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Abstract

Real-time heuristic search addresses the setting in
which planning and acting can proceed concurrently.
We explore the use of metareasoning at two decision
points within a real-time heuristic search. First, if the
domain has an ‘identity action’ that allows the agent to
remain in the same state and deliberate further, when
should this action be taken? Second, given a partial plan
that extends to the lookahead frontier, to how many ac-
tions should the agent commit? We show that consid-
ering these decisions carefully can reduce the agent’s
total time taken to arrive at a goal in several bench-
mark domains, relative to the current state-of-the-art.
The resulting algorithm can dynamically adjust the way
it interleaves planning and acting, between greedy hill-
climbing and A*, depending on the problem instance.

Introduction
Real-time heuristic search refers to the setting in which a
search must finish within a fixed amount of time. Because
it may be impossible to find a complete path from the start
state to a goal within this time, the search is only required
to return the next action for the agent to take. The search
is therefore iterated until a goal is reached. Because exe-
cution begins before the optimality of the path is verified,
no real-time search can guarantee that the agent will follow
an optimal trajectory. However, real-time search can nicely
handle the realistic setting in which search and execution
can happen in parallel: while the agent transitions from state
si to sj , the search can plan which action to take from sj ,
where the duration of the transition is used as the bound on
planning time. This is the setting we address in this paper.

Because we are addressing concurrent planning and
execution, we will use goal achievement time (GAT)
(Hernández et al. 2012; Burns, Kiesel, and Ruml 2013) as
our main evaluation metric. This is the total time taken from
the start of the first search iteration to the arrival of the agent
at a goal. For an offline algorithm such as A*, this is the
sum of planning and execution time. A* will spend a lot
of time searching, but then the shortest possible time exe-
cuting. Because of its real-time constraint, real-time search
may execute a longer plan than A*, but because most of its
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planning will happen concurrently with execution, it may
have a shorter GAT than A*. If the cost of an action equals
the time taken to execute it, then a real-time search for min-
imizing GAT can be thought of as minimizing total cost, as
usual, as long as the cost of identity actions are taken into
account.

Because each search iteration is taking place under a time
constraint, a real-time search must be careful about its use of
computation time. After performing some amount of looka-
head, a real-time search will have identified a most promis-
ing state on the search frontier, along with the path leading
to it from the current state. It then faces two fundamental
questions: 1) should it continue to search, gaining increased
confidence that it has identified the correct action to take, or
is it ready to begin executing the action that currently ap-
pears to be best? In many domains, the agent is allowed to
idle in the current state, effectively executing a ‘identity’ or
‘no-op’ action while performing additional search. While
this deliberation will delay the agent’s arrival at a goal, the
delay may be worthwhile if the additional planning allows
the agent to avoid selecting a poor action. This is perhaps
the most fundamental question an agent faces when plan-
ning and acting are allowed to interleave or run concurrently.
And 2) if the algorithm decides to act, should it commit to
all the actions leading to the most promising frontier node,
or just some prefix?

Most existing real-time search algorithms decide these
questions at design time. For example, the seminal RTA*
algorithm of Korf (1990) always commits to a single action,
while state-of-the-art algorithms like LSS-LRTA* (Koenig
and Sun 2009) and Dynamic f̂ (Burns, Kiesel, and Ruml
2013) always commit to the entire path to the frontier. None
of these algorithms take advantage of identity actions. In this
paper, we explore whether it can be beneficial to make these
decisions dynamically during planning. Considering iden-
tity actions, for example, allows a real-time search to decide
at runtime whether to behave more like greedy hill-climbing,
and commit to an action after only limited lookahead, or be-
have more like A* (Hart, Nilsson, and Raphael 1968), and
explore all the way to a goal before starting to act.

We view our approach as a form of metareasoning, in
which the search algorithm governs its own behavior by at-
tempting to estimate the effects of committing to actions ver-
sus doing more search. Because the effects of search are nec-



1. until a goal is reached
2. perform a best-first search on f̂ until time bound
3. update heuristic values of nodes in CLOSED
4. s← state in OPEN with the lowest f̂
5. start executing path to s
6. time bound← execution time to reach s
7. OPEN← {s}; clear CLOSED

Figure 1: Pseudocode for the Dynamic f̂ algorithm.

essarily uncertain, the challenge is to efficiently estimate the
probability of various outcomes. We believe that the metar-
easoning perspective provides an elegant and principled way
to address the fundamental trade-off between search and ex-
ecution in planning and combinatorial search.

Concretely, the paper proposes two extensions of the Dy-
namic f̂ algorithm, one addressing identity actions and one
addressing prefix commitment. We carefully examine their
behavior on a new set of handcrafted pathfinding problems
and then run large-scale tests on four benchmark domains.
We find that the new techniques successfully allow a real-
time search to adapt its behavior between greed and delib-
eration, matching or outperforming previous state-of-the-
art algorithms. This work represents a new state-of-the-
art in the application of metareasoning to real-time search.
We hope it spurs more investigation into the application of
metareasoning in heuristic search.

Previous Work
LSS-LRTA*
Local Search Space-Learning Real-Time A* (LSS-LRTA*)
is a state-of-the-art real-time search algorithm that has been
recommended for situations in which there is an explicit
real-time constraint per action (Koenig and Sun 2009). It
consists of a two step process. First, LSS-LRTA* performs
an A*-like search from the agent’s current state toward a
goal until some expansion limit is reached. Second, LSS-
LRTA* selects the best state on the search frontier, queues
the best path to that state for the agent to execute, much as
A* does for the complete path to the goal, and proceeds
with a Dijkstra-like backup process where the h value of
each state in the lookahead search space is updated to the h
value of its best child plus the edge cost between the two.
This intensive learning step allows the algorithm to escape
local minima much faster than previous real-time search al-
gorithms.

Dynamic f̂
Dynamic f̂ makes two small modifications to LSS-LRTA*.
A pseudocode sketch is shown in Figure 1. First, instead of
using a fixed time bound, Dynamic f̂ sets the time bound
for search dynamically after each search iteration based on
the duration of the actions that have been queued for execu-
tion (line 6). The longer it will take the agent to execute the
actions that have been committed to, the more computation
can be done by the search before it must terminate the subse-
quent iteration. This can result in a positive feedback loop of
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Figure 2: Backed up heuristic error in Dynamic f̂ .

longer queued paths and yet more search time, allowing the
search to perform larger learning steps and ultimately reach-
ing the goal much faster. In contrast, LSS-LRTA* tries to
minimize total search effort, and thus avoids search during
execution. Under the GAT metric, concurrent search can be
regarded as free.

The second modification that Dynamic f̂ employs is an
inadmissible heuristic, notated ĥ (line 2). This value is our
unbiased best guess about what the node’s true f∗ value is,
rather than a lower bound. Just as f(s) = g(s) + h(s), we
will write f̂ = g(s) + ĥ(s). In Dynamic f̂ , the search fron-
tier is sorted on f̂ instead of f . While any ĥ could be used, in
experiments report below, we use a version of the admissible
h that is debiased online using the ‘single-step error global
average’ method of Thayer, Dionne, and Ruml (2011). Dur-
ing search, the error ε in the admissible h is estimated at ev-
ery expansion by the difference between the f value of the
parent node and the f value of its best successor (these will
be the same for a perfect h). If ε̄ is the average error over
all expansions so far and d(s) is an estimate of the remain-
ing search distance (number of edges along the path) from a
state s to the nearest goal, then ĥ(s) = h(s) + ε̄ ·d(s). Inad-
missible heuristics have shown promise in other suboptimal
search settings as well (Thayer 2012).

In Dynamic f̂ , the next action to take from the current
state is the one leading to the successor with the best f̂ value.
As noted by Burns, Kiesel, and Ruml (2013), this requires
some subtlety. If node a inherits its f value from a node b
on the search frontier, then the heuristic learning step (line
3) will update its h value using the path cost between a and
b (the difference in their g values) and b’s h value. The re-
maining error in the estimate of a’s f value will then derive
from the error in b’s h value. This is illustrated in Figure 2.
To take this into account, we compute ĥ(a) = h(a)+ ε̄·d(b).
This means that, as we learn updated h values, we record the
d values of the nodes they were inherited from.

Metareasoning
One of the first applications of metareasoning to heuristic
search was Decision-Theoretic A* (DTA*) (Russell and We-
fald 1991). DTA* emits actions individually, like a real-time
search, but at each step it estimates how much search to
perform. To do this, it weighs the time required to search
against the likelihood that further search will change the se-
lected action and the expected reduction in total GAT. If fur-
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Figure 3: The three scenarios considered by Ms. A*.

ther search is predicted to reduce the expected GAT more
than the time taken for the searching, then the algorithm im-
plicitly executes an identity action and performs additional
search. This approach is extremely elegant (and inspired
the approach taken in this paper). However, to estimate the
effects of further search, DTA* uses offline training data,
which can be laborious to gather. Furthermore, DTA* also
makes the assumption of a search space with disjoint sub-
trees, searching independently under the competing actions
that the agent might take next. Burns (2013) showed that it
performs poorly compared to modern search algorithms like
LSS-LRTA* that use a single lookahead search space.

More recently, a metareasoning approach has been em-
ployed for search in the form of regret minimization in
MDPs (Tolpin and Shimony 2012). This work attempts to
estimate the probabilistic gain of performing additional roll-
outs in a stochastic environment. Like DTA*, it considers
the actions available at the agent’s current state, and makes
its decision based on the likelihood of additional computa-
tion showing that the currently best action is surpassed by
a competitor. This is done by continually sampling the top
level actions until the incumbent is deemed sufficiently more
promising than its competitors.

A simplistic metareasoning analysis is used by the Ms. A*
algorithm of Burns (2013) to determine whether to take
identity actions and how much of the plan prefix to com-
mit to. Like Dynamic f̂ , Ms. A* uses an unbiased inad-
missible heuristic ĥ and defines f̂ = g + ĥ. Define α as
the action whose unbiased f̂ is lowest, and β as a compet-
ing action to be taken. As indicated in Figure 3, for each
action, Ms. A* interprets f̂ as the expected value of a be-
lief distribution regarding the location of the true f∗ cost of
the action and interprets the admissible f value as the trun-
cated left edge of that distribution. (This is reminiscent of
work on Bayesian reinforcement learning (Dearden, Fried-
man, and Russell 1998).) By definition, f̂(α) ≤ f̂(β). If
f(α) ≤ f(β) as well, then Ms. A* concludes that either α
is significantly better than β (left panel in the figure) or the
two are so close that further search is not worth the negli-
gible gain (middle panel). However, if f(β) < f(α) (right
panel), then Ms. A* concludes that further search is war-
ranted. While this analysis is quick and easy, it completely
ignores the cost and likely effects of further search. The sim-
plicity of Ms. A* can lead it to take identity actions when
they do not result in improved results. O’Ceallaigh (2014)
showed empirically that Ms. A* can sometimes outperform
previous real-time algorithms, but that it is itself outper-
formed by the more principled algorithms presented below.

Deciding When to Act
We now turn to the first of the two metareasoning schemes
we propose in this paper. It concerns ‘identity actions’,
which are special actions available in some domains that the
agent may take but that don’t change the problem state, but
merely allow the agent to delay acting. They allow the agent
to continue searching from the same initial state as in the
previous search iteration, without discarding the lookahead
search space, and therefore they allow the agent to look fur-
ther ahead and gather more information about the potential
long-term effects of choosing the different actions applica-
ble in the current state.

We call our algorithm f̂IMR, as it decides whether to take
an identity action by using a metareasoning process like that
of DTA*. It is a variant of Dynamic f̂ . Whenever an iden-
tity action is applicable in the current state, the algorithm
attempts to estimate whether the time that could be spent
planning during the identity action will be more than offset
by the expected improvement in GAT resulting from being
more likely to select a better action. If so, the learning step
is skipped, an identity action is issued, and the search con-
tinues from where it left off.

More formally, if tidentity is the duration of the identity
action and B is the expected benefit of search (in terms of
GAT reduction), then f̂IMR will take the identity action iff

B > tidentity . (1)

The value of tidentity is known (likely selected by the sys-
tem designer); it is B that is more difficult to estimate. Note
that search will only provide benefit if, instead of taking the
currently most promising action α, we select some other ac-
tion β instead. So we must estimate the probability that,
after searching, our estimate of β’s expected cost has fallen
below α’s, and if so, by how much. Note that we choose
actions based on their f̂ values, so what we need to know
is where α and β’s f̂ values are likely to be after we have
performed more search. As in any metareasoning approach,
we will need to make some significant assumptions and ap-
proximations in order to make our method practical.

We approach this problem from a perspective similar to
that of Ms. A*: we view our belief about the value of an
action a as a probability distribution over possible values,
with pa(x) representing the probability density that a’s true
f∗ value is x. Thinking back to Dynamic f̂ , we can see that
further lookahead will decrease the error in a’s backed up
f value, represented in our f̂ estimate as the d value that a
inherits from its best frontier descendant b. If we view our
pa(x) belief distribution, as we did with Ms. A*, as cen-
tered on f̂ with variance controlled by ε̄ · d(b), then we see
that additional search will decrease our uncertainty about a’s
value, as we would expect. More specifically, because ε̄·d(b)
represents our estimate of the expected error in a’s f value
(f̂(a)− f(a)), we interpret it as an estimate of the standard
deviation of pa, and its square as the variance of the belief
distribution: 1

σ2
pa = (ε̄ · d(b))2. (2)

1An implementation detail: although the lookahead search of



Now what we need in order to computeB is an estimate of
where f̂(a) might be located if we were to have performed
additional search. We represent this too as a probability
distribution, with p′ā(x) representing the probability density
that f̂(a) = x after further search. We model p′ā as a Gaus-
sian distribution. We first note that, because the current f̂(a)
value is our best guess about the true value of a, we can use
it as the mean of p′ā. Second, we note that, if no further
search were done, the variance of p′ā should equal that of pa,
and if we searched all the way to a goal, then the variance
of p′ā would be zero, since we would know its true value.
Therefore, we make the (admittedly strong) assumption that
the variance of p′ā is

σ2
p′ā

= σ2
pa · (1−min(1,

ds
d(b)

)) (3)

where ds is the distance, in search steps, along the path to
a goal that we expect to cover during the search. In other
words, we take the variance of pa as the variance of p′ā, but
scaled according to how far toward the goal we expect to
get. To estimate ds, we use the concept of expansion delay
introduced by Dionne, Thayer, and Ruml (2011). Expansion
delay estimates the average progress of a search along any
single path. It is easily calculated as the average number
of expansions from when a node is generated until it is ex-
panded. Our implementation tracks path-based averages and
uses the average computed during one iteration as the value
for the next. Given the number of expansions that the search
will perform within the duration of the candidate identity
action,

ds =
expansions

delay
. (4)

This gives us all the ingredients for our belief distribution:

p′ā ∼ N(f̂(a), σ2
p′ā

). (5)

Now that we can estimate how our beliefs about the values
of actions might change with search, we can return to our
central concern: estimating the possible benefit of search. If
the value of the most promising action α were to become xα
and the value of some competing action β were to become
xβ , the benefit would be

b(xα, xβ) =

{
0 if xα ≤ xβ
xα − xβ otherwise

(6)

because we would have done α if we had not searched. Now
we just compute the expected value over our estimates of p′ᾱ
and p′

β̄
:

B =

∫
xα

p′ᾱ(xα)

∫
xβ

p′β̄(xβ)b(xα, xβ)dxβdxα. (7)

In the implementation tested below, we use a straightforward
numerical integration with 100 steps.

f̂IMR uses the same ‘single-step global average’ method for es-
timating ε̄ as Dynamic f̂ did, preliminary studies (O’Ceallaigh
2014) showed that the alternative ‘path-based correction’ approach
of Thayer, Dionne, and Ruml (2011) gave a better estimate when
used to compute the variance of the desired belief distribution, so
that method is used when computing variance.

Figure 4: Handcrafted pathfinding problems. Clockwise
from top left: nested cups, wall, slalom, uniform.

Experimental Results
To assess whether f̂IMR behaves as we would expect,
we constructed four simple handcrafted instances of grid
pathfinding, where it is easy to assess algorithm behavior.
To gauge whether f̂IMR might be useful in practice, we then
tested it on four larger more realistic real-time search bench-
mark domains.

Handcrafted Instances
Small versions of the four handcrafted pathfinding problems
are sketched in Figure 4, with @ marking the start and a star
marking the goal. Movement was four-way and the heuris-
tic was Manhattan distance, ignoring obstacles. To see a full
spectrum of behaviors and have a good basis for assessment,
we tested A*, an off-line optimal search; RTA*, a simple
real-time search; LSS-LRTA*, a modern real-time search;
and Dynamic f̂ , the algorithm that f̂IMR extends. We also
tested a greedy hill-climbing algorithm that performs only
one expansion and moves to the best child (equivalent to
RTA* with a lookahead of one). In addition to measuring
our central figure of merit, GAT, we also counted the num-
ber of short trajectories, when an algorithm chooses not to
commit to all the actions along the best path to the looka-
head frontier, and the number of identity actions executed.
The two counts are identical for f̂IMR but will differ for later
algorithms in this paper. For all algorithms, the first search
iteration is considered an identity action. For A*, all itera-
tions are identity actions until the search is complete and the
agent starts moving. To simplify reasoning about the algo-
rithms, we disabled dynamic lookahead, so Dynamic f̂ and
f̂IMR act like LSS-LRTA* and wait to search until the last
committed action has begun executing. The lookahead (or
equivalently, the time per action) was set to 10 expansions.

The first instance, nested cups, has sets of walls form-
ing nested local minima which temporarily ensnare real-time
searches. The full instance was 51 × 29 (w × h) with cor-
ridors two spaces wide and a 3 × 3 space in the innermost
cup. One would expect A* to outperform hill-climbing, for
example, because A* expands each state at most once, while
hill-climbing and similar real-time searches must revisit the
same states repeatedly as they build up enough learning to



instance algorithm GAT short identity
A* 166 90 90
hill-climbing 3108 1 1
RTA* 1666 1 1

cups LSS-LRTA* 3500 1 1
f̂ 5322 1 1
f̂IMR 970 255 255
f̂PMR 4238 646 1
Mo’RTS 241 83 82
A* 102 43 43
hill-climbing 241 1 1
RTA* 723 1 1

wall LSS-LRTA* 523 1 1
f̂ 717 1 1
f̂IMR 101 31 31
f̂PMR 441 100 1
Mo’RTS 140 64 62
A* 29578 27180 27180
hill-climbing 2999 1 1
RTA* 2997 1 1

uniform LSS-LRTA* 3195 1 1
f̂ 2997 1 1
f̂IMR 2997 1 1
f̂PMR 2997 1 1
Mo’RTS 2997 1 1
A* 177 27 27
hill-climbing 1974 1 1
RTA* 2168 1 1

slalom LSS-LRTA* 382 1 1
f̂ 638 1 1
f̂IMR 161 6 6
f̂PMR 4794 662 1
Mo’RTS 161 6 6

Table 1: Performance on handcrafted pathfinding instances.

escape the minima. Experimental results are shown in Ta-
ble 1, and indeed A* has the best performance, while most
of the real-time methods suffer (the f̂PMR and Mo’RTS algo-
rithms will be introduced below). Notably, however, f̂IMR is
able to detect that the heuristic is deceptive and that planning
ahead is useful, as it executes a substantial number of iden-
tity actions and performs 5.5 times better than the f̂ method
it is based on. We had expected f̂ to perform well, but as
it learns that the heuristic significantly underestimates, it in-
creases ε̄, which causes it to behave more greedily. With an
unreliable heuristic, f̂IMR chooses more deliberation, which
appears to be a better strategy.

The wall instance, where a single flat obstacle in the mid-
dle of the map blocks the goal, elicits similar behavior be-
cause the wall creates a single large local minimum. The full
instance was 41× 21 with a gap of one on either side of the
wall. f̂IMR executes many identity action and performs just
as well as A*, while f̂ is 7 times worse.

In the uniform instance, where small obstacles are uni-

formly distributed across the map, the local minima each
require only one step to escape. The full instance was
1200 × 1200. We would expect the real-time algorithms
to perform well, while A* would labor to determine the true
optimal path among many close contenders. The results con-
firm these expectations, with f̂ reaching the goal in a tenth of
the time of A*. f̂IMR recognizes that identity actions are not
needed and matches the performance of the other real-time
searches.

The final handcrafted instance, slalom, features a long and
winding path down the center of the map to the goal, with a
quicker option being to bypass the slalom via either side of
the map. The full instance was 37 × 124 with the corridor
2 spaces wide and a 3-space margin around the outside. As
the results indicate, the simple real-time algorithms commit
to following the winding path while A* is able to find the
outside path and reach the goal much faster. LSS-LRTA*
and f̂ start down the path but eventually turn back, while
f̂IMR quickly recognizes the deceptive heuristic, executes a
few key identity actions, and reaches the goal even faster
than A*.

To summarize, f̂IMR appears able to successfully adapt
to behave more like A* or more like hill-climbing as the
situation requires. While these small benchmarks are very
promising, it remains to be seen if the algorithm can perform
well on full-scale benchmarks.

Larger Benchmarks
We used four benchmarks: grid pathfinding in the orz100d
map from Dragon Age: Origins using the 25 start/goal com-
binations for which the optimal solution cost was high-
est (Sturtevant 2012), Korf’s 100 instances of the 15-
puzzle (Korf 1985), 100 randomly selected instances of
a platformer-style video game (Burns, Kiesel, and Ruml
2013), and 25 randomly selected instances of a Frogger-
style traffic avoidance game (O’Ceallaigh 2014). The video
games are examples of domains where users expect agents to
begin acting promptly and achieve goals quickly, while the
sliding tile puzzle is a classic benchmark. While these do-
mains are deterministic and fully observable, the time pres-
sure of optimizing GAT highlights the trade-off between de-
liberation and acting. All but the traffic domain feature iden-
tity actions.

We used full dynamic lookahead for Dynamic f̂ and f̂IMR.
We tested at five different ‘search speeds’, varying the num-
ber of expansions allowed per unit of action duration in pow-
ers of 10 from 102 to 106 inclusive. For each instance, algo-
rithms were given a limit of 7 GB of memory and 10 min-
utes of CPU time. No data point is plotted for any setting
where an algorithm failed to reach the goal on one or more
instances within the resource constraints.

We also tested RTA* and LRTA* (Korf 1990), DTA*, and
Ms. A*, but their results were inferior and uninteresting, so
we do not include them in the plots.

The left column of Figure 5 presents the results of f̂IMR,
with each row showing a different domain. The x axis of
each plot varies the search speed and the y axis shows the
GAT, normalized as a factor of the GAT of an oracle that
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Figure 5: Goal achievement time as a function of search speed. One problem domain per row, different algorithms per column.



immediately commits to an optimal plan without searching,
shown on a log10 scale. The normalization reduces the vari-
ance within each domain, as some instances are easier than
others. Error bars show 95% confidence intervals on the
mean over all the instances in the domain.

The top left panel shows the pathfinding domain. The
heuristic is quite accurate and A* is hard to beat. But among
the real-time algorithms, f̂IMR shows a slight advantage
when few expansions can be performed. The second panel
shows the 15-puzzle, and f̂IMR gives a pronounced advan-
tage. The trade-off between behaving like A* when search
is fast and behaving like Dynamic f̂ when search is slow
is evident. In the platformer domain, Dynamic f̂ and f̂IMR

perform similarly, both better than LSS-LRTA*. And in the
traffic domain, there are no identity actions, so f̂IMR is iden-
tical to Dynamic f̂ , and both are better than LSS-LRTA*.

In summary, results in both the small handcrafted in-
stances and the larger benchmarks suggest that a metarea-
soning approach to deciding when to commit to actions and
when to plan further is quite promising, matching or outper-
forming existing real-time algorithms.

Deciding How Many Actions to Commit To
We now turn to the second of the two metareasoning
schemes we propose in this paper. Recall that modern real-
time search algorithms like LSS-LRTA* and Dynamic f̂ ex-
plore a local search space and then commit to a plan prefix
leading to a frontier node (line 5 in Figure 1). While f̂IMR

addressed the issue of whether to commit or search further,
the issue we consider now is, given that we commit to act-
ing, how much of the plan prefix should we commit to? If
there exists some state s along the prefix P where the action
αs selected at s is not certainly better than an alternative βs,
it might prove worthwhile to cut P short such that it ends
at s. This path prefixing operation allows the search to pay
attention to promising paths which might otherwise be ig-
nored. We call this algorithm f̂PMR, as it considers prefixes
using metareasoning.

We use the same assessment of the benefit of search as
in f̂IMR, computing B at the nodes along P and stopping
at the first one for which search appears worthwhile. In this
situation, we are not comparing the benefitB against the du-
ration of an identity action, but rather against the more neb-
ulous costs of ‘starting search at a point before the frontier’.
We tested two approaches to assessing these costs. The first
was to assume that they were zero, leading us to commit to
search at the first node for which B was positive. The sec-
ond, and more successful, was to interpret the cost of stop-
ping short of the frontier as the expected time required to
regenerate the nodes from the new start state to the current
lookahead frontier. We estimate this as the number of steps
in the pruned suffix of P times the expansion delay, divided
by the number of expansions per action duration. While this
does estimate the amount of repeated work, it is not fully
satisfactory, as this repeated work will likely be done con-
currently with search and might not lead to increased GAT.
However, it will certainly prevent the search from looking as
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Figure 6: Useful (d) versus not useful (@, a) decision points.
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Figure 7: Variants of f̂PMR.

far ahead in the search space as it would if we committed to
the entire prefix, because a smaller prefix will have a smaller
duration (line 6 in Figure 1).

A second complication is that we only wish to consider
performing more search at nodes along P that have succes-
sors that lie on best paths to different frontier nodes. While
there will likely be alternative actions available at every step
of the path, some of them may represent unnecessarily ex-
pensive temporary deviations from P , rather than truly use-
ful alternatives. Figure 6 gives a concrete example. Edges
drawn with solid lines also represent parent pointers back
from the successor. The best path P is 〈@, a, d, e〉. Node
d represents a useful decision point because it has multi-
ple successors that lie along best paths to different fron-
tier nodes. Node a is not a useful decision point, because
c merely represents a longer way to reach the same frontier
node as d. The agent’s current state is also not a useful deci-
sion point, as b does not lie along the best known path to f,
so there is no use in going that way. Computing usefulness
just requires bookkeeping during the learning step, record-
ing for each node the frontier node from which it inherits
its value, or nil if the inheritance happened through a non-
parent pointer (indicating that the node does not lie on a best
path to the frontier). f̂PMR then only performs its metarea-
soning at useful decision nodes along P , where at least two
successors lie on best paths to distinct non-nil frontier nodes.

Experimental Results
Figure 7 illustrates how considering only nodes representing
useful choices and considering even a rough cost for pruning
a plan prefix improves the performance of f̂PMR.



The performance of f̂PMR on the handcrafted instances is
included in Table 1. While it led to some improvements over
f̂ on cups and wall, it performed poorly on slalom. Overall,
it appears to provide less of a benefit than f̂IMR. Its behavior
on the larger benchmarks is shown in the middle column
of Figure 5. It performs comparably to Dynamic f̂ except
on traffic, where it outperforms all other algorithms. The
performance on larger benchmarks is reminiscent of f̂IMR,
in that f̂PMR performs similarly to Dynamic f̂ except on
one domain, where it shows a pronounced advantage. This
immediately suggests combining the two methods.

Mo’RTS
We investigated the combination of both the identity and
prefix techniques in the same algorithm, which we call
Mo’RTS (for metareasoning online real-time search, pro-
nounced ‘Moe RTS’). Mo’RTS checks if an identity action is
applicable at the current state even if it is not a true decision
node. Only if acting seems preferable to search is the best
path checked for the prefix length to which the algorithm
should commit.

The performance of Mo’RTS on the handcrafted instances
is included in Table 1. Surprisingly, it outperforms both
f̂IMR and f̂PMR on the cups instance, coming very close
to A*’s performance. On the wall instance, it performs al-
most as well as f̂IMR, and the same as f̂IMR on uniform and
slalom. Performance on larger benchmarks is shown in the
right column of Figure 5. On pathfinding and the 15-puzzle,
where f̂IMR is strong, Mo’RTS does just as well. And
on traffic and platformer, where f̂PMR is strong, Mo’RTS
matches its performance. Overall, the results show signifi-
cant improvement over the state-of-the-art LSS-LRTA* and
Dynamic f̂ algorithms.

Discussion
While the methods we introduce appear to work well across
a variety of domains, they are based on several assumptions.
First, both Dynamic f̂ and metareasoning methods assume
access to an inadmissible ĥ, which in this work we create
using on-line debiasing. There is no strong practical theory
that we currently know of to explain when such a method
will result in a reasonable heuristic or not. Thayer (2012,
Figure 4-3) and O’Ceallaigh (2014, Table 3.2) suggest that
debiasing yields an inaccurate heuristic, yet it is clearly ef-
fective. Second, we make several assumptions in order to
approximate p′ā, including a Gaussian form, a linear vari-
ance reduction with lookahead, and a prediction of future
expansion delay. In our limited investigations (O’Ceallaigh
2014), our Gaussian approximation of p′ā seems remarkably
poor, and it is surprising that the metareasoning algorithms
work as well as they do. There is likely much room remain-
ing for improvements.

As we mentioned above, we do not currently have a fully
satisfactory way in f̂PMR to understand the implicit cost of
choosing to commit to a plan prefix that stops short of the
lookahead frontier. Using a short prefix results in less search

time for the following iteration, which limits the number of
actions to which that iteration may commit. Both f̂IMR and
f̂PMR are essentially myopic. Explicitly reasoning about all
this may be too expensive for on-line metareasoning.

In this study, we limited lookahead in node generations,
not wall time. While this simplifies replication of results, it
ignores the many issues necessary for deploying real-time
search, such as predictable OS interrupt servicing and mem-
ory management. Considering an identity action is only
done once per search iteration, if one is applicable at the
agent’s current state, and so the CPU overhead is likely neg-
ligible. Consider possible prefixes is done at potentially ev-
ery node of the best path to the frontier, if all nodes are use-
ful. (Computing usefulness adds negligible overhead, as ex-
plained above.) It remains to be seen whether this overhead
is significant in practice, although in most domains there are
many times more nodes generated than there would be along
any single path to the frontier.

If the overhead of metareasoning could be made low
enough, it may be beneficial to check more frequently
whether the current lookahead gives sufficient confidence
for committing to one or more actions. This would decou-
ple the search iterations from the action start/end times. It
would also provide an alternative approach to considering
path prefix decisions.

Metareasoning has previously been used for directly guid-
ing expansion decisions in off-line search, in which all plan-
ning occurs before any acting (Burns, Ruml, and Do 2013),
and in contract search, where the planner faces a deadline
(Dionne, Thayer, and Ruml 2011). It has also been used to
decide which of multiple available heuristics to use in A*
(Tolpin et al. 2013), IDA* (Tolpin et al. 2014), and CSP
solving (Tolpin and Shimony 2011). This recent generation
of work is fulfilling the early promise heralded by pioneers
from the late 1980s such as Dean and Boddy (1988) and
Russell and Wefald (1991).

Conclusion
In this work, we considered how metareasoning can be ap-
plied to the problem of concurrent planning and acting. We
presented two methods for deciding how to commit to ac-
tions during a real-time search and investigated their behav-
ior on both small easily-understood benchmarks and larger
more realistic problems. Our techniques allow a single al-
gorithm to dynamically adapt its behavior to the problem
at hand, quickly committing to actions like greedy hill-
climbing when possible or deliberating before acting like A*
when necessary. Empirically, our methods match or outper-
form the state-of-the-art Dynamic f̂ real-time search algo-
rithm. We view this as an important success for metareason-
ing in combinatorial search, and we hope this work spurs
more research in this area.
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