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An example: path finding

agent

goal

search frontier

top level action

online planning: interleaving search and action execution
”receding horizon control”
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Real-time heuristic search:
return the next action within a time bound

Applications:
interacting with humans
dynamic environment
eg, robotics
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three phases:
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expands nodes with minimum f
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three phases:

1. Lookahead Phase:
expands nodes with minimum f

to explore the search space
2. Decision-making Phase:

backup the minimum f from search frontier (‘minimin’)
select top level action with minimum f to execute

3. Learning Phase:
update heuristic values
(to escape local minima and avoid infinite loops)

repeat until at a goal

derived from offline search, but optimal for online?
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■ Introduction
■ AAAI-19 Recap: the Nancy framework
■ This work: Data-Driven Nancy

h error distribution
completeness proof

■ Results
■ Conclusions
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Should an agent at A move to B1 or B2?
(xi are unknown but i.i.d. uniform 0-1)

A

B1

C1

x1 x2

0.3

C2

x3 x4

0.5

0.49

B2

C3

x5 x6

0.35

C4

x7 x8

0.35

0.51

random tree domain (Pemberton & Korf 1995)

f = g + h = g + 0 is lower bound on optimal plan cost
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Should an agent at A move to B1 or B2?
(xi are unknown but i.i.d. uniform 0-1)

decision theory says minimize expected value
lower bound: not suitable for rational action selection
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Should an agent at A move to B1 or B2?
(xi are unknown but i.i.d. uniform 0-1)

f̂ is expected plan cost
f is not the answer: should minimize expected value!
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f̂ is expected value

Should an agent expand nodes under α or β?
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f̂ is expected value

Should an agent expand nodes under α or β?

f̂ is not the answer: what to do?
want to maximize value of information

need to consider uncertainty of estimates
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Risk-based lookahead (AAAI-19):
want to maximize value of information
expand nodes which minimize expected regret
relies on belief of values
choose expansions that decrease uncertainty in beliefs
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expand under α or β?



Risk-based Lookahead Example

Introduction

AAAI-19 Recap

■ Decision-making

■ Lookahead

■ The Beliefs

Data-Driven Nancy

Results

Conclusions

Tianyi Gu (UNH) Replacing Assumptions with Data in Real-time Search – 12 / 24

expand under α or β?

need 2 things:
1) current beliefs
2) estimate of how beliefs might change with search
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expand under α or β?

Risk: expected regret if a suboptimal action is selected
α is TLA with lowest expected value, other is β

E




f

∗(α)− f∗(β)
︸ ︷︷ ︸

what is our regret

∣
∣ f∗(β) < f∗(α)

︸ ︷︷ ︸

in cases when α not best
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expand under α or β?

expand under the TLA that minimizes risk!
expand under β!
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Nancy (AAAI-19):
parent ← belief with minimum f̂ among successors
conveys an entire belief distribution
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Nancy: Heuristic values: scalar → probability distribution (belief)

But where do beliefs come from?
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Nancy: Heuristic values: scalar → probability distribution (belief)

But where do beliefs come from?

Nancy: beliefs based on assumptions

truncated Gassian based on h cost-to-go and d hops-to-go
online learning with few parameters

Data-Driven Nancy:

Replace the assumptions with actual data.
offline learning with many parameters (histogram)
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belief: distribution of h* given features of state (h)

Gathering data:
run weighted-A* on random problems and collect all states
for each observed h value:

pick most common 200 states from the collection,
compute h*
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What is the data-driven distribution looks like?

Beliefs are different from domain to domain!
In many domains, data are not Gaussian!
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Problem:

Original Nancy is incomplete due to subtle issue:
not guaranteed to see best node from previous iteration in
next one
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Problem:

Original Nancy is incomplete due to subtle issue:
not guaranteed to see best node from previous iteration in
next one

Our solution:

Persist on the previous target state if current lookahead
does not yield a better one (with lower f̂)

This proof applies to any LSS-LRTA*-style algorithm
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Data lets Nancy work when assumptions fail!
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■ Nancy start to explore an optimal way of doing online
heuristic search

■ Nancy outperforms conventional LSS-LRTA* in cost and run
time

■ Replacing assumptions with data increase robustness
■ General completeness proof

More broadly:

■ Setting isolates the issue: unlike in MDPs or RL, all
uncertainty is due to bounded rationality

■ Metareasoning about uncertainty pays off, even for
deterministic domains!
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