## **Metareasoning for Concurrent Planning and Execution**

Dylan O'Ceallaigh and Wheeler Ruml



Department of Computer Science

Grateful thanks to NSF and LAAS-CNRS for support.

Introduction Planning & Acting ■ Problem Setting When to Plan More? How Many Actions? Conclusion

When to plan and when to act?

Planning & ActingProblem Setting

When to Plan More?

How Many Actions?

Conclusion

Introduction

Assumption: always planning (dedicated core)

When to plan and when to act?

Planning & Acting

Introduction

Problem Setting

When to Plan More?

How Many Actions?

Conclusion

Assumption: always planning (dedicated core) Question: when to commit?

Introduction

Planning & Acting
Problem Setting

When to Plan More?
How Many Actions?

Conclusion

When to plan and when to act?

Assumption: always planning (dedicated core) Question: when to commit?

1. off-line: complete plan before acting implicit *identity action* that preserves state

Introduction
Introduction
IPlanning & Acting
IProblem Setting
When to Plan More?
How Many Actions?
Conclusion

When to plan and when to act?

Assumption: always planning (dedicated core) Question: when to commit?

- 1. off-line: complete plan before acting implicit *identity action* that preserves state
- 2. real-time: plan incrementally, commit to current best never execute *identity*, plan while acting

Introduction

Planning & Acting
Problem Setting

When to Plan More?
How Many Actions?
Conclusion

When to plan and when to act?

Assumption: always planning (dedicated core) Question: when to commit?

- 1. off-line: complete plan before acting implicit *identity action* that preserves state
- 2. real-time: plan incrementally, commit to current best never execute *identity*, plan while acting

How to choose? Is there a middle ground? Can we plan/commit dynamically?

How can we decide in a principled way?

Introduction

Planning & Acting
Problem Setting

When to Plan More?
How Many Actions?
Conclusion

When to plan and when to act?

Assumption: always planning (dedicated core) Question: when to commit?

- 1. off-line: complete plan before acting implicit *identity action* that preserves state
- 2. real-time: plan incrementally, commit to current best never execute *identity*, plan while acting

How to choose? Is there a middle ground? Can we plan/commit dynamically?

How can we decide in a principled way?

Metareasoning!

# **The Problem Setting**

Introduction

- Planning & Acting Problem Setting
- When to Plan More?
- How Many Actions?

Conclusion

- planning as forward state-space heuristic search 1. 2. minimize goal achievement time (GAT) action 'cost' = duration access to an inadmissible heuristic  $\hat{h}$  (+  $g = \hat{f}$ ) 3. 4.
  - for simplicity: known deterministic world, serial plan



# **The Problem Setting**

Introduction

- Planning & ActingProblem Setting
- When to Plan More?
- How Many Actions?

Conclusion

Central acting decisions:

- 1. execute (a) current-best action or (b) identity action?
- 2. if (a), how many actions?



|                    | nlan when it appears worthwhile |
|--------------------|---------------------------------|
| ntroduction        |                                 |
| Vhen to Plan More? |                                 |
| Metareasoning      |                                 |
| Estimating Belief  |                                 |
| IMR                |                                 |
| Simple Problems    |                                 |
| Large Problems 1   |                                 |
| Large Problems 2   |                                 |
| low Many Actions?  |                                 |
| Conclusion         |                                 |
|                    |                                 |
|                    |                                 |
|                    |                                 |

### plan when it appears worthwhile!

plan when expected GAT reduction > planning time

#### Introduction

When to Plan More?

- Metareasoning
- Estimating Belief
- IMR
- Simple Problems
- Large Problems 1
- Large Problems 2
- How Many Actions?
- Conclusion

plan when it appears worthwhile!

plan when expected GAT reduction > planning time

GAT reduction depends on whether  $\hat{f}(\alpha) > \hat{f}(\beta)$  after search and if so,  $\hat{f}(\alpha) - \hat{f}(\beta)$ 

Introduction

When to Plan More?

- Metareasoning
- Estimating Belief
- IMR
- Simple Problems
- Large Problems 1
- Large Problems 2
- How Many Actions?
- Conclusion

plan when it appears worthwhile!

plan when expected GAT reduction > planning time

GAT reduction depends on whether  $\hat{f}(\alpha) > \hat{f}(\beta)$  after search and if so,  $\hat{f}(\alpha) - \hat{f}(\beta)$ 

More precisely, if  $x_{\alpha}, x_{\beta}$  are possible  $\hat{f}$  values after search:

$$b(x_{lpha}, x_{eta}) = egin{cases} 0 & ext{if } x_{lpha} \leq x_{eta} \ x_{lpha} - x_{eta} & ext{otherwise} \end{cases}$$

If  $P_{\hat{f}(n)}$  represents belief over future value,

$$B = \int_{x_{\alpha}} P_{\hat{f}(\alpha)}(x_{\alpha}) \int_{x_{\beta}} P_{\hat{f}(\beta)}(x_{\beta}) b(x_{\alpha}, x_{\beta}) dx_{\beta} dx_{\alpha}$$

Introduction

IMR

When to Plan More?

MetareasoningEstimating Belief

■ Simple Problems

Large Problems 1Large Problems 2

How Many Actions?

Conclusion







#### variant of Dynamic $\hat{f}$ real-time search (Burns et al, SoCS-13) Introduction When to Plan More? Metareasoning Estimating Belief 1. until a goal is reached IMR ■ Simple Problems best-first search on $\hat{f}$ until *time bound* 2. ■ Large Problems 1 ■ Large Problems 2 3. if *identity* is applicable and $B > t_{identity}$ How Many Actions? 4. $a \leftarrow identity$ Conclusion 5. else $a \leftarrow \text{first action in best partial plan}$ 6. 7. update heuristic values 8. reset search

- 9. *time bound*  $\leftarrow$  *a*'s duration
- 10. start executing a

#### Introduction

- When to Plan More?
- Metareasoning
- Estimating Belief
- IMR
- Simple Problems
- Large Problems 1
- Large Problems 2

#### How Many Actions?

#### Conclusion

### Sketches:







|         | real-time |           |               |       |
|---------|-----------|-----------|---------------|-------|
|         | A*        | LSS-LRTA* | $\widehat{f}$ | IMR   |
| cups    | 166       | 3,500     | 5,322         | 970   |
| wall    | 102       | 523       | 717           | 101   |
| slalom  | 177       | 382       | 638           | 161   |
| uniform | 29,578    | 3,195     | 2,997         | 2,997 |

IMR adapts from off-line to real-time!

### Wheeler Ruml (UNH)

### Concurrent Planning and Execution – 7 / 14

### Results on Larger Benchmarks (1/2)



Wheeler Ruml (UNH)

Concurrent Planning and Execution – 8 / 14

### **Results on Larger Benchmarks (2/2)**



### How Many Actions to Commit To?

| Introd | UCTION |
|--------|--------|

When to Plan More?

- How Many Actions?
- How Many?
- Simple Problems
- Large Problems 1
- Large Problems 2

Conclusion

Consider each node along partial path Stop at the first where planning is preferred When combined with previous method: Mo'RTS



Wheeler Ruml (UNH)

Concurrent Planning and Execution – 10 / 14

### Introduction



- How Many Actions?
- How Many?
- Simple Problems
- Large Problems 1
- Large Problems 2

Conclusion

### Sketches:







| real-time |        |           |           |       |        |  |
|-----------|--------|-----------|-----------|-------|--------|--|
|           | A*     | LSS-LRTA* | $\hat{f}$ | IMR   | Mo'RTS |  |
| cups      | 166    | 3,500     | 5,322     | 970   | 241    |  |
| wall      | 102    | 523       | 717       | 101   | 140    |  |
| slalom    | 177    | 382       | 638       | 161   | 161    |  |
| uniform   | 29,578 | 3,195     | 2,997     | 2,997 | 2,997  |  |

### Mo'RTS perhaps improves slightly over IMR

Concurrent Planning and Execution – 11 / 14

### Results on Larger Benchmarks(1/2)



Concurrent Planning and Execution – 12 / 14

### **Results on Larger Benchmarks (2/2)**



## Conclusions

| المجيدة ما |        |
|------------|--------|
| mtrou      | uction |

- When to Plan More?
- How Many Actions?
- Conclusion
- Conclusions

Objective: Minimize time to goal achievement

- 1. plan then act: Bugsy (Burns, Ruml, and Do, JAIR 2013)
- 2. concurrent planning and acting: Mo'RTS (this work)

Approach: Metareasoning

- 1. beautiful principle
- 2. provides state-of-the-art results in practice
- 3. should be integrated into the planner

Possible extensions

- 1. non-deterministic and partially-known settings
- 2. 'not-quite-identity' actions
- 3. plan-space planning

Practical metareasoning for adaptive deliberation!

Introduction

When to Plan More?

How Many Actions?

Conclusion

Extra Slides

Assumptions

■ DTA\*

# **Extra Slides**

Wheeler Ruml (UNH)

Concurrent Planning and Execution – 15 / 14

## Assumptions

### Introduction When to Plan More? How Many Actions?

- Conclusion
- Extra Slides
- AssumptionsDTA\*

- inadmissible  $\hat{h}$
- Gaussian belief
  - linear variance reduction with lookahead
- estimate of future expansion delay
- cost of committing before frontier
- identity and length of commitment are separate decisions
  - only consider acting at action end times

## Decision-Theoretic A\* (Russell and Wefald, 1991)

Introduction

When to Plan More?

How Many Actions?

Conclusion

Extra Slides

Assumptions

DTA\*

same basic principle

based on older RTA\* instead of Dynamic  $\hat{f}$ 

- assumes disjoint subtrees beneath current actions
   assumes admissible *k*
- assumes admissible h
- non-A\* lookahead

estimates effect of search using training data