
Goal-driven Autonomy Without GDA

Bryan McKenney and Wheeler Ruml
Department of Computer Science

University of New Hampshire, USA
Bryan.McKenney@unh.edu, ruml@cs.unh.edu

Abstract
Goal-driven autonomy (GDA) is an agent control architec-
ture proposed to enable long-term autonomous operation. At
its heart is the idea of goal reasoning, in which a dedicated
subsystem decides which goals the system should pursue
given the current context. In this position paper, we summa-
rize and extend a line of work that argues that a specialized
goal reasoning subsystem is unnecessary and that long-term
autonomous operation of complex intelligent systems should
simply be directed by a planner (although perhaps not a clas-
sical one). We present several examples of how functionality
that has been described as goal reasoning can be performed
by modern planning techniques.

Introduction
There are many situations in which it is useful to have
robots that can operate autonomously for extended periods
of time in unknown environments. Autonomous cars, un-
manned military craft, Mars rovers, and rescue robots are
but a few examples of agents that must plan intelligently on
their own, revising goals when necessary as new informa-
tion is learned about the environment or if the environment
changes in unexpected ways. This kind of planning is known
as online open-world planning.

Molineaux, Klenk, and Aha (2010); Klenk, Molineaux,
and Aha (2013) introduce a framework for solving online
open-world problems called goal-driven autonomy (GDA),
in which the agent manages a set of goals while trying to
achieve them. In GDA, goal reasoning is made explicit and
separated from planning. They test their GDA-driven agent,
ARTUE, on three Navy-themed domains, two of which in-
volve a Navy ship agent and a hidden submarine adversary,
and they claim on the basis of these results that GDA is nec-
essary to achieve high performance in such scenarios.

In this paper, we strengthen and extend the argument of
Paredes and Ruml (2017) that GDA is not necessary. We use
a domain more similar to that of Molineaux, Klenk, and Aha,
with a Navy ship agent and an unknown number of hidden
submarine adversaries that are trying to destroy cargo ships,
to show that a much simpler pure-planning approach called
hindsight optimization, in which the agent samples possi-
ble worlds and plans in all of them, works just as well as

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

GDA. Interestingly, we find that our planner gives rise to
patrolling behavior without the need to explicitly program
that behavior. A Navy ship agent using hindsight optimiza-
tion can imagine possible actions of possible adversaries and
how its actions might thwart them, thereby implicitly em-
ploying an intelligent patrolling strategy to protect the cargo
ships without needing to explicitly reason about its multiple
goals. We also find that the agent can implicitly switch goals
in the face of unexpected events.

Background
In this section, we explain goal-driven autonomy and hind-
sight optimization in the context of previous work.

Goal-driven Autonomy
Molineaux, Klenk, and Aha (2010) observe that agents in
partially-observable, open-world, adversarial, stochastic do-
mains with continuous time and space (such as video games
and simulations) need a way to deal with unexpected events
that ruin plans. They introduce the goal-driven autonomy
(GDA) algorithm framework as the solution to this prob-
lem. GDA has three sub-systems: a Planner, a State Tran-
sition System, and a Controller, the last of which deals with
goal reasoning. The Controller has four components: 1) The
Discrepancy Detector, which compares the observed state
to the expected state to find discrepancies; 2) The Explana-
tion Generator, which hypothesizes causes for the discrep-
ancies based on what it knows about the environment; 3)
The Goal Formulator, which creates new goals based on the
explanations; and 4) The Goal Manager, which prioritizes
goals. Molineaux, Klenk, and Aha claim that only GDA si-
multaneously relaxes four classical planning assumptions —
deterministic environments, static environments, discrete ef-
fects, and static goals.

They introduce a specific instantiation of GDA called
ARTUE (Autonomous Response to Unexpected Events).
For its Planner, ARTUE uses a Hierarchical Task Network
(HTN) planner that predicts the future to anticipate exoge-
nous events. ARTUE’s Goal Formulator relies on domain-
dependent principles to map explanations of discrepancies
to new goals, and the Goal Manager prioritizes goals based
on their hard-coded intensity levels. Molineaux, Klenk, and
Aha test ARTUE with success on three scenarios in the Tac-
tical Action Officer (TAO) Sandbox, a naval simulation in

which the agent is a Navy ship. These three scenarios are:
1) Scouting, in which the initial goal is to identify nearby
ships until an unexpected submarine attack adds the goal of
identifying and destroying the sub; 2) Iceberg, in which the
initial goal is to transport cargo between points until light-
ning strikes an iceberg and a severe storm arises, adding the
addition goals of seeking shelter and rescuing members of a
sinking ship; and 3) SubHunt, in which the goal is to seek
and destroy a submarine while also sweeping mines that it
lays.

Hindsight Optimization
Hindsight optimization is a planning algorithm that finds
suboptimal solutions to problems involving uncertainty by
sampling possible worlds, each representing a possible res-
olution of the uncertainty, and planning in those. It was in-
troduced to the planning community by Yoon et al. (2008)
and has since been successfully applied to a wide range of
problems, from manufacturing and unmanned aerial vehicle
flight patterns (Burns et al. 2012) to robot search-and-rescue
and making omelettes (Kiesel et al. 2013).

Paredes and Ruml (2017) use hindsight optimization to
argue against Molineaux, Klenk, and Aha (2010)’s claim
that goal reasoning needs to be separate from planning
for complex domains. They create a partially-observable,
open-world, online, stochastic, multi-unit, adversarial do-
main called Harvester World in order to prove their point. In
this grid-based domain, the agent controls a Harvester and
a Defender, there is an Enemy that can be seen from one
unit away from them but is otherwise invisible, and there
are also hidden obstacles and food around the map. The
agent knows the Enemy’s policy. Paredes and Ruml success-
fully use hindsight optimization in three different Harvester
World scenarios and argue that it implicitly has all of the
components of goal-driven autonomy. Hindsight optimiza-
tion is a type of multilevel planner, as the high-level deter-
ministic planner acts as a heuristic function for the low-level
hindsight algorithm, and this can be viewed as reasoning
about goals and choosing the best one to pursue.

Like Paredes and Ruml, we use a domain (described more
fully below) that is grid-based, partially-observable, open-
world, online, stochastic, and adversarial. The adversaries
can be detected if they are one space away from the agent.
However, our domain has more similarities with TAO Sand-
box than Harvester World does: it has an unknown number
of adversaries, instead of just one, and it has only one unit
controlled by the agent, instead of two. Additionally, the
agent has an inaccurate (but reasonable) model of the ad-
versaries, which makes things more challenging. We are the
first to show that hindsight optimization can lead to emer-
gent patrolling behavior, which can be seen as a strategic
type of goal of maintenance.

Algorithm 1 outlines hindsight optimization. The algo-
rithm first samples a certain number of states from the
agent’s belief state (line 1), which is the set (or, more re-
alistically, a subset) of all possible current states based on
the agent’s complete history of observations. A seed is asso-
ciated with each state that will be used to resolve stochastic
effects. Then, for each possible action, a deterministic plan-

Algorithm 1: Hindsight Optimization(o, N , H)

1: sampleStates← hallucinate(N)
2: for all actions a applicable in o do
3: sampleCosts← []
4: for all states s in sampleStates do
5: s′, aCost← f(s, a)
6: c← aCost+ planCost(s′, H)
7: append c to sampleCosts
8: end for
9: Q(o, a)← mean(sampleCosts)

10: end for
11: return argminaQ(o, a)

Algorithm 2: planCost(s, H , t← 0)

12: if t = H then
13: return 0
14: end if
15: for all actions a applicable in s do
16: s′, aCost← f(s, a)
17: costToGo← planCost(s′, H, t+ 1)
18: Q(s, a)← aCost+ costToGo
19: end for
20: return minaQ(s, a)

ner is run in each of these sampled possible states up to a
certain horizon (line 6). The action that led to the lowest av-
erage cost across the possible states is chosen (line 11).

Algorithm 2 outlines a basic deterministic depth-first
horizon-limited planner. We use branch-and-bound and
memoization to improve efficiency. (Our implementation is
sufficiently fast and we have not optimized runtime — child
ordering using a heuristic function would likely make the
planner even faster.)

Implicit Goal-driven Autonomy
GDA has a dedicated sub-system for goal reasoning and re-
quires a host of hard-coded goals and principles, but this is
not the only way to achieve autonomous goal-driven behav-
ior. Another way is to abstract the agent’s goals down to cost
values that are incurred by certain events and then make its
single goal to minimize cost. When paired with an appropri-
ate planner and a belief state that tracks knowledge about the
environment (fulfilling the tasks of the Discrepancy Detec-
tor and the Explanation Generator), these costs allow trading
off between multiple goals and there is no need for a Goal
Formulator or Goal Manager — goal formulation and man-
agement will be done implicitly while following the prime
directive to minimize cost. This eliminates the need for a
separate Controller. We present hindsight optimization as
just one possible appropriate planner — other possibilities
include approximate POMDP planners like POMCP (Silver
and Veness 2010). To provide empirical evidence for our po-
sition, we ran an experiment with an agent using hindsight
optimization in a simple domain, described below, which
shares similarities with the TAO Sandbox domains used by
Molineaux, Klenk, and Aha.

Figure 1: An example of the Navy Defense domain showing
the agent’s observation on the left and the true state on the
right.

Experimental Study
In this section, we will first describe the Navy Defense do-
main and its relation to the TAO Sandbox, then the test in-
stances and benchmark algorithms that we used in our ex-
periment, and finally the experiment itself and its results.

The Navy Defense Domain
In this domain, a Navy ship must defend cargo ships from
being destroyed by hidden submarines for as long as pos-
sible in a grid-world of variable size. There is one Navy
ship (the agent) and a variable number of cargo ships (allies)
and submarines (adversaries) in different starting positions.
A 5x5 example is shown in Figure 1 with one agent/Navy
ship (marked N), two cargo ships (C) to protect, and three
invisible submarines that are trying to destroy them (S). The
arrows show the fixed paths that the cargo ships move along.
The Navy ship, cargo ships, and submarines each occupy a
single space on the grid and have 2 health. When a ship or
sub is reduced to 0 health, it is destroyed (removed from the
world). Multiple ships and subs can occupy the same space.
The agent can only observe submarines that are within a 1-
space sonar radius (including diagonals) of it, and it does
not know how many submarines are in the world (but it does
know the maximum number that there could be). The agent
has unlimited time to contemplate its next move while the
world stands still. After the agent takes an action, cargo ships
and then submarines (in the order that they were created in)
make their moves. All submarines decide what they will do
before any of them acts. We define On Hit to mean that a
vessel has sustained damage but still has more than 0 health
afterwards, and On Destroy to mean that it is destroyed. The
ships and subs work in the following ways:
Navy Ship (Agent) Can stay still or move one space in any
of the four cardinal directions (within the grid boundary),
then deals 1 damage to all submarines within sonar radius.
Moving incurs a cost of 1; On Hit, incurs a cost of 10; On
Destroy, incurs a cost of 40.
Cargo Ship (Ally) Travels automatically in a rectangle,
staying a constant distance from the edge of the grid, in
a predetermined direction (clockwise or counterclockwise).
On Hit, incurs a cost of 20; On Destroy, incurs a cost of 80.
This reflects the idea that the cargo ships are more valuable

than the Navy ship; for example, if there is one time step left
and either the cargo ship or the Navy ship will be destroyed,
the agent would be expected to sacrifice itself for its mission.
The future value of the Navy ship, insofar as it can protect
cargo ships over time, is up to the planner to reason about.
Submarine (Adversary) Moves orthogonally, avoiding the
Navy ship’s sonar radius, to the nearest point of intersection
along a cargo ship’s route. Can also stay still to lie in wait.
After moving or staying still, deals 1 damage to all ships on
its space. If inside the Navy ship’s sonar radius, will move
out of it, if possible, or move onto the Navy ship’s space oth-
erwise. Breaks ties between equally good moves randomly.
The agent believes that subs choose to target a cargo ship
at random and then hunt it down until it is destroyed before
switching target, but this is not the true behavior (a sub will
switch targets to whichever cargo ship it can intercept more
quickly).

For small worlds, the agent can keep an exact belief state
(the probability of each possible current state), but for larger
worlds an unweighted particle filter belief state (which is
used by POMCP (Silver and Veness 2010)) is ideal.

Navy Defense vs. TAO Sandbox
Like the TAO Sandbox, the Navy Defense domain is online,
partially observable, open world, stochastic, adversarial, in-
finite horizon, and features a Navy ship agent. Navy Defense
is grid-based, however, while TAO Sandbox is not.

Navy Defense is similar to the Scouting scenario because
there is a hidden submarine that attacks ships and the agent
can see it only by using sensors and is able to destroy it. In
Scouting, however, the agent gets rewarded for destroying
the submarine, which is not the case in Navy Defense, and
in Navy Defense there can be more than one submarine.

Navy Defense is similar to the SubHunt scenario as well,
but in SubHunt the goal is to find and destroy the submarine,
while in Navy Defense destroying subs is not necessary as
long as the cargo ships are protected. The mines in SubHunt
can be considered an unknown number of static adversaries,
and in Navy Defense there are an unknown number of dy-
namic adversaries.

Test Set-up
Navy Defense worlds were randomly generated for the fol-
lowing experiment. They each have 7 rows and columns, 4
cargo ships, and 1-3 subs. We compared the performance
of our hindsight optimization planner to the following agent
strategies:
Static Does not move.
Random Chooses an action to take at random.
Patrol Moves in a rectangle with size based on initial lo-

cation (just like the cargo ships). There are two versions
of this algorithm, CW and CCW, which determine which
direction the agent will move in (clockwise or counter-
clockwise). Patrol is similar to the PLAN1 benchmark
algorithm for ARTUE.

Reactive Like Patrol, except after a nearby cargo ship is at-
tacked, moves to protect it and then updates its rectan-
gular course based on its new location and its direction

Figure 2: The average cost achieved by each algorithm.

based on that cargo ship’s direction. Reactive is similar
to the REPLAN benchmark algorithm for ARTUE.

Paranoid Like Hindsight but never updates its belief state
(so it never learns where subs actually are).

Omniscient Uses the same planner as Hindsight (and so
has a lookahead horizon) but knows the true state of the
world (can see all subs) and uses that instead of halluci-
nating possible worlds.

Results
Each algorithm was run for 30 time steps on 200 random
worlds. Hindsight used an unweighted particle belief state
with 30 particles. Paranoid and Hindsight used sample sizes
of 30 and horizons of 5 and Omniscient used a horizon of 5.
3 trials were done per world with each algorithm. The same
seeds were used for each set of trials.

Figure 2 presents the mean cost experienced by each
method, along with 95% confidence intervals. The results
show that Hindsight beats all of the benchmark algorithms
except Omniscient, which we would expect to represent an
upper bound on achievable performance. The two versions
of Patrol performed about the same, and so did the two ver-
sions of Reactive. This is not surprising, as the only dif-
ference between each version is starting direction, and the
worlds are random, so neither starting direction should be
better than the other on average. Sampling possible worlds
and planning in them, even without updating belief state,
is much more effective than the Static, Random, Patrol,
and Reactive strategies, as evidenced by the large drop in
cost from Reactive to Paranoid. Hindsight exhibits emer-
gent patrolling behavior, an example of which can be viewed
here: https://youtu.be/Gh6Ku05Y880. It also displays im-
plicit goal reasoning in an example where it believes that

there are no submarines to begin with (and thus stays still to
avoid the movement cost) but has to reevaluate its beliefs and
“goals” when both cargo ships are simultaneously attacked:
https://youtu.be/FbqZVc9gCJg.

Discussion
The results show that hindsight optimization works well on
a small grid-based domain that shares some similarities with
the TAO Sandbox domains used by Molineaux, Klenk, and
Aha. The agent is never given the goal to patrol or a rule
stipulating that it destroy a submarine when doing so would
not put cargo ships in danger from other subs, and yet it
acts in these ways. In other words, it displays goal-driven
autonomy without GDA.

Although Molineaux, Klenk, and Aha (2010) showed that
their system did not perform as well when its goal reasoning
component was removed, this provides only weak evidence
that goal reasoning is useful. After all, removing the carbu-
retor from an internal combustion engine does not prove that
it is a necessary component — fuel injection or an electric
motor might in fact be superior. Similarly, we expect that
using a full-fledged planner would provide superior perfor-
mance to a hand-tuned goal prioritization scheme, as only
a planner can properly estimate the cost of achieving each
possible outcome in the current context. One could call this
goal reasoning, but the fact remains that planning-type rea-
soning is essential in action selection.

In future work, we could modify the Navy Defense do-
main by adding features from the TAO Sandbox Iceberg sce-
nario, such as allowing the agent to rescue people from sink-
ing cargo ships, to show that the agent is able to display goal
reasoning in more complex situations.

Conclusion
In this paper, we add to prior arguments that planning can
enable goal-driven autonomy without explicit goal reason-
ing. To provide an example, we introduced the open-world
adversarial Navy Defense domain, which mimics some fea-
tures of the TAO Sandbox, and then showed that a planner
based on hindsight optimization can be used to find good on-
line suboptimal solutions in Navy Defense scenarios. With
hindsight optimization, patrolling and goal reasoning behav-
ior naturally emerge from the single goal of minimizing cost.
This is a simpler and more robust approach than GDA, as
most of the reactive behavior in GDA is hard-coded. This
work provides support for the notion that a single capable
planner is a better solution than the complex GDA architec-
ture for long-term autonomous operation.

Acknowledgments
Funding for this research was provided by the UNH Hamel
Center for Undergraduate Research via the SURF USA pro-
gram. Funding for AAAI 2023 registration and travel were
provided by AAAI, the UNH Department of Computer Sci-
ence, and the UNH Hamel Center for Undergraduate Re-
search.

References
Burns, E.; Benton, J.; Ruml, W.; Yoon, S.; and Do, M. 2012.
Anticipatory On-line Planning. In Proceedings of ICAPS-
12.
Kiesel, S.; Burns, E.; Ruml, W.; Benton, J.; and Kreimen-
dahl, F. 2013. Open World Planning for Robots via Hind-
sight Optimization. In Proceedings of the ICAPS-13 Plan-
Rob Workshop.
Klenk, M.; Molineaux, M.; and Aha, D. W. 2013. Goal-
Driven Autonomy for Responding to Unexpected Events in
Strategy Simulations. Computational Intelligence.
Molineaux, M.; Klenk, M.; and Aha, D. 2010. Goal-Driven
Autonomy in a Navy Strategy Simulation. In Proceedings
of AAAI-10.
Paredes, A.; and Ruml, W. 2017. Goal Reasoning as Multi-
level Planning. In Proceedings of the ICAPS-17 IntEx Work-
shop.
Silver, D.; and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In Proceedings of NIPS-10.
Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight. In
Proceedings of AAAI.

