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online planning: interleaving search and action execution
"receding horizon control”
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Why is Real-time Heuristic Search?

Real-time heuristic search:
B Real-time Search return the next action within a time bound

Applications:
interacting with humans
dynamic environment
eg, robotics
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repeat until at a goal

derived from offline search, but optimal for online?
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Decision-making Phase: A Troublesome Example

Introduction Should an agent at A move to By or By?
AAAI-19 Recap (2; are unknown but i.i.d. uniform 0-1)
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random tree domain (Pemberton & Korf 1995)

f=g+ h =g+ 0 is lower bound on optimal plan cost
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decision theory says minimize expected value
lower bound: not suitable for rational action selection
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belief about «

belief about

fe) f(8)

A

f is expected value
Should an agent expand nodes under « or (57
f Is not the answer: what to do?

want to maximize value of information
need to consider uncertainty of estimates
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Risk-based Lookahead

Introduction Risk-based lookahead (AAAI-19):
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Backup Rules: Nancy
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Nancy (AAAI-19):
parent < belief with minimum f among successors
conveys an entire belief distribution
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How to Form The Belief Distribution?
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How to Form The Belief Distribution?

Introduction Nancy: Heuristic values: scalar — probability distribution (belief)
AAAI-19 Recap
W Decision-making But where do beliefs come from?

B Lookahead

Data Driven Nancy Nancy: beliefs based on assumptions

Results

truncated Gassian based on h cost-to-go and d hops-to-go
online learning with few parameters

Conclusions

Data-Driven Nancy:

Replace the assumptions with actual data.
offline learning with many parameters (histogram)
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Data-Driven Nancy

Data-Driven Nancy

Tianyi Gu (UNH) Replacing Assumptions with Data in Real-time Search — 15 / 24



Learning a Model of Heuristic Error

belief: distribution of h* given features of state (h)

Introduction
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pick most common 200 states from the collection,
compute h*
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Example h* distribution: Sliding Puzzle
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Example h* distribution: Transport vs Blocks World

What is the data-driven distribution looks like?

Introduction

AAAI-19 Recap

Data-Driven Nancy
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M
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h* distribution

Beliefs are different from domain to domain!
In many domains, data are not Gaussian!

Tianyi Gu (UNH) Replacing Assumptions with Data in Real-time Search — 18 / 24



Completeness proof

Problem:

Introduction

AAAI-19 Recap

Original Nancy is incomplete due to subtle issue:
Data-Driven Nancy

B Data not guaranteed to see best node from previous iteration in
next one
Results

Conclusions

Tianyi Gu (UNH) Replacing Assumptions with Data in Real-time Search — 19 / 24



Completeness proof

Problem:

Introduction

AAAI-19 Recap

Original Nancy is incomplete due to subtle issue:
Data-Driven Nancy

B Data not guaranteed to see best node from previous iteration in
next one

Results

Conclusions

Our solution:

Persist on the previous target state if current lookahead
does not yield a better one (with lower f)

This proof applies to any LSS-LRTA*-style algorithm
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Results

Results
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Mean Solution Cost on Planning Domains

Introduction . LS S - NaIle NanCy Nancy

— Domain LTy pra+ (>19y  (p)" (P+DD)
Data-Driven Nancy 1 00 46 67 33 3 8
E=LeE Blocksw. 300 36 46 30 34
Conclusions 1 000 3 O 44 3 2 27

100 631 1116 615 496
Transport 300 519 705 559 485
1000 499 607 567 422

00 48 79 40 31
T t

(Lfiﬁffg;) 300 47 43 30 34

1000 35 36 29 27

Elovaors 100 50 55 35 39

vators 300 | 32 40 29 30

(unitcos o0 | 34 31 27 26

Data lets Nancy work when assumptions fail!
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Summary

B Nancy start to explore an optimal way of doing online

Introduction

AAAIL19 Recap heuristic search

Data-Driven Nancy B Nancy outperforms conventional LSS-LRTA* in cost and run
Results t|me

C°C'”S‘°“S B Replacing assumptions with data increase robustness

General completeness proof

More broadly:

B Setting isolates the issue: unlike in MDPs or RL, all
uncertainty is due to bounded rationality

B Metareasoning about uncertainty pays off, even for
deterministic domains!
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Questions?
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