Beliefs We Can Believe In: Replacing Assumptions with Data in Real-time Search

Maximilian Fickert¹ and Tianyi Gu² and Leonhard Staut¹ and Wheeler Ruml² and Jörg Hoffmann¹ and Marek Petrik²

Replacing Assumptions with Data in Real-time Search – 1 / 24

Tianyi Gu (UNH)

Replacing Assumptions with Data in Real-time Search – 2 / 24

Replacing Assumptions with Data in Real-time Search -2/24

Replacing Assumptions with Data in Real-time Search -2/24

Log Accessed	
Introd	liction
111000	uction

Overview

AAAI-19 Recap

Data-Driven Nancy

Results

Conclusions

Real-time heuristic search:

return the next action within a time bound

Applications:

interacting with humans dynamic environment eg, robotics

A Classic Approach: LSS-LRTA* (Koenig&Sun 2008)

Introduction

Real-time Search

Overview

AAAI-19 Recap

Data-Driven Nancy

Results

Conclusions

three phases:

1.

Lookahead Phase: expands nodes with minimum fto explore the search space

A Classic Approach: LSS-LRTA* (Koenig&Sun 2008)

Introduction

Real-time Search

- Overview
- AAAI-19 Recap
- Data-Driven Nancy

Results

Conclusions

three phases:

1. Lookahead Phase:

expands nodes with minimum f

- to explore the search space
- 2. Decision-making Phase:

backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute

Int	rodu	ictio	าท
ΠIL	Tout	ictiv	511

- Overview
- AAAI-19 Recap
- Data-Driven Nancy

Results

Conclusions

three phases:

- 1. Lookahead Phase:
 - expands nodes with minimum f
 - to explore the search space
- 2. Decision-making Phase:
 - backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute
- 3. Learning Phase:

update heuristic values

(to escape local minima and avoid infinite loops)

Introc	luction	า
1111100	luction	

- Overview
- AAAI-19 Recap
- Data-Driven Nancy

Results

Conclusions

three phases:

- 1. Lookahead Phase:
 - expands nodes with minimum f
 - to explore the search space
- 2. Decision-making Phase:
 - backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute
- 3. Learning Phase:

update heuristic values

(to escape local minima and avoid infinite loops)

repeat until at a goal

Intro	ductio	on
muo	uucu	

- Overview
- AAAI-19 Recap
- Data-Driven Nancy

Results

Conclusions

three phases:

- 1. Lookahead Phase:
 - expands nodes with minimum f
 - to explore the search space
- 2. Decision-making Phase:
 - backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute
- 3. Learning Phase:

update heuristic values

(to escape local minima and avoid infinite loops)

repeat until at a goal

derived from offline search, but optimal for online?

Overview

- Real-time Search
- Overview
- AAAI-19 Recap
- Data-Driven Nancy

Results

Conclusions

- Introduction
- AAAI-19 Recap: the Nancy framework
- This work: Data-Driven Nancy
 - h error distribution
 - completeness proof
- Results
- Conclusions

AAAI-19 Recap

- Decision-making
- Lookahead
- The Beliefs

Data-Driven Nancy

Results

Conclusions

AAAI-19 Recap: The Nancy Framework

Conclusions

random tree domain (Pemberton & Korf 1995)

f = g + h = g + 0 is lower bound on optimal plan cost

Should an agent at A move to B_1 or B_2 ? $(x_i \text{ are unknown but i.i.d. uniform 0-1})$

5

35

0.35

Tianyi Gu (UNH)

Results

 \hat{f} is expected plan cost

Should an agent at A move to B_1 or B_2 ? (x_i are unknown but i.i.d. uniform 0-1)

Tianyi Gu (UNH)

Replacing Assumptions with Data in Real-time Search – 9 / 24

f is not the answer: should minimize expected value!

`,x4

.5

Tianyi Gu (UNH)

Replacing Assumptions with Data in Real-time Search -9/24

1.51

`,x₆

0.35

x5,'

06

0.35

`,x8

x7,'

E(mih

Lookahead Phase: A Troublesome Example

Lookahead Phase: A Troublesome Example

 \hat{f} is expected value

Should an agent expand nodes under α or β ?

 \hat{f} is not the answer: what to do? want to maximize value of information need to consider uncertainty of estimates

AAAI-19 Recap

Decision-making

Lookahead

■ The Beliefs

Data-Driven Nancy

Results

Conclusions

Risk-based lookahead (AAAI-19):

want to maximize value of information expand nodes which minimize expected regret relies on belief of values

choose expansions that decrease uncertainty in beliefs

expand under α or β ?

AAAI-19 Recap

Decision-making

Lookahead

■ The Beliefs

Data-Driven Nancy

Results

Conclusions

expand under α or β ?

AAAI-19 Recap

Decision-making

Lookahead

The Beliefs

Data-Driven Nancy

Results

Conclusions

need 2 things:

- 1) current beliefs
- 2) estimate of how beliefs might change with search

expand under α or β ?

AAAI-19 Recap

Decision-making

Lookahead

The Beliefs

Data-Driven Nancy

Results

Conclusions

need 2 things:

- 1) current beliefs
- 2) estimate of how beliefs might change with search

expand under α or β ?

Tianyi Gu (UNH)

Introduction

Results

Conclusions

Replacing Assumptions with Data in Real-time Search -12 / 24

expand under α or β ?

Tianyi Gu (UNH)

Introduction

AAAI-19 Recap

Lookahead ■ The Beliefs

Results

Conclusions

Replacing Assumptions with Data in Real-time Search -12 / 24

expand under α or β ?

Introduction

AAAI-19 Recap

Decision-making

Lookahead

■ The Beliefs

Data-Driven Nancy

Results

Conclusions

Backup Rules: Nancy

Nancy (AAAI-19): parent \leftarrow belief with minimum \hat{f} among successors conveys an entire belief distribution

How to Form The Belief Distribution?

Introduction		
AAAI-19 Recap		
Decision-making		
Lookahead		
The Beliefs		
Data-Driven Nancy		
Results		
Conclusions		

Nancy: Heuristic values: scalar → probability distribution (belief)

But where do beliefs come from?

How to Form The Belief Distribution?

Introduction	Nar
AAAI-19 Recap	
Decision-making	
Lookahead	
The Beliefs	
Data-Driven Nancy	Nar
Results	
Conclusions	t
	0

ncy: Heuristic values: scalar \rightarrow probability distribution (belief)

But where do beliefs come from?

ncy: beliefs based on assumptions

runcated Gassian based on h cost-to-go and d hops-to-go online learning with few parameters

Data-Driven Nancy:

Replace the assumptions with actual data. offline learning with many parameters (histogram)

AAAI-19 Recap

Data-Driven Nancy

🔳 Data

Completeness

Results

Conclusions

Data-Driven Nancy

Tianyi Gu (UNH)

Intro d	uction
mirou	uction

AAAI-19 Recap

Data-Driven Nancy

Data

Completeness

Results

Conclusions

belief: distribution of h^* given features of state (h)

Gathering data:

run weighted-A* on random problems and collect all states for each observed h value:

pick most common 200 states from the collection, compute h^*

Example *h** distribution: Sliding Puzzle

Tianyi Gu (UNH)

Replacing Assumptions with Data in Real-time Search – 17 / 24

Example *h** distribution: Transport vs Blocks World

What is the data-driven distribution looks like?

Beliefs are different from domain to domain! In many domains, data are not Gaussian!

Tianyi Gu (UNH)

Replacing Assumptions with Data in Real-time Search -18 / 24

AAAI-19 Recap

Data-Driven Nancy

Data

Completeness

Results

Conclusions

Problem:

Original Nancy is incomplete due to subtle issue: not guaranteed to see best node from previous iteration in next one

AAAI-19 Recap

Data-Driven Nancy

Data

Completeness

Results

Conclusions

Problem:

Original Nancy is incomplete due to subtle issue: not guaranteed to see best node from previous iteration in next one

Our solution:

Persist on the previous target state if current lookahead does not yield a better one (with lower \hat{f})

This proof applies to any LSS-LRTA*-style algorithm

AAAI-19 Recap

Data-Driven Nancy

Results

Planning

Conclusions

Results

Tianyi Gu (UNH)

Mean Solution Cost on Planning Domains

Introduction	Domain	т	LSS-	Nancy	Nancy	Nancy
AAAI-19 Recap	Domain	L	LRTA*	('19)	(P)	(P+DD)
Data-Driven Nancy		100	46	67	33	38
Results	Blocksw.	300	36	46	30	34
Conclusions		1000	30	44	32	27
		100	631	1116	615	496
	Transport	300	519	705	559	485
	-	1000	499	607	567	422
	Transport	100	48	79	40	31
	(unit-cost) Elevators (unit-cost)	300	47	43	30	34
		1000	35	36	29	27
		100	50	55	35	39
		300	32	40	29	30
		1000	34	31	27	26

Data lets Nancy work when assumptions fail!

Tianyi Gu (UNH)

Replacing Assumptions with Data in Real-time Search – 21 / 24

AAAI-19 Recap

Data-Driven Nancy

Results

Conclusions

■ Summary

Conclusions

Tianyi Gu (UNH)

Summary

Introduction	
AAAI-19 Reca	ар

- Data-Driven Nancy
- Results
- Conclusions
- Summary

- Nancy start to explore an optimal way of doing online heuristic search
- Nancy outperforms conventional LSS-LRTA* in cost and run time
- Replacing assumptions with data increase robustness
- General completeness proof

More broadly:

- Setting isolates the issue: unlike in MDPs or RL, all uncertainty is due to bounded rationality
- Metareasoning about uncertainty pays off, even for deterministic domains!

Questions?

Introduction

AAAI-19 Recap

Data-Driven Nancy

Results

Conclusions

Questions

Questions?

Tianyi Gu (UNH)

Replacing Assumptions with Data in Real-time Search – 24 / 24