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my work: improve real-time planning using ideas from
decision-making!

planning is a way of finding a sequence of actions that
accomplish some objective

one method of planning: heuristic search!

heuristic search:
agent tasked with reaching a specific state
accomplished by searching graph of states + actions
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heuristic search associates costs with states,
used to guide search
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A*: expands nodes with minimal f value
returns optimal path
optimal search can take too long!

alternatives to optimal search?
real-time heuristic search!
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(Image credit: Bence Cserna)
agent performs search for a limited time
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(Image credit: Bence Cserna)
agent commits to a path to frontier and executes
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(Image credit: Bence Cserna)
agent continues interleaving search and path execution
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can be broken down into three phases...

1. Expansion Phase:
expands nodes to explore the search space

2. Decision-making Phase:
amasses information on search frontier (backup rules)
uses information to select an action to execute

3. Learning Phase:
learns heuristic values

Will focus on the first two stages!
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Should an agent at A move to B1 or B2?
(xi are unknown but independent and identically distributed)

f = g + h = g + 0 is lower bound on optimal plan cost

f is not the answer: need statistical perspective

decision theory gives us principle of rationality:
should minimize expected value!



Which Nodes to Expand?

Introduction

■ Planning

■ Heuristic Search

■ Real-time Search

■ Overview

■ Decision-making

■ Expansion

■ This Work

Backup Rules

Expansion Strategies

Conclusions

Andrew Mitchell Real-time Planning as Decision-making – 17 / 68

f(�)

belief about �

belief about �

f(�)

(f̂ is expected value)
(f̂ = f + ǫ ∗ d)

Should an agent expand nodes under α or β?



Which Nodes to Expand?

Introduction

■ Planning

■ Heuristic Search

■ Real-time Search

■ Overview

■ Decision-making

■ Expansion

■ This Work

Backup Rules

Expansion Strategies

Conclusions

Andrew Mitchell Real-time Planning as Decision-making – 17 / 68

f(�)

belief about �

belief about �

f(�)

(f̂ is expected value)
(f̂ = f + ǫ ∗ d)

Should an agent expand nodes under α or β?

f̂ is not the answer: what to do?
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1. Which action to select?
minimum f̂ by principle of rationality

2. How to backup from frontier?
minimin optimal for deterministic (A*)
Bellman optimal for stochastic (VI)
what about online?

3. Which nodes to expand?
minimum f optimal for optimal search (A*)
what about online?

this work: a practical investigation of the two questions
from the perspective of decision-making under uncertainty.
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heuristics are inaccurate/uncertain estimates on cost to goal
due to unexplored state space
true heuristic could be much higher!

view heuristics as distribution over potential values
distributions centered about expected value

assume most accurate heuristics on the frontier
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how to form beliefs?
how to gather information from the search frontier?
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Minimin:
parent ← minimum f among successors
lower bound: not suitable for rational action selection
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Bellman:
parent ← minimum f̂ among successors
only conveys a scalar value
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Nancy (new!):
parent ← belief with minimum f̂ among successors
conveys an entire belief distribution
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Cserna (new!):
parent ← distribution of minimum value of successors
assumes that true values of successors will be revealed
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two beliefs on the frontier

how to obtain belief at TLA?
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return resulting belief distribution
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k-best (reformulated!):
parent ← distribution of minimum values of k successors
class of backup rules ranging from Nancy to Cserna

all incorrect, which works best?
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explore all but last level of search tree
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explore all but last level of search tree
backup information from frontier
agent picks first action
remaining path is optimally solved
why? used as a test by Pemberton in 1995
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precise expected values of all successors are known!
expect Cserna to be optimal on average!
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One-level Belief

Introduction

Backup Rules

■ Beliefs

■ Backup Rules

■ Last Incremental

■ Random Trees

■ Last Incremental

■ Random Trees

■ 15-Puzzle

■ Overview

Expansion Strategies

Conclusions

Andrew Mitchell Real-time Planning as Decision-making – 39 / 68

0.0 0.2 0.4 0.6 0.8 1.0
Path Cost

0.000

0.002

0.004

0.006

0.008

0.010

De
ns

ity

Probability that Complete Path Cost is x

Take minimum of n U(0,1) beliefs shifted by g value



One-level Belief

Introduction

Backup Rules

■ Beliefs

■ Backup Rules

■ Last Incremental

■ Random Trees

■ Last Incremental

■ Random Trees

■ 15-Puzzle

■ Overview

Expansion Strategies

Conclusions

Andrew Mitchell Real-time Planning as Decision-making – 40 / 68

0.0 0.2 0.4 0.6 0.8 1.0
Path Cost

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

De
ns

ity

Probability that Complete Path Cost is x

One-level belief is result of this operation
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mean at f̂ , variance proportional to distance from goal
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so h = 0
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uniform n-ary tree with depth d

binary with depth 10 for last incremental decision
binary with depth 100 for other experiments
implementation lazy but deterministic

all leaf nodes are goals
edge costs ∼ Uniform(0,1)

so h = 0
g = sum of edge costs

Real-time search using different backup rules

1. limited lookahead, then take action
single action commitment

2. sum edges costs until goal

best backup rule is one with lowest average solution cost!
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1. Which action to select?
minimum f̂ by principle of rationality

2. How to backup from frontier?
Bellman or Nancy (Nancy has added benefit of belief)

3. Which nodes to expand?

setting:

■ search expands frontier nodes under top-level actions (TLAs)
■ only lowest f̂ node under TLA is important (Bellman/Nancy

backup)
■ how to select node to expand?
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f expansion:
expand node on frontier with lowest lower bound
ignores uncertainty in heuristic

f̂ expansion:
expand node on frontier with lowest expected value
accounts for uncertainty, but with scalar

Breadth-first expansion:
expand nodes in order of generation
literally just brute force

alternatives?

Risk-based expansion (new!):
expand nodes which minimize expected regret
acknowledges uncertainty, relies on belief of values

which of these performs best?
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Risk: expected regret if a suboptimal action is selected

E
[

f∗(α)− f∗(β)
∣

∣ f∗(β) < f∗(α)
]

expectation over possible values for TLAs
exploit full belief given by Nancy backups
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Risk: expected regret if a suboptimal action is selected

E
[

f∗(α)− f∗(β)
∣

∣ f∗(β) < f∗(α)
]

expectation over possible values for TLAs
exploit full belief given by Nancy backups

in discrete case, where α is TLA with lowest expected value, all
other TLAs are βi, and a and bi are potential values from their

beliefs:

∑

βi

(
∑

a

∑

bi<a

P (a)P (bi)(a− bi))

expand under the TLA that minimizes risk!
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expand under TLA1 or TLA2?
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obtain beliefs of TLA1 and TLA2
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identify TLA2 as α TLA
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risk of expansion under TLA1 is 0.5!
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calculate post expansion belief for TLA2
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use post expansion belief to calculate risk
of expansion under TLA2



Risk-based Expansion Example

Introduction

Backup Rules

Expansion Strategies

■ Strategies

■ Risk

■ Random Trees

■ 15-Puzzle

■ Optimality Gap

■ Overview

Conclusions

Andrew Mitchell Real-time Planning as Decision-making – 60 / 68

use post expansion belief to calculate risk
of expansion under TLA2



Risk-based Expansion Example

Introduction

Backup Rules

Expansion Strategies

■ Strategies

■ Risk

■ Random Trees

■ 15-Puzzle

■ Optimality Gap

■ Overview

Conclusions

Andrew Mitchell Real-time Planning as Decision-making – 61 / 68

risk of expansion under TLA2 is
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expand under TLA2!
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risk has a fraction of f -based expansion’s optimality gap!



Answering the Second Question

Introduction

Backup Rules

Expansion Strategies

■ Strategies

■ Risk

■ Random Trees

■ 15-Puzzle

■ Optimality Gap

■ Overview

Conclusions

Andrew Mitchell Real-time Planning as Decision-making – 66 / 68

1. Which action to select?
minimum f̂ by principle of rationality



Answering the Second Question

Introduction

Backup Rules

Expansion Strategies

■ Strategies

■ Risk

■ Random Trees

■ 15-Puzzle

■ Optimality Gap

■ Overview

Conclusions

Andrew Mitchell Real-time Planning as Decision-making – 66 / 68

1. Which action to select?
minimum f̂ by principle of rationality

2. How to backup from frontier?
Bellman or Nancy (Nancy has added benefit of belief)



Answering the Second Question

Introduction

Backup Rules

Expansion Strategies

■ Strategies

■ Risk

■ Random Trees

■ 15-Puzzle

■ Optimality Gap

■ Overview

Conclusions

Andrew Mitchell Real-time Planning as Decision-making – 66 / 68

1. Which action to select?
minimum f̂ by principle of rationality

2. How to backup from frontier?
Bellman or Nancy (Nancy has added benefit of belief)

3. Which nodes to expand?
those which minimize risk



Answering the Second Question

Introduction

Backup Rules

Expansion Strategies

■ Strategies

■ Risk

■ Random Trees

■ 15-Puzzle

■ Optimality Gap

■ Overview

Conclusions

Andrew Mitchell Real-time Planning as Decision-making – 66 / 68

1. Which action to select?
minimum f̂ by principle of rationality

2. How to backup from frontier?
Bellman or Nancy (Nancy has added benefit of belief)

3. Which nodes to expand?
those which minimize risk

Nancy (Nancy backups + risk-based expansion) addresses these
questions!
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viewed real-time planning as decision-making under uncertainty

■ studied 5 backup rules (2 new + 1 reformulated)
■ Bellman and Nancy backups performed best
■ discussed 4 expansion strategies (1 new)
■ risk-based expansion performed best

Nancy (risk-based expansion + Nancy backups) outperforms
conventional LSS-LRTA*

future directions:

■ broader testing
■ efficient implementation
■ explore similarities with UCT

More broadly, metareasoning about uncertainty pays off,
even for deterministic domains!
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