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ABSTRACT
It is often useful to know the geographic positions of nodes
in a communications network, but adding GPS receivers or
other sophisticated sensors to every node can be expensive.
We present an algorithm that uses connectivity information—
who is within communications range of whom—to derive the
locations of the nodes in the network. The method can take
advantage of additional information, such as estimated dis-
tances between neighbors or known positions for certain an-
chor nodes, if it is available. The algorithm is based on mul-
tidimensional scaling, a data analysis technique that takes
O(n3) time for a network of n nodes. Through simulation
studies, we demonstrate that the algorithm is more robust
to measurement error than previous proposals, especially
when nodes are positioned relatively uniformly throughout
the plane. Furthermore, it can achieve comparable results
using many fewer anchor nodes than previous methods, and
even yields relative coordinates when no anchor nodes are
available.

Categories and Subject Descriptors
C.2.3 [Computer Systems Organization]: Network Op-
erations

General Terms
Algorithms, Performance

Keywords
Position estimation, node localization, multilateration, mul-
tidimensional scaling, ad-hoc networks, sensor networks

1. INTRODUCTION
Large-scale networks with hundreds and even thousands of

very small, battery-powered and wirelessly connected sensor
and actuator nodes are becoming a reality [5]. For example,
future sensor networks will involve a very large number of
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densely deployed sensor nodes over physical space. In par-
ticular, the nodes are typically highly resource-constrained
(processor, memory, and power), have limited communica-
tion range, are prone to failure, and are put together in
ad-hoc networks.

Imagine a network of sensors sprinkled across a large build-
ing or an area such as a forest. Typical tasks for such net-
works are to send a message to a node at a given location
(without knowing which node or nodes are there, or how
to get there), to retrieve sensor data (e.g., sound or tem-
perature levels) from nodes in a given region, and to find
nodes with sensor data in a given range. Most of these
tasks require knowing the positions of the nodes, or at least
relative positions among them. With a network of thou-
sands of nodes, it is unlikely that the position of each node
has been pre-determined. Nodes could be equipped with a
global positioning system (GPS) to provide them with ab-
solute position, but this is currently a costly solution.

In this paper, we present a method for computing the po-
sitions of nodes given only basic information that is likely to
be already available, namely, which nodes are within com-
munications range of which others. The method, MDS-

MAP, has three steps. Starting with the given network
connectivity information, we first use an all-pairs shortest-
paths algorithm to roughly estimate the distance between
each possible pair of nodes. Then we use multidimensional
scaling (MDS), a technique from mathematical psychology,
to derive node locations that fit those estimated distances.
Finally, we normalize the resulting coordinates to take into
account any nodes whose positions are known.

As we will demonstrate, this simple technique often out-
performs existing methods. Furthermore, it requires only
connectivity information to produce a meaningful result. If
the distances between neighboring nodes can be estimated,
that information can be easily incorporated into the pair-
wise shortest-path computation during the first step of the
algorithm. MDS yields coordinates that provide the best
fit to the estimated pairwise distances, but which lie at
an arbitrary rotation and translation. If the coordinates
of any nodes are known, they can be used to derive the
affine transformation of the MDS coordinates that allows
the best match to the known positions. Only three such
‘anchor nodes’ are necessary to provide absolute positions
for all the nodes in the network.

The next section of the paper describes MDS-MAP in more
detail. We will then provide an overview of previous propos-
als before presenting our empirical evaluation. Our presen-
tation focuses on a centralized version of the algorithm, al-



though we will briefly mention how the computation can be
distributed. We will examine the performance of MDS-MAP

on networks of 100 to 200 nodes, with node locations either
chosen randomly or according to a rough grid or hexagon
layout. We consider a variety of node densities (nodes per
communications radius) and a variety of ranging errors when
using the estimated distances between neighbors. We will
see that MDS-MAP recovers more accurate maps of node
locations while using much less information.

2. LOCALIZATION USING MDS-MAP

We consider the node localization problem under two dif-
ferent scenarios. In the first, only proximity (or connectiv-
ity) information is available. Each node only knows what
nodes are nearby, presumably by means of some local com-
munication channel such as radio or sound, but not how far
away these neighbors are or in what direction they lie. In
the second scenario, the proximity information is enhanced
by knowing the distances, perhaps with limited accuracy,
between neighboring nodes.

In both cases, the network is represented as an undirected
graph with vertices V and edges E. The vertices corre-
spond to the nodes, of which there exist m ≥ 0 special
nodes with known positions, which we will call anchors. For
the proximity-only case, the edges in the graph correspond
to the connectivity information. For the case with known
distances to neighbors, the edges are associated with values
corresponding to the estimated distances. We assume that
all the nodes being considered in the positioning problem
form a connected graph, i.e., there is a path between every
pair of nodes.

There are two possible outputs when solving the local-
ization problem. One is a relative map and the other is an
absolute map. The task of finding a relative map is to find an
embedding of the nodes into either two- or three-dimensional
space that results in the same neighbor relationships as the
underlying network. Such a relative map can provide cor-
rect and useful information even though it does not neces-
sarily include accurate absolute coordinates for each node.
Relative information may be all that is obtainable in situa-
tions in which powerful sensors or expensive infrastructure
cannot be installed, or when there are not enough anchors
present to uniquely determine the absolute positions of the
nodes. Furthermore, some applications only require relative
positions of nodes, such as in some direction-based routing
algorithms. Sometimes, however, an absolute map is re-
quired. The task of finding an absolute map is to determine
the absolute geographic coordinates of all the nodes. This is
needed in applications such as geographic routing and target
discovering and tracking.

As we will show below, our method can potentially gener-
ate both results, depending on the number of anchor nodes.
The method first generates a relative map of the network
and then transforms it to absolute positions if sufficient an-
chors are available. Before we describe the details of our
method, we first introduce multidimensional scaling (MDS),
with a focus on classical MDS, which is used to generate the
relative map.

2.1 Multidimensional Scaling (MDS)
Imagine a small cloud of colored beads suspended in mid-

air. To characterize the arrangement, one could measure
the straight-line distance between each pair of beads. If the

cloud were shattered and the beads fell to the floor, one
could imagine trying to recreate the arrangement based on
the recorded interpoint distances. One would try to deter-
mine a location for each bead such that the distances in the
new arrangement matched the desired distances. This recre-
ation process is exactly the problem that multidimensional
scaling (MDS) solves. Intuitively, it is clear that while the
O(n2) distances will be more than enough to determine O(n)
coordinates, the result of MDS will be an arbitrarily rotated
and flipped version of the true original layout because the
interpoint distances make no reference to any absolute co-
ordinates.

MDS has its origins in psychometrics and psychophysics.
It can be seen as a set of data analysis techniques that dis-
play the structure of distance-like data as a geometrical pic-
ture [1]. MDS starts with one or more distance matrices (or
similarity matrices) that are presumed to have been derived
from points in a multidimensional space. It is usually used
to find a placement of the points in a low-dimensional space,
usually two- or three-dimensional, where the distances be-
tween points resemble the original similarities. MDS is of-
ten used as part of exploratory data analysis or informa-
tion visualization. By visualizing objects as points in a
low-dimensional space, the complexity in the original data
matrix can often be reduced while preserving the essential
information. MDS is closely related to principal component
analysis, and is also related to factor analysis and cluster
analysis.

There are many types of MDS techniques. They can be
classified according to whether the similarity data is qualita-
tive (nonmetric MDS) or quantitative (metric MDS). They
can also be classified according to the number of similar-
ity matrices and the nature of the MDS model. Classical
MDS uses one matrix. Replicated MDS uses several matri-
ces, representing distances measurements taken from several
subjects or under different conditions. Weighted MDS uses
a distance model which assigns a different weight to each
dimension. Finally, there is a distinction between deter-
ministic and probabilistic MDS. In deterministic MDS, each
object is represented as a single point in a multidimensional
space, whereas in probabilistic MDS each object is repre-
sented as a probability distribution over the entire space.

We focus on classical metric MDS in this paper. Classical
metric MDS is the simplest case of MDS: the data is quanti-
tative and the proximities of objects are treated as distances
in a Euclidean space [15]. The goal of metric MDS is to find
a configuration of points in a multidimensional space such
that the inter-point distances are related to the provided
proximities by some transformation (e.g., a linear transfor-
mation). If the proximity data were measured without error
in a Euclidean space, then classical metric MDS would ex-
actly recreate the configuration of points. In practice, the
technique tolerates error gracefully, due to the overdeter-
mined nature of the solution. Because classical metric MDS
has a closed-form solution, it can be performed efficiently
on large matrices.

Let pij refer to the proximity measure between objects i

and j. The Euclidean distance between two points Xi =
(xi1, xi2, · · · , xim) and Xj = (xj1, xj2, · · · , xjm) in an m-



dimensional space is

dij =

���� m�
k=1

(xik − xjk)2.

When the geometrical model fits the proximity data per-
fectly, the Euclidean distances are related to the proximities
by a transformation dij = f(pij). In classical metric MDS, a
linear transformation model is assumed, i.e., dij = a + bpij .

The distances D are determined so that they are as close
to the proximities P as possible. There are a variety of
ways to define “close”. A common one is a least-squares
definition, which is used by classical metric MDS. In this
case, we define

I(P ) = D + E

where I(P ) is a linear transformation of the proximities, and
E is a matrix of errors (residuals). Since D is a function
of the coordinates X, the goal of classical metric MDS is
to calculate the X such that the sum of squares of E is
minimized, subject to suitable normalization of X.

In classical metric MDS, P is shifted to the center and
coordinates X can be computed from the double centered P

through singular value decomposition (SVD). For an n × n

P matrix for n points and m dimensions of each point, it
can be shown that
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The double centered matrix on the left hand side (call it
B) is symmetric and positive semidefinite. Performing sin-
gular value decomposition on B gives us B = V AV . The
coordinate matrix becomes X = V A1/2.

Retaining the first r largest eigenvalues and eigenvectors
(r < m) leads to a solution in lower dimension. This implies
that the summation over k in Eq. (1) runs from 1 to r instead
of m. This is the best low-rank approximation in the least-
squares sense. For example, for a 2-D network, we take the
first 2 largest eigenvalues and eigenvectors to construct the
best 2-D approximation. For a 3-D network, we take the
first 3 largest eigenvalues and eigenvectors to construct the
best 3-D approximation.

In nonmetric (ordinal) MDS (first developed by Shep-
ard [14]), the goal is to establish a monotonic relationship
between inter-point distances and the desired distances. In-
stead of trying to directly match the given distances, one is
satisfied if the distances between the points in the solution
fall in the same ranked order as the corresponding distances
in the input matrix. The advantage of nonmetric MDS is
that no assumptions need to be made about the underly-
ing transformation function. The only assumption is that
the data is measured at the ordinal level. Just as classical
MDS, nonmetric MDS can also be applied to the localization
problem. By adopting a more flexible model, the effects of
a few highly incorrect measurements might be more easily
tolerated.

2.2 The MDSMAP Algorithm
Based on classical MDS, our method, called MDS-MAP,

consists of three steps:

1. Compute shortest paths between all pairs of nodes in
the region of consideration. The shortest path dis-
tances are used to construct the distance matrix for
MDS.

2. Apply classical MDS to the distance matrix, retaining
the first 2 (or 3) largest eigenvalues and eigenvectors
to construct a 2-D (or 3-D) relative map.

3. Given sufficient anchor nodes (3 or more for 2-D, 4 or
more for 3-D), transform the relative map to an abso-
lute map based on the absolute positions of anchors.

In step 1, we first assign distances to the edges in the
connectivity graph. When the distance of a pair of neigh-
bor nodes is known, the value of the corresponding edge is
the measured distance. When we only have connectivity in-
formation, a simple approximation is to assign value 1 to
all edges. Then a classical all-pairs shortest-path algorithm,
such as Dijkstra’s or Floyd’s algorithm, can be applied. The
time complexity is O(n3), where n is the number of nodes.

In step 2, classical MDS is applied directly to the dis-
tance matrix. The core of classical MDS is singular value
decomposition, which has complexity of O(n3). The result
of MDS is a relative map that gives a location for each node.
Although these locations may be accurate relative to one an-
other, the entire map will be arbitrarily rotated and flipped
relative to the true node positions.

In step 3, the relative map is transformed through linear
transformations, which include scaling, rotation, and reflec-
tion. The goal is to minimize the sum of squares of the
errors between the true positions of the anchors and their
transformed positions in the MDS map. Computing the
transformation parameters takes O(m2) time, where m is
the number of anchors. Applying the transformation to the
whole relative map takes O(n) time.

3. RELATED WORK
Node localization has been a topic of active research in

recent years. A detailed survey of the area is provided by
Hightower and Borriello [6]. However, few approaches for
locating nodes in an ad-hoc network are described. Most
systems use some kind of range or distance information and
many of them rely on powerful beacon nodes with extreme
capabilities, such as radio or laser ranging devices.

Doherty’s [4] convex constraint satisfaction approach for-
mulates the localization problem as a feasibility problem
with radial constraints. Nodes which can hear each other
are constrained to lie within a certain distance of each other.
This convex constraint problem is in turn solved by effi-
cient semi-definite programming (an interior point method)
to find a globally optimal solution. For the case with di-
rectional communication, the method formulates the local-
ization problem as a linear programming problem, which is
solved by an interior point method. The method requires
centralized computation. For the technique to work well,
it needs anchor nodes to be placed on the outer boundary,
preferably at the corners. Only in this configuration are
the constraints tight enough to yield a useful configuration.
When all anchors are located in the interior of the network,
the position estimation of outer nodes can easily collapse
toward the center, which leads to large estimation errors.
For example, with 10% anchors, the error of unknowns is on
the order of the radio range. With 5 anchors in a 200-node



random network, the error of unknowns is more than twice
the radio range.

Most localization methods for ad-hoc networks require
more information than just connectivity and use more pow-
erful beacon nodes. The ad-hoc localization techniques used
in mobile robots usually fall into this category [7, 10]. Mo-
bile robots use additional odometric measurements for esti-
mating the initial robot positions, which are not available in
sensor networks.

Many existing localization techniques for networks use dis-
tance or angle measurements from a fixed set of reference
points or anchor nodes and apply multilateration or trian-
gulation techniques to find coordinates of unknown nodes [8,
11]. The distance estimates can be obtained from received
signal strength (RSSI) or time-of-arrival (ToA) measure-
ments. Due to nonuniform signal propagation environments,
RSSI methods are not very reliable and accurate. ToA meth-
ods have better accuracy, but may require additional hard-
ware at the sensor nodes to receive a signal that has a smaller
propagation speed than radio, such as ultrasound [12]. Em-
phasis has been put on algorithms that can be executed in a
distributed fashion on the sensor nodes without centralized
computation, communication, or information propagation.
The “DV-based” approach by Niculescu and Nath [9] is dis-
tributed. The “DV-hop” method achieves an location error
of about 45% of the radio range for networks with 100 nodes,
5 anchors, and average connectivity 7.6. It starts with the
anchor nodes. The anchors flood their location to all nodes
in the network. Each unknown node performs a triangula-
tion to three or more anchors to estimate its own position.
The method works well in dense and regular topologies. For
sparse and irregular networks, the accuracy degrades to the
radio range. The “DV-distance” method uses distance be-
tween neighboring nodes and reduces the location error by
about half of that of “DV-hop”.

Savarese et al. propose another distributed method [11].
The method consists of two phases: start-up and refine-
ment. For the start-up phase, they use Hop-TERRAIN, an
algorithm similar to DV-hop. Hop-TERRAIN is run once
at the beginning to generate a rough initial estimate of the
nodes’ locations. Again, it needs at least 3 anchor nodes to
start. Then the refinement algorithm is run iteratively to
improve and refine the position estimates. The algorithm is
concerned only with nodes within a one-hop neighborhood
and uses a least-squares triangulation method to determine
a node’s position based on its neighbors’ positions and dis-
tances to them. The approach can deliver localization accu-
racy within one third of the communication range.

When the number of anchor nodes is high, the collabo-
rative multilateration approach by Savvides et al. can be
used [13]. The method estimates node locations by using
anchor locations that are several hops away and distance
measurements to neighboring nodes. A global nonlinear op-
timization problem is solved. The method has three main
phases: 1) formation of collaborative subtree, which only
includes nodes that can be uniquely determined, 2) com-
putation of initial estimates with respect to anchor nodes,
3) position refinement by minimizing the residuals between
the measured distances between the nodes and the distances
computed using the node location estimates. They present
both a centralized computation model and a distributed ap-
proximation of the centralized model. The method works
well when the fraction of anchor nodes is high.

The GPS-less system by Bulusu et al. [3] employs a grid
of beacon nodes with known positions. Each unknown node
sets its position to the centroid of the beacons near the un-
known. The position accuracy is about one-third of the
separation distance between beacons, so the method needs
a high beacon density to work well.

Almost all the existing methods need some kind of anchor
or beacon nodes to start with. Our method does not have
this limitation. It builds a relative map of the nodes even
without anchor nodes. With three or more anchor nodes,
the relative map can be transformed and absolute coordi-
nates of the nodes are computed. Our method works well
in situations with low ratios of anchor nodes and performs
even better on regular networks. A limitation of the cur-
rent implementation is that it is centralized. There are var-
ious ways to apply this method in a decentralized or dis-
tributed fashion. For example, the method can be applied
to sub-networks to obtained regional relative maps, which
are patched together to form an overall map of the network.

4. EXPERIMENTAL RESULTS
In our experiments, we ran MDS-MAP on various topolo-

gies of networks in Matlab. The nodes are placed (a) ran-
domly with a uniform distribution within a square area, (b)
on a square grid with some placement errors, or (c) on a
hexagonal grid with some placement errors. In a square
grid, assuming r is the unit length, n2 nodes are typically
placed in an nr by nr square. We model placement errors
for the grid layout as Gaussian noises. With a placement er-
ror ep, a random value drawing from a normal distribution
r×ep×N(0, 1) is added to the node’s original grid position.
The placement error in a hexagonal grid is defined similarly.
The anchor nodes are selected randomly. The data points
represent averages over 30 trials in networks containing 100
to 200 nodes.

In the connectivity-only cases, each node only knows the
identities of nodes in its neighborhood but not the distance
to them. In the known-distance cases, each node knows the
distances to its neighbor nodes. The distance information is
modeled as the true distance blurred with Gaussian noise.
Assume the true distance is d∗ and range error is er; then the
measured distance is a random value drawing from a nor-
mal distribution d∗(1+N(0, er)). The connectivity (average
number of neighbors) is controlled by specifying radio range
R. To compare with previous results in [4, 11], the errors of
position estimates are normalized to R (i.e., 50% position er-
ror means half of the range of the radio). We do not consider
models of non-uniform radio propagation or widely varying
ranging errors. Both modeling these phenomena and simu-
lating their effects are very important directions for future
work.

4.1 Random Placement
In this set of experiments, 200 nodes are placed randomly

in a 10r × 10r square. Figure 1 shows an example using a
radio range of 1.5r, which leads to an average connectivity
of 12.1. In the graph, points represent nodes and edges rep-
resent the connections between neighbors who can hear each
other. Figure 2 shows the result of MDS-MAP based on the
connectivity information of the network. Figure 2(a) shows
the intermediate result of classical MDS on the connectivity
matrix. It can be seen that the center of the map is the ori-
gin (0,0), and it has a different orientation than the original
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Figure 1: 200 nodes randomly placed in a 10r × 10r

square. The radio range is 1.5r, yielding an average
connectivity of 12.1.

network in Figure 1. Figure 2(b) shows the final solution of
MDS-MAP where the MDS result is transformed based on 4
random anchor nodes, denoted by the stars (*) in the net-
work. The circles represent the true locations of the nodes,
and the solid lines represent the errors of the estimated po-
sition from the true position. The longer the line, the larger
the error. The average estimation error in this example is
about 0.46r.

When the distances between neighbors are known, even
with limited accuracy, the result of MDS-MAP can be sig-
nificantly improved. Figure 3 shows the result of MDS-MAP

knowing the distance of neighbors with 5% range error. Fig-
ure 3(a) shows the map constructed by MDS. Again, it has
different scale and orientation than the ones in Figures 1 and
2(a). Figure 3(b) shows the final estimation of MDS-MAP

based on the same 4 anchor nodes. It has an average esti-
mation error of 0.24r, much better than the previous result
using connectivity only.

Figure 4 shows the average performance of MDS-MAP as a
function of connectivity and number of anchors. Figure 4(a)
shows results of MDS-MAP based on proximity information
only. The radio ranges (R) are 1r, 1.25r, 1.5r, 1.75r, and
2r, respectively, which lead to average connectivity levels
5.9, 8.9, 12.2, 16.2, and 20.7, respectively. 3, 4, 6, and 10
random anchors are used. Position estimates by MDS-MAP

have an average error under 100%R in scenarios with just
4 anchor nodes and an average connectivity level of 8.9 or
greater. When the connectivity level is 12.2 or greater, the
errors with just 3 anchors is quite good, close to or better
than 50%. On the other hand, when the connectivity is low,
e.g., 5.9, the errors can be large. These results are much
better than the ones obtained by the convex optimization
approach in [4] when the number of anchor nodes is low.
For example, with 4 to 10 anchors in a 200-node random
network, the convex optimization approach has an average
estimation error of more than twice the radio range when the
radio range is 1.25R and above. In contrast, our method has
an error from about 80% down to 40% as the radio range
goes from 1.25R to 2R.
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(b) Final position estimation by MDS-MAP

Figure 2: Location estimation for the random net-
work using connectivity information only.

Figure 4(b) shows results of MDS-MAP using distance
measurement between neighbors with 5% range error. Know-
ing the distances between neighbors leads to much better so-
lutions when the connectivity in the network is high. When
the connectivity level is 12.2 or greater, the errors are about
half of those by MDS-MAP using proximity information only.
On the other hand, when the connectivity is low, e.g., 5.9,
knowing the local distance does not help much and the er-
rors are still large. These results improve on the results
of Hop-TERRAIN [11], especially when the number of an-
chors is small. For example, with 2% anchors and a con-
nectivity level about 12, MDS-MAP has an average error
of about 50%R, whereas Hop-TERRAIN has an error of
about 90%R. After the refinement phase in [11], the error
is reduced to about 18%R. MDS-MAP should be compared
to Hop-TERRAIN since it can be followed by a refinement
phase like the ones in [11] and [13]. By starting from the bet-
ter initial estimates generated by MDS-MAP, a refinement
phase should find even better results. Our preliminary ex-
periments along this avenue have been encouraging.
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(b) Final position estimation by MDS-MAP

Figure 3: Estimation for the random network using
distances between neighbors with 5% range error.

Figure 5 shows the number of nodes participating in the
location estimation in MDS-MAP. Recall that the largest
connected subnetwork is extracted for processing. When
the connectivity level is low, such as 5.9, about 7% of the
nodes are not connected to the main subnetwork, and hence
their positions are not estimated. Among the nodes that
are part of the main subnetwork, many of them have only
1 or 2 connections to their neighbors. The lack of sufficient
information to determine the position of a node causes large
errors in MDS-MAP solutions. When the average connec-
tivity exceeds 12.2, the network tends to be fully connected
and all nodes can be localized.

Sensitivity to range errors has been a major concern for
localization algorithms. Figure 6 shows the effects of increas-
ing range errors on the estimation errors. The radio ranges
are 1.5r and 2r, which lead to connectivity levels 12.2 and
20.7. 4 random anchors are used. The range errors vary
from 0 to 50%. Estimation error increases steadily as the
range error increases. The errors with a larger connectivity
(20.7) are more than 10%R lower than those with a smaller
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Figure 4: Average position error of MDS-MAP on
random networks of 200 nodes.

connectivity (12.2) in most cases. The estimation error goes
up faster after the range error is over 30%.

4.2 Grid Placement
In this set of experiments, we assume that the sensor

nodes are deployed according to some regular structures
such as a square or a hexagonal grid. Actually, nodes are
placed in the neighborhood of the vertices due to random
placement error. 100 nodes are placed on a 10r × 10r grid,
with a unit edge distance r. Our results show that MDS-

MAP obtains much better results on the grid layout than on
the random layout for the same connectivity level.

Figure 7 shows an example of the regular grid with 10%
placement error. The radio range is R = 1.4r, which leads
to connectivity 5.06. In the graph, points again represent
sensor nodes and edges represent the connections between
neighbors. Figure 8 shows the result of MDS-MAP based
on the connectivity of the network. Figure 8(a) shows the
intermediate result of classical MDS on the connectivity ma-
trix. It can be seen that the center of the map is the origin
(0,0), and it has a different orientation than the original
network in Figure 7. Figure 8(b) shows the final solution of
MDS-MAP where the MDS result is transformed based on
4 random anchor nodes (* nodes). The circles represent the
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true locations of sensor nodes, and the solid lines represent
the errors between the estimated and true positions. The
longer the line, the larger the error.

When the distance measurement between neighbors is avail-
able, the result of MDS-MAP is significantly improved. Fig-
ure 9 shows the result of MDS-MAP knowing the distance of
neighbors with 5% range error. Figure 9(a) shows the map
constructed by MDS. Again, it has different scale and ori-
entation than the ones in Figures 7 and 8(a). Figure 9(b)
shows the final estimation of MDS-MAP based on the same
4 anchor nodes. The estimation errors are now very small.

Figure 10 shows the average performance of MDS-MAP us-
ing proximity information as a function of connectivity and
placement errors, given 3 or 5 random anchors respectively.
The radio ranges (R) are 1.5r, 2r, 2.5r, and 3r, respectively.
For different placement errors, the same radio range leads to
different connectivity levels. With 3 anchors, position esti-
mates by MDS-MAP have an average error under 50%R for
the placement errors up to 50% in scenarios with an average
connectivity level of 8 or greater. With 5 anchors, position
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Figure 7: 100 nodes placed on a 10r × 10r grid with
10% random placement error.

errors by MDS-MAP is reduced to 35% and below for the
same cases.

Figure 11 shows results of MDS-MAP using distance mea-
surement between neighbors with range errors from 5% to
50%. Knowing the distances between neighbors leads to
much better solutions. When the range error is below 20%,
the estimation errors are below 25%. Having more anchors
(5 vs. 3) improves performance, especially for the case with
large range errors.

In addition to the experiments with 10r × 10r grids, we
also tried similar experiments with grids of other sizes, such
as 8r × 8r grids (64 nodes) and 20r× 20r grids (400 nodes).
The average position errors obtained by MDS-MAP on the
different size grids are very similar given the same number
of anchor nodes.

Similar results are obtained for the hexagonal grid lay-
out. MDS-MAP achieves slightly better performance than
for the square grid layout due to the increased regularity of
the distances between neighboring nodes. Figure 12 shows
an example of the regular grid with 10% placement error.
The radio range is R = 1.4r, which leads to connectivity
5.32. Figure 13 shows the result of MDS-MAP based on the
connectivity of the network. Figure 13(a) shows the inter-
mediate result of classical MDS on the connectivity matrix.
Figure 13(b) shows the final solution of MDS-MAP where
the MDS result is transformed based on 4 random anchor
nodes (* nodes). When using the distance measurement
between neighbors, the result of MDS-MAP is again much
better. Figure 14 shows the result of MDS-MAP knowing
the distance of neighbors with 5% range error. Figure 14
shows the map constructed by MDS and the final estima-
tion of MDS-MAP based on the same 4 anchor nodes. The
estimation errors are now very small.

Figure 15 shows the average performance of MDS-MAP us-
ing proximity information as a function of connectivity and
placement errors, given 3 or 5 random anchors respectively.
The radio ranges (R) are 1.5r, 2.5r, and 3.5r, respectively.
For different placement errors, the same radio range leads
to different connectivity levels. With 3 anchors, position es-
timates by MDS-MAP have an average error under 30%R
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(b) Final position estimation by MDS-MAP

Figure 8: Estimation on the grid network using con-
nectivity information only.

for the placement errors up to 50% when the connectivity
level is 14 or greater. With 5 anchors, position errors by
MDS-MAP are reduced slightly.

Figure 16 shows results of MDS-MAP using distance mea-
surement between neighbors with range errors from 5% to
50%. Again, knowing the distances between neighbors leads
to much better solutions. When the range error is below
20%, the estimation errors for low connectivity level (5.2)
are below 30%. With 3 anchors, position estimates by MDS-

MAP have an average error under 15%R with an average
connectivity level of 14 or greater. Having more anchors (5
vs. 3) improves its performance, especially for the case with
large range errors.

In summary, MDS-MAP performs well when the level of
connectivity is over 9 for the grid placements and over 12
for the random placement. The number of anchor nodes
needed by MDS-MAP is very small. When there is sufficient
connectivity, 3 anchors for the grid placements and 4 anchors
for the random placement are usually enough for MDS-MAP

to find solutions with position errors less than half of the
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(b) Final position estimation by MDS-MAP

Figure 9: Estimation on the grid network using
neighbor distances with 5% error.

range of radio. MDS-MAP works well when the placement
errors are less than a quarter of the radio range and when
the range errors are less than 20% of the radio range. For
both the random and grid placements, the position error of
MDS-MAP increases proportional to the range error.

5. POSSIBLE EXTENSIONS
A drawback of the current implementation of MDS-MAP

is that it requires global information of the network and
centralized computation. One way to address this issue is
to divide the network into sub-networks and apply MDS-

MAP to each sub-network independently. Since our method
does not require anchor nodes in building a relative map
of a sub-network, the method can be applied to many sub-
networks in parallel. Then adjacent local maps can be com-
bined by aligning with each other. In another words, the
complete map of the sensor network consists of many smaller
patches. When three or more anchors are present in ei-
ther a sub-network or the whole network, an absolute map
can be computed accordingly. Although this patching ap-
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Figure 10: Average position error of MDS-MAP on
grid networks of 100 nodes when using only connec-
tivity information.

proach requires significant computation within each patch,
one has considerable flexibility in choosing which nodes per-
form the computation. Preliminary experiments have been
very encouraging and detailed results will be reported in
future work.

MDS-MAP can also be extended by applying more ad-
vanced MDS techniques. Instead of classical metric MDS,
other MDS techniques such as ordinal MDS and MDS with
missing data can be applied. This may be useful to handle
non-uniform radio propagation and non-uniform ranging er-
rors. We have done some limited experiments with ordinal
MDS. Our results show that ordinal MDS is better than
classical MDS when the connectivity level of the sensor net-
work is low, and is comparable with classical MDS when the
connectivity level is high.

Another drawback of MDS-MAP is that when the num-
ber of anchor nodes is large, the performance of MDS-MAP

is not as good as previous methods such as the constraint-
based approach [4], “DV-hop” [9], or Hop-TERRAIN [11].
The reason is that the second step of MDS-MAP, the applica-
tion of classical MDS, is done without using the positioning
information of anchor nodes. The information is only used
in step 3, when the overall structure and distance ratios be-
tween nodes have already been determined. The approach
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Figure 11: Average error of MDS-MAP on grid net-
works of 100 nodes when using distance information.

of building a relative map irrespective of the coordinations
of anchor nodes is double-edged. It works nicely when there
are few or no anchor nodes, but not as well when there are
more anchor nodes. One solution may be to use a more ad-
vanced MDS technique called the anchor point method [2],
where coordinates of anchor nodes are explicitly used in de-
termining the scaling.

As we mentioned above, combining MDS-MAP with other
methods is another promising avenue. For example, MDS-

MAP can be used to get a good initial estimates of node po-
sitions, which is followed by a refinement phase like the ones
in [11] or [13]. Due to the good performance of MDS-MAP

comparing to competing methods on the cases of low anchor
node densities, one can expect this two-phase approach to
generate good results.

6. CONCLUSIONS
In this paper, we presented a new localization method,

MDS-MAP, that works well with mere connectivity infor-
mation. However, it can also incorporate distance informa-
tion between neighboring nodes when it is available. The
strength of MDS-MAP is that it can be used when there
are few or no anchor nodes. Previous methods often re-
quire well-placed anchors to work well. For example, the
constraint-based approach in [4] works well only when the
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Figure 12: 100 nodes randomly placed on a 10 × 10
hexagonal grid with 10% placement error.

anchors are placed at the outside corners and edges and
the constraints are tight. It works poorly when the anchors
are inside the network, close to the center. The collabora-
tive multilateration approach in [13] also requires anchors
throughout the network, as well as a relatively large num-
ber of anchors, to work well. Our method does not have this
limitation. It builds a relative map of the nodes even with-
out anchor nodes. With three or more anchor nodes, the
relative map can be transformed and absolute coordinates
of the sensor nodes are computed. Extensive simulations
using various network arrangements and different levels of
ranging error show that the method is effective, and partic-
ularly so for situations with few anchor nodes and relatively
uniform node distributions.
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Figure 15: Average error on hexagonal grid net-
works when using only connectivity information.
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Figure 16: Average error on hexagonal grid net-
works when using distances between neighboring
nodes.


