners, we expect the framework will require
minimal overhead when extending off-line planners to handle
on-line planning constraints.

The Manufacturing Plant Domain
The simulator as described above can simulate any on-line
planning domain given three input files: domain, initial prob-
lem, and goal written in the correct format. To test the frame-
work and provide an example of a simple yet realistic on-line
planning problem, we have written the domain file and the ran-
dom problem and goal generators for the manufacturing plant
domain described by Ruml et al. (2005).

The manufacturing plant domain consists of a set of ma-
chines linked together in a directed planar graph G (see Fig-
ure 2). Additionally, the domain includes a set of input and
output devices. Input devices must have only out-links and
output devices must have only in-links. Input and output de-
vices must only link to machines on the convex hull of G. This
is done to approximate the layout of the devices on a typical
manufacturing floor. Material is routed from input devices to
output devices. When material exists inside a machine, that
machine may give some attribute to the material. Only one
material may exist at a given time in most machines (with the
only exception being that more than one may exist in input
and output devices). New goals given to the planner consist of
(1) the initial location of the material (an input device) (2) the
final destination of the material (an output device) and (3) the
set of attributes which the material must possess. A version
of this domain was originally introduced in Ruml et al. (2005)
and it shares some commonalities with scheduling problems
(Pinedo 2002) where machines are discrete resources. In fact,



(define (domain manufacture)
(:requirements :typing ...)
(:types material attr machine - object)
(:predicates (at ?mat - material

?mach - machine)
....<snip>....

(:durative-action add_attribute
:parameters (?mat - material

?mach - machine
?att - attr)

:duration (= ?duration 2)
:condition (and (over all (at ?mat ?mach))

(at start (gives ?mach ?att)))
:effect (and (at end (has_attr ?mat ?att))))

Figure 3: Example domain file specifying an action.
(define (problem manufacturing-1)
(:domain manufacture)
(:objects input1 input2 machine1 machine2

output1 output2 - machine)
(:init (is_output output1)

(connected input1 machine1)
....<snip>....

(:goals (and))

Figure 4: Example problem file specifying initial state.

it can be viewed as a combination of a planning and scheduling
problem.

Figure 2 shows one example of the manufacturing plant with
two inputs, two outputs, two machines and the connections
between them. Machine 1 can give attribute 1 and machine
2 can give attribute 2 to any material routed through it. We
will use this as a leading example throughout the rest of this
paper. Figures 3, 4, and 5 shows the syntax for part of the
domain file, the problem file specifying the initial state, and an
example of the timed new goal. The domain and problem files
are exactly like the normal domain and problem files given to
STRIPS off-line planning, with exception that the goal set is
empty. The timed new goal is similar to a (partial) problem
file with new objects, their initial and desired goal condition.
The time at which the goal need to be sent to the planner (e.g.
5.5 in Figure 5) is only known to the simulator, but not to the
on-line planner.

On-Line Planning Algorithms
To illustrate the use of our testbed, we present two on-line
planners derived by extending popular off-line planning algo-
rithms: forward-state space (FSS) and partial order planning
(POP). We also test different search algorithms and heuris-
tics with those planning algorithms. The search algorithms
and heuristics are geared toward either producing a plan fast
(shorter planning time) or a shorter makespan (shorter plan ex-
ecution time). As discussed above, those are the two compo-
nents adding up to our objective function of minimizing wall-
clock goal achievement time.

The input to both algorithms from the simulator are:
• The domain specification and initial world state I when the

planner starts at time tI .
• The set of goals G that arrive continuously at an unpre-

dictable time tG.

(:goal 5.5
(:newgoal (:domain manufacture)
(:problem manufacturing-1)
(:objects mat2 - material)
(:init (at mat86 input2))
(:goal (and (has_attribute mat2 attribute1)

(has_attribute mat2 attribute2)
(at mat86 output2)))))

Figure 5: An example timed goal for the simulator.
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Figure 6: Manufacturing Plant with: new material m1 and pre-
vious material m0 for which route was planned.

Recall that the abstract of the communication between the
planner and the simulator is given in Figure 1; examples of the
domain, problem, and new goal files are given in Figure 3 and
5. The objective of the planner is to satisfy all goals in G by
outputting a plan Pj that can finish executing as early as possi-
ble, according to the wall-clock time. Given that the simulator
will not give the planner information about other actions from
previous plans that were/are/will execute, the planner needs to
keep track of how the world evolves according to its previously
found plans1. In our implementation, the planner maintains a
global plan P , which is a union of all plans found. The world
state at any given moment t can then be calculated by simulat-
ing P . Within the planner, action interaction within P follows
the semantics of TGP (Smith and Weld 1999): (1) all precon-
ditions must hold during the execution of an action; (2) delete
effects happen at the beginning and add effects happen at the
end of action duration. The plan P found for each new goal g
and the global plan P are in the same format used in the Inter-
national Planning Competition, which is P = {(a, ta)} where
a are grounded actions, and ta are fixed starting time of a. The
difference is that ta is wall-clock time, not reference time.

We will also use the following notations for the rest of this
section: PS is the plan leading from the root search node to the
state S (we will use “search node” and generated “plan state”
interchangeably); tsa, tea are the starting and ending time points
of a given action a. We assume that the plans for previous
goals (already committed in the execution engine) cannot be
changed/retracted. At the moment, our planners cannot handle
the execution failure feature of the simulator.

To illustrate the search steps in different on-line planning
algorithm, we use the simple configuration of the manufactur-
ing plant depicted in Figure 2. Figure 6 shows in dotted lines
the route/plan for two units of material. Assume that moving a
material from one location to another or putting an attribute on

1We plan to extend the simulator so that it accepts queries from the
planner asking for current world state and future commitments. With
this capability, the planner does not need to maintain the evolution of
world state internally.
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Figure 7: Plans by progression planners.

material both takes 10 time units. At time t = 5, the planner
receives a new goal g which specifies the routing of material
m1, originally at input 1 to output 1 and m1 needs to have at-
tribute 1 (produced by machine 1). There is also a previous
plan for another unit for material m0 starting from input 2 that
occupies machine 1 for the duration [30, 40].

Forward State Space On-Line Planning
This is the approach used by many of the most effective off-
line planners, such as FF (Hoffmann and Nebel 2001) and Fast
Downward (Helmert 2006). Here the planner progresses from
the initial state, and moves forward toward the goals, at each
step, one action is added to the current state. An added action
can be any grounded action applicable in the current state, or
a special “advance time” action to move forward to the next
relevant time point. The starting time ts

a of all actions in the
partial/final plan are all fixed. In classical planning, where
all actions have unit duration, then the state is advanced one
“step” (unit duration) at a time. In temporal planning, where
actions may have different durations and can interleave arbi-
trarily, then the state advances forward during search by mov-
ing from the current time to the next “decision epoch”. Each
“decision epoch” is either the start or end time point of an ac-
tion in the partial plan leading to the current state2. In our
ongoing example, the initial set of decision epochs are t = 5,
t = 30 and t = 40.

In our leading example depicted in Figure 6, an
off-line planner will find a plan P1 = {(5.0 :
A1), (15.0 : A2), (25.0 : A3)} (i.e. A1 start
at 5.0) with A1 = Move(Input1, Machine1),
A2 = AddAttr(Machine1, m1) and A3 =
Move(Machine1, Output1). However, given that any
planner will take some duration tp > 0 to search for a plan,

2Theoretically, any time point in the future can be a relevant time
point to “advance” to. However, to bound the search space, forward
state-space planner only advance time to the next decision epoch.

Algorithm 1: Forward state-space on-line planning
Wall-clock time: tc;1

Estimated planning time: τp;2

World state at time tc + τp: I ;3

State Queue: SQ = {I};4

while SQ 6= ∅ do5

S:= Dequeue(SQ) ;6

if ∃a ∈ PS : ta ≥ tc then7

Return to Line 5;8

end9

if S satisfies G then10

Output PS ;11

else12

Expand S;13

end14

end15

any action in the found plan P can only start as early as
5.0 + tp. Thus, P1 may not be a valid plan in the on-line
setting.

Algorithm 1 shows the on-line version of the forward state-
space (FSS) planning algorithm. To find a plan for a set of
new goals g, a FSS planner needs an initial state Ig to progress
from. Ideally, Ig should be the initial state at time t = tc + tp
(with tc is the wall-clock time at which the planner first knows
about g and tp is the time taken to find the plan). However,
because tp is unknown, the on-line FSS planner needs to ap-
proximate it using the estimated planning time τp (Line 2) and
thus the new initial state to progress from is the world state at
time t1 = tc + τp. If the planner finds a valid plan P within
tp < τp, P is executable at t1. Given this world state, the
planner searches like an off-line planner. However, whenever a
state S is selected for expansion, S will be discarded if there is
an action in PS that starts after the wall-clock time tc at which
the expansion occurs (Line 7). Note that algorithm 1 may find
a solution even if the actual planning time tp is larger than the
estimated time τp. For example, a plan with the first action A1

starts at the decision epoch t = 30. This can be found with
τp = 5 and the actual planning time tp = 20. This is because
the expand function (Line 13) can generate a child state just by
advancing time to the next decision epoch. t = 30 is the next
one in the root state. Figure 7 shows the plans found by the
off-line and on-line FSS planning algorithms when τp ≤ 5.0
and when τp > 5.0.

After the new initial state at t + τp is set, the planner ba-
sically uses the off-line version to find the final plan, except
the checking of action starting time with the wall-clock, and
thus it can employ all the techniques that make the FSS off-
line version a fast algorithm and is likely to be able to find a
plan quickly. The disadvantage of this approach is having to
approximate the planning time tp with the τp value. We are
not aware of any work on predicting planner running time for
arbitrary problems. If we underestimate tp (i.e. τp < tp), we
may need to restart the search. If τp > tp, the plan found may
have to wait for a period τp − tp before it can start executing.
To partially overcome this “waiting” period, when the plan is
found (Line 11) we post-process the plan before sending it to
the simulator. The purpose of this post-processing phase is to
try to shift the starting time of actions in P as close as possible



to the wall-clock time at which P is found. In our implementa-
tion, we use the greedy post-processing approach implemented
in the SAPA planner (Do and Kambhampati 2003) by: (1) first,
greedily building the causal structure of actions in P and P
(build a causal-link plan out of the fixed-time plan); (2) repre-
senting the causal relations by temporal constraints in a Simple
Temporal Network (STN); (3) use the STN to find the earliest
starting time for all actions with constraints so that all actions
start after the current wall-clock time.

For off-line planning, different search algorithms can trade-
off between plan quality (e.g. makespan) and planning time.
Given that planning time contributes to the objective function
of minimizing goal achievement time in on-line planning, we
have also used different search algorithms, A∗ and weighted
A∗, to control search in the planner. With the objective func-
tion of minimizing plan makespan, then A∗ is likely to take
longer time to finish, but find plan with shorter execution time
(makespan) than weighted A∗. We note that, unlike in an off-
line setting where a complete search algorithm will find a plan
if one exists given an infinite amount of memory and there is
no bound on running time, this is not true for on-line planning.
Because of goal deadlines and previously committed actions,
a true guarantee in online planning may require an infinitely
fast planner.

For the same purpose of investigating the tradeoff between
different options that can lead to either: (1) shorter planning
time; or (2) shorter plan execution time (makespan), besides
using different search algorithms, we have also implemented
two different heuristics to guide the planner’s search. The first
heuristic is the planning-steps measure heuristic, which nor-
mally leads to shorter planning time tp, and the second one is
a makespan-measure heuristic, which likely leads to a shorter
makespan plan, but takes a longer time to solve. Both heuris-
tics are derived by first solving the shortest-path problem using
the connections in the manufacturing plant. Thus, at start-up
time, the planner calculates the number of steps or makespan
to reach each output node from any input node by solving the
single-source all-destination shortest path problem using dy-
namic programming for all input nodes. This heuristic relaxes
the real-time planning problem by ignoring the interactions
with previous plans (thus, assuming that the manufacturing
plant is always empty).

The advantages of the FSS planner are: (1) the state repre-
sentation is simple; and (2) interactions between newly added
actions and previously committed action are minimal. How-
ever, the FSS algorithm shown above needs to estimate the
planning time tp to set the initial fixed-time state to progress
from and to estimate tp correctly which is not an easy task.

Partial Order Planning
In temporal planning, partial order planners (POP) are a good
alternative due to their flexible framework that is particularly
versatile for temporal constraints. Given that on-line planning
adds real-time temporal constraints to off-line planning, we
believe that POP is a great option and have implemented a POP
on-line planning algorithm. Algorithm 2 shows the on-line-
POP algorithm. Like the off-line version, each search node
S = (C, A, L, O) consists of C: open conditions, A: actions,
L: causal links, O: partial orders; the planner picks an open
condition, selects the supporting action, adds the appropriate
causal link and resolves any threat caused by adding tempo-

Algorithm 2: On-Line Partial Order Planning Algorithm
Wall-clock time: tc;1

Initial search node: S0 = (〈G〉, ∅, ∅, ∅);2

Search Queue: SQ = {S0};3

while SQ 6= ∅ do4

S = (C, A, L, O) = Dequeue(SQ) ;5

∀a ∈ A : add temporal constraint tc < tsa;6

if Temporal Inconsistent then7

Return to Line 4;8

end9

if C = ∅ then10

Output PS ;11

else12

p← remove an open condition from C;13

Select actions a supporting p;14

Enqueue(Apply(a, S), SQ);15

end16

end17
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(a) Online POP plan: tP > 5.0

Figure 8: Plan found by an on-line POP planner.

ral ordering constraints between newly added actions and the
interfering actions in the current partial plan. Weld (1994) pro-
vides an excellent tutorial on the POP algorithm.

The main difference between the off-line and on-line ver-
sions are in Line 6-8 where whenever a search state is picked
from the queue, we add temporal constraints to ensure that all
actions in the partial plan found so far can start executing after
the current wall-clock time. If there is a temporal inconsis-
tency, then the selected node is discarded and the next best
one is picked from the search queue for expansion. Figure 8
shows the plan found by Algorithm 2 (for two cases where
the planner takes tp < 5 and tp > 5 to find this plan). In
our implementation, all temporal constraints are managed by
a complete Simple Temporal Network (STN) implementation.
The same search algorithms and heuristic evaluation functions
are used as in the state-space planner discussed above (i.e. A∗

or weighted A∗ algorithms with makespan or step measure
heuristics).

For STRIPS off-line planning, FSS planners have been
generally faster than POP-based planners. However, com-
pared to the on-line FSS algorithm shown in Algorithm 1,



FSS POP
Makespan Steps Makespan Steps
A∗ wA∗ A∗ wA∗ A∗ wA∗ A∗ wA∗

Goal-achievement Time 164 8 22 117 20 7 6 3
Goal-achievement Duration 74 22 5 108 43 28 10 51

Table 1: Comparing different planning algorithms in terms of number of goals solved with the best solution using the metric: (1)
wall-clock goal achievement time; and (2) duration from the time when the planner start searching for the plan and the time when
the goal can be achieved. Ties are not counted.

the POP planner is more flexible and does not need to predict
and approximate the planning time tp using the τp value. If
both planners take the same amount of planning time tp and
find the same plan, then the plan returned by the POP planner
will likely be able to start earlier and finish earlier because it
suffers no waiting time or post-processing.

Besides FSS and POP algorithms, there are other frequently
used off-line algorithms such as regression planner, local
search or compilation. We do not feel simple adaptation of
any of them would give a definite advantage over the FSS or
POP algorithms. A regression planner needs an approximate
time for when the plan will finish execution (to regress from),
this involves approximating both the planning time tp and the
plan makespan. The compilation approach (e.g., compiling
the problem into a linear program) has not shown to work well
for off-line temporal planning and thus would scale poorly in
both off-line planning and real time on-line planning. Cushing
et al. (2007) discuss an algorithm that combines FSS and POP,
which can potentially combine the speed of a FSS planner with
the flexibility of a POP planner. However, the algorithm was
not implemented and its relative performance is unknown.

Empirical Evaluation
We have implemented the online plan simulator discussed in
this paper in Objective Caml.3 The simulator can: (1) contin-
uously output new goals to the planner; (2) receive plans and
validate them; (3) simulate execution failures. The random
problem and goal generator for the manufacturing domains are
written in Java. When generating problems, the machine con-
nections are produced through delaunay triangulation (Delau-
nay 1934). Each machine is randomly placed on a grid, then
the coordinates are triangulated to create a planar graph be-
tween the machines. After this, the input and output nodes are
placed on the convex hull of the graph. This is done to approx-
imate the layout of a physical manufacturing plant. The goals
are generated by randomly picking the start location, end loca-
tion, the set of attributes that the material needs to carry at the
end, and the time at which the goals need to be sent to the plan-
ner. The two online Progression and POP planners discussed
in this paper are fully implemented in Objective Caml.

Upon starting both the simulator and the online planner (see
Figure 1), they first exchange their basetimes to synchronize
their internal clocks. Then the simulator will send out goals
continuously to the planner through standard output and wait
for the plans produced by the planner through standard in-
put. Communication between the two modules are through the
OCaml piping facility. Upon receiving the plans, the simulator

3Executables are available at the URL
http://www.public.asu.edu/∼vidar/op.

will check for plan validity given the possible interactions be-
tween concurrently executing actions in the same plan, or be-
tween actions in plans for different goals. The simulator also
simulates the plan execution and logs the goal achievement
time. For the analysis purposes, the planner will also send to
the simulator the wall-clock time at which it starts searching
for a particular goal and this information is also logged. For
the online progression planner, the τp value (see Algorithm 1)
is initialized to 1 second and doubled every time the planner
fails to find a plan. The planner will give up on a goal if search
time is more than 100 seconds and move to the next goal that
it has achieved (or continue to wait for the new goal to arrive).
After sending out the last goal to the planner, the simulator
will wait for 1000 seconds before it terminates. It is possible
at that time, the planner has not finished planning for all goals.
The online planner cannot handle execution failure messages
from the simulator at the moment, so we disabled that feature
from the simulator.

We ran the simulator with the two online planners on a
Linux OS Intel Xeon 2.66GHz machine with 8GB of RAM,
compiling the OCaml programs to optimized native code. We
want to compare different plan settings (i.e., the planning algo-
rithm, search algorithm, and heuristics) on the following two
values: (1) the wall-clock time each goal is achieved; (2) the
durations from the wall-clock time the planner start working
on a goal to the wall-clock time that the goal is achieved. We
created 10 random manufacturing plant configurations, each
one is tested along with 20 randomly generated sets of online
goals. Each set can contain anywhere from 2 to 10 goals.

Table 1 summarizes the results of the two online progres-
sion (FSS) and partial order (POP) planners with two differ-
ent search algorithm: (1) A∗ geared toward shorter solutions;
and (2) weighted A∗ geared toward faster solving time (we
use w = 3 in the implementation). The two heuristics used:
makespan-measure and steps measure are discussed in the ear-
lier part of the paper. For a given goal g, let tg be the wall-
clock time at which the simulator starts sending g to the plan-
ner, and let ts > tg be the time when the planner starts to
work on g (due to previous goals, the planner may not be able
to work on g instantaneously at tg); upon receiving the plan
returned by the planner and simulate its execution, the sim-
ulator found that g is achieved at ta > ts. We compare the
performance of different planners using two quality measure:
(1) the actual wall-clock goal achievement time ta; (2) total
time from ts to ta (thus: search time + makespan). Table 1
reports the number of goals for which each planner returns
the best solution according to each quality measurement. The
results indicate that in general, the progression planner finds
better quality plans over the POP planner. Close investigation
shows that the POP planner tends to take more time per node
due to all the temporal reasoning inside the STN at each node.



The branching factor is also higher given the large number of
possible partial orders not only within the current partial plan
but also between actions belong to different plans. This can be
quite time consuming when there are many concurrent plans.
It is interesting to see that the best option for both planners are
at the extreme case: (1) A∗ search algorithm with makespan-
measure heuristic; and (2) weighted A∗ search algorithm with
the step-measure heuristic. Among all options, the first one
will likely return the shortest makespan solution while the sec-
ond one will likely return the solution in the least amount of
time. Online goal achievement time is the summation of those
two factors. However, other combinations (e.g. A∗ with the
step-measure heuristic) that are not geared toward minimizing
one of those two factors fall short of those two cases.

Conclusions & Future Work
In this paper, we introduced a simple testbed for aiding re-
search in on-line planning. The testbed consists of a do-
main generator, a simulated on-line planning execution envi-
ronment, and two on-line planners that work with the simula-
tor. The system is fully implemented and can be used to in-
vestigate different on-line planning algorithms and strategies
across different domains. It has already been chosen for use
in the International Competition on Knowledge Engineering
for Planning and Scheduling (ICKEPS 2007). The simula-
tor communicates with the planners by exchanging messages
in the standard PDDL planning language that should be eas-
ily parsed by the current state-of-the-art off-line planning sys-
tems. Therefore, we hope that it can help foster interest from
the academic planning research community, which has hith-
erto concentrated on off-line planning, in the kind of on-line
planning issues commonly found in applications. Given the
ubiquity and importance of these problems, any advancement
in generic on-line planning techniques could have great benefit
in many applications.

While we want to concentrate on simulating the continual
aspect of on-line planning, there are many things that can be
done to extend our current work. For the simulator, we want
to extend beyond temporal planning to the full PDDL3.0 spec-
ification that involves metric quantities, action costs and pref-
erences. Another direction is to extend it to support multi-
agent planning. This can be done by extending the commu-
nication channel from one to multiple online planners work-
ing in the shared simulation environment. For the planners,
we want to investigate other planning algorithms, incorporat-
ing different search techniques (some of them directly take
into account search time – planning time), and better search
heuristics targeting different plan qualities that are relevant in
the on-line planning setting such as real-time goal achieve-
ment time, stability, or commitment retraction cost. Right now,
we believe that the heuristic used in our online planner is still
rather weak because it does not fully address the interactions
between previously found plans and the new plan in the online
setting where wall-clock time keeps passing during the plan-
ning search.
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