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ABSTRACT

Assigning Students to Groups Based on Preference and Traits

by

Brendan McGuirk

University of New Hampshire, May, 2020

The University of New Hampshire Chemistry Department has been organizing study groups

for students called Peer Led Team Learning (PLTL) for years now. However, assigning

hundreds of students into groups manually is a non-trivial task, and doesn’t guarantee the

best possible solution. Each student will have certain times that they can meet, and more

specifically, certain times that they prefer to meet. Additionally, when assigning students

to groups, the students’ traits should be taken in to account (e.g. preventing having only

one freshman in the group). In this thesis, we devise a mathematical formulation of this

problem, and apply an integer linear program solver to it to optimize the results. This work

was developed with frequent input and feedback from the users to ensure that it met their

needs and built on their suggestions. We demonstrate that our method is sufficiently fast to

be used for the current needs of the users, and can continue providing high quality results

as the future needs of the department scales.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

At the University of New Hampshire (UNH), many classes offer extra resources for enhancing

students’ learning experience. For example, the UNH Chemistry department has helped

over 8000 students taking general or organic chemistry by offering Peer Led Team Learning

(PLTL), where student volunteers who have previously taken the course meet weekly with

groups of about 6 students to work on challenging problems, or answer any questions the

students may have. Each semester, more than 300 students between multiple classes with

different lecturers and lecture times are organized by hand into groups of about 6 to 8

students, creating more than 35 PLTL groups.

Student leaders are picked to lead PLTL groups before the semester starts. Groups

meet for an hour and twenty minutes, but the leaders are given their choice on when they

want their group to meet. A list of these group times are compiled in to a Google survey

which is sent out to students taking the general or organic chemistry courses via email in

the beginning of the semester. In this survey, students are asked to put their name, email,

gender, and year, and answer preferred, possible, or impossible for each group time. When a

student answers this survey, their results are added to a comma separated value (CSV) file

saved by Google. This file contains all of the results for every student, with name, email,

gender, year, and each group time being the column headers. These results are available to

the UNH Chemistry department, so they can manually sort the students in to groups. This

process involves manually assigning students to groups in hopes of finding a combination
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that satisfies the most student’s preferences. There is no solution check that they can use to

see if their combination of students is optimal, and refining their solution requires checking

every student and seeing where switches can be made.

1.2 Problem Definition

In a perfect world, assigning students to these PLTL groups would be as simple as dividing

up all of the students equally in to each group. Unfortunately, this would be of little benefit

for the students, as the chance of a student not being able to attend their PLTL group at

its assigned time is extremely high due to obligations such as class load. Assigning students

to groups that meet at a time they can meet is important, but it would also be beneficial to

give students their preferred meeting time. Students should be separated by what chemistry

course they’re taking, so PLTL groups can work on one subject. Additionally, students

from different lectures for the same class should be in different PLTL groups, as sometimes

professors will get behind or ahead, so both lectures might not be at the same point. Finally,

the UNH Chemistry department might decide that they want an even distribution of traits

such as year and gender, so as to not let any student feel left out, lesser than their peers,

or uncomfortable to meet in their group. This now becomes a much more complex problem

that takes hours to do by hand.

As the number of students and the number of PLTL groups increase, the number of

combinations of students in groups increases. The number of different combinations is equal

to the number of groups to the power of the number of students. In the case where 300

students need to go in to 35 groups, that means there are 35300 or 1.661 ∗ 10463 different

combinations. Finding which of these combinations is the best combination is a non-trivial

task. To check every combination would be infeasible, as, assuming a computer could check

one billion combinations per second, it would take it about 10443 years. In the field of

computer science, this is called a combinatorial optimization problem.

For combinatorial optimization problems, in order to figure out what types of groups
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make a good group, an objective function needs to be defined. This objective function is

used to set penalties or rewards for certain combinations of groups. For example, there could

be a penalty for a group that is too big, or a reward for giving a student their preferred class.

Using these penalties and rewards, you can calculate a “score” for a combination. Finding

the best “scoring” group is what is defined as the optimal combination. This objective

function can easily be changed to create different types of groups. You can only estimate

how much you reward or penalize a certain combination, so coming up with a good objective

function is a challenge.

This creates a human aspect to the problem as well. The UNH Chemistry department

needs to be able to use an application for any chemistry class, by inputting a file to the

program, and having it output a combination of PLTL groups. This output would be a CSV

file with all the students arranged in to meeting times. The application needs to be easy

enough to not create confusion for the user, and fast enough to not make the user wait hours

to get a good solution.

1.3 Outline

In this thesis, I will first talk about previous work to this problem specifically, and similar

types of problems in Chapter 2. Next, I will discuss my approach to solving this problem in

Chapter 3. In Chapter 4 I will show the results of my solution, and the performance of the

program I made. In Chapter 5 I will talk in depth about the feedback I received from the

UNH Chemistry members who used my program extensively, and discuss how their feedback

improved the program.
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CHAPTER 2

PREVIOUS WORK

Assigning things to groups is not a novel concept, and many different problems like this have

been solved. The problem UNH Chemistry is facing, however, has some unique aspects to it

that require a new method of solving. In order to assure that students are placed in to groups

not only on their preferences, but also their traits, we need to consider more information

from each person when creating these groups.

2.1 UNH Chemistry Problem

Previous undergraduate students created a computer program that attempts to solve this

problem. Their implementation was part of their capstone Senior Project at UNH. Their

approach used very generic solutions like hill climbing [1] and squeaky wheel optimization

[2], because the exact requirements for grouping students was never finalized, and these

approaches can easily adjust their settings to create different types of groups. The downside

to these methods is that there is no guarantee that the solution they find is optimal. There

are many problems that hill climbing and squeaky wheel optimization can run in to such as

local optima [3], plateaus [4], and ridges [3], that prevents finding optimal solutions.

The UNH Chemistry department found that their program was not implemented well

enough to use for their needs. They currently cannot get the program to run on their

computers, because of a lack of instructions on how to install the JRE. This has forced

the UNH Chemistry department to return to sorting students by hand. While this does

accomplish the task, it creates problems for the department leaders who have to spend hours
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creating these groups manually.

It is sufficient to say that this program did not succeed in solving UNH Chemistry’s

problem. The biggest reason the program didn’t work is the distribution of the program.

Professor Chris Bauer, the PLTL lead for UNH Chemistry, said that there were problems

running their program on Mac vs. Windows. Also, in order to get the program on their

machines, the file had to be shared between users, which is inefficient and impractical. These

were significant problems that needed to be addressed in the new program.

2.2 Similar Problems

The problem of assigning students to groups has been attempted to be solved in a variety

of different ways. There is a lot of research that has gone in to what makes an effective

group [5, 6], and whether grouping students by ability, interest, or other categories affected

performance and effectiveness of the groups. This is not the goal of our problem. This

problem is strictly for finding different combinations of students in groups to optimize student

preferences.

A similar type of problem is the problem of timetabling [7,8], in which classes are assigned

to times such that teachers only teach one class at a certain time slot, and students can only

be in one class at a certain time slot. The timetabling problem is a type of scheduling

problem that is in the class of NP-Hard problems [9]. This problem differs from the problem

of assigning students to groups because in the timetabling problem, students are being

assigned to multiple classes, making sure that their class times are not overlapping. These

problems are often solved using a linear integer programming model [10], which is a popular

approach for these types of problems.

Another problem that is similar to assigning students to groups is the hospitals/residents

(HR) problem [11] (also known as the college admissions problem [12]). It is a generalization

of the stable marriage problem [13], where residents rank hospitals they prefer in a strict

order, and hospitals rank residents they prefer in a strict order. The goal is to assign residents
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to hospitals such that the amount of preferred matches is optimized. One difference between

this problem and the problem of assigning students to groups is that the preference order

for residents and hospitals must be in strict order, and residents can not say they prefer two

hospitals equally.

There is an extension of the HR problem where the order of preference does not have to

be in strict order, and there can be ties in the preferences. This extension of the problem is

called HRT and is NP-Hard [12]. HRT is more similar to the problem of assigning students

to groups than the basic HR problem, except that in both HR and HRT, hospitals also have

preferences over residents. The problem of assigning students to groups is a special case of

HRT where every hospital’s preference list has all residents at a tied preference.

A one sided version of the HR problem is called the assignment problem [14]. In the

assignment problem, agents are assigned to tasks with some cost depending on the agent-

task pairing. The goal is to minimize the cost, while assigning as many tasks as possible to

agents. The assignment problem is a fundamental combinatorial optimization problem. The

equation for the assignment problem is as follows:

Minimize:
N∑
i=1

N∑
j=1

cijxij

Subject to:
N∑
i=1

xij = 1 for j = 1, ..., N

N∑
j=1

xij = 1 for i = 1, ..., N

xij ∈ {0, 1}

(2.1)

Where cij is the cost for assigning agent i to job j, and xij is whether or not agent i is

assigned to job j, for N jobs and N agents.

The unbalanced assignment problem [15], where there are more tasks than agents, is a

special case of the assigning students to groups problem, where there are multiple tasks for

each spot in a group and group size limits are fixed. There is a polynomial time algorithm to
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solve the assignment problem, called the Hungarian method [16], that solves the problem in

O(n3) time. The unbalanced assignment problem can be reduced to the assignment problem

by adding dummy agents until the number of agents is equal to the number of jobs. Then

the Hungarian method can be applied to solve the problem in polynomial time.

The semi-assignment problem [17,18] is a version of the assignment problem where jobs

are grouped in to sets. This is more in line with the assigning students to groups problem, in

that students are being assigned to groups instead of individual tasks. The semi-assignment

problem can also be solved in polynomial time using the Hungarian method. The equation

for the semi-assignment problem is as follows:

Minimize:
N∑
i=1

N∑
j=1

cijxij

Subject to:
N∑
i=1

xij ≤ bj for j = 1, ..., N

N∑
j=1

xij = 1 for i = 1, ..., N

xij ∈ {0, 1}

(2.2)

Where cij is the cost for assigning agent i to job j, xij is whether or not agent i is assigned

to job j, and bj is the limit on the number of agents that can be assigned to group j, for N

jobs and N agents.

On the other side of difficulty, the generalized assignment problem [19] (GAP) is an NP-

Hard problem [20] that is a generalization of the assignment problem. In the GAP, tasks are

assigned to agents, but all agents have a budget such that the sum of the weight of all their

tasks does not exceed their budget. The problem of assigning students to groups is a special

case of the GAP where the weight of all students is one, and the budget for each group is
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its size limit. The equation for GAP is as follows:

Maximize:
M∑
i=1

N∑
j=1

cijxij

Subject to:
N∑
j=1

wijxij ≤ bi for i = 1, ...,M

M∑
i=1

xij = 1 for j = 1, ..., N

xij ∈ {0, 1}

(2.3)

Where cij is the cost for assigning job j to agent i, xij is whether or not job j is assigned to

agent i, wij is the weight of assigning job j to agent i, and bi is the budget an agent has, for

M agents and N groups.

The GAP is too expressive to compare our problem to, because in our problem students

always have the same weight. Additionally, our problem has more constraints than the semi-

assignment problem, such as considering students’ traits when assigning them to groups.

Our problem is in between the NP-Hard GAP and the polynomial time semi-assignment

problem, meaning that it is not obvious whether or not our problem is NP-Hard.

In a similar approach to the previous UNH undergraduate students’ attempt at solving

the problem of assigning students to groups, various heuristic methods can be used to find

solutions to the GAP and similar problems. A popular heuristic method for solving this

problem is Tabu Search [21], which uses basic hill climbing with the ability to escape local

optima. Just like basic hill climbing, the results you get are not guaranteed to be optimal,

and the quality of your results depends on where you start the search. However, the ability

to escape local optima increases the chance of finding an optimal solution, or at least a better

solution.

Genetic algorithms [22, 23] can also be used for this problem. Genetic algorithms treat

assignments of students to groups as chromosomes, and at each iteration of search, it changes

the weakest chromosomes to increase the objective function value. For similar scheduling
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problems, genetic algorithms show to perform better than other local search methods [24].

Again, using this method does not guarantee finding an optimal solution. This is a problem

across all local search methods, and is something we tried to avoid in our approach.
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CHAPTER 3

APPROACH

Based on the previous work from past UNH undergraduate students, we knew that a new

approach needed to be taken to meet all the requirements of the UNH Chemistry department.

Our solution was to create a program that we called Group Assign.

3.1 Design

During the design stage of the program, we were able to sit down with Professor Chris

Bauer and three PLTL leaders: Molly Hanlon, Ryan Dussault, and Haley D’Angelo. In this

meeting, we made sure to understand their ideas on what made a good group, and what

sorts of things they wanted the program to do. In this meeting, it was unanimously agreed

that groups are best between 6-8 students, and that 10 or above and 4 or below was too big

and small for group sizes.

Additionally, they told us that if a student puts impossible as their availability for a

group, to never assign that student to that group. With this information, we also learned

that in smaller classes, such as Organic Chemistry, where the number of groups is not enough

to allow every student to be placed into a group, that students would have to be unassigned

if they didn’t have any groups to be placed into. This was the motivation for having an

“Unassigned” section in the output.

A feature that they didn’t deem necessary, but would help improve the quality of the

results, was to take the students traits into account when assigning students to groups.

This could include their gender and their class standing, and was mostly intended to not
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single any student’s identities out. We were told that since the majority of students in

chemistry are female, it can be hard to avoid groups that have only one male in them. These

males would often be uncomfortable in groups of only females, and would be less likely to

participate. The same is true for class standings, such as a single freshman in a group with all

upperclassmen. This became an optional feature in the program where the user can specify

whether groupings should be made in consideration of multiple personal characteristics.

Lastly, the PLTL leaders urged that students with different professors for their lectures

should be placed in different groups. They have had many problems in the past where

professors get behind in lecture material compared to other professors teaching the same

class, and having PLTL groups with mixed professors would lead to confusion and division

among the group. When the PLTL leaders organize the groups by hand, this is one of the

things that they pay attention to the most, so we agreed that this feature should be included

in our program.

Of course, the most important thing to consider was the algorithm for sorting students

into groups. We considered many approaches, but ended up focusing on integer linear

programming.

3.2 Integer Linear Programming

A mathematical approach to solving this problem is using Integer Linear Programming (ILP).

An ILP is a program that defines a problem mathematically with decision variables. If we

have i students, j groups, and k lectures, we can have a decision variable for each student

in each group (xij is whether or not student i is in group j), and a decision variable for each

group and lecture (gjk is whether or not group j allows students from professor k). Knowing

this, we can define mathematical equations for scoring our objective function.

The objective function is an equation that defines what a good solution is. The objective

function is created with decision variables and coefficients, and the solver tries different

combinations of values for the decision variables until it finds either a maximum or minimum
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value. This approach will always find the optimal solution, however the run time will vary

depending on the number of decision variables and the amount of constraints.

In order to set limitation on what the decision variables can be set to, constraints can

be defined on the solver. This is important to prevent situations such as one student being

assigned to multiple groups. There were many constraints required to fit the problem, which

are talked about more in depth in Section 3.2.1.

We also considered using heuristic search methods to solve this problem such as Tabu

Search [25], Greedy Randomized Adaptive Search Procedure [25], and Large Neighborhood

Search [25,26]. These methods were proposed as possible solutions should the ILP take too

long to find a solution. Our results in Chapter 4 prove that the ILP is fast enough for any

realistic situation that could occur for UNH Chemistry, as well as future situations should

PLTL expand.

There were a few choices to use for ILP solvers, but eventually we decided on a solver

called Gurobi [27]. Initially, we tried a free solver by Google, called Google OR-Tools [28].

This solver worked for problems where the number of students and the number of groups

were small, however it did not scale well, and when putting harder problems to the test, the

solver took too long to find a solution, if it could find any before it timed out. Since the

program might run on the UNH server Agate, which has a five minute timeout, this solver

would not be acceptable.

The Gurobi Optimizer advertises itself as one of the best optimization solvers for ILPs.

We knew that this solver would provide speedup from Google’s free solver. An additional

benefit of using Gurobi is that they offer free licenses for academic users. We were quickly

able to request a license and get Gurobi working. The same problems solved using Google

OR-Tools took on average 22.7 times longer than Gurobi as shown in Figure 3.1.

3.2.1 ILP Formulation

In this section, we will discuss the formulation of our ILP.
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Figure 3.1: Run Times from Google-OR Tools and Gurobi

Solver Variables

In order to formulate the ILP to solve our problem, additional variables needed to be used.

As described above, each student had one decision variable for each group. This decision

variable could be either 1 if the student was assigned to that group, or 0 if the student was

not assigned to that group. This variable will be xij, for whether or not student i is in group

j.

Since groups could potentially have no students assigned to them, another decision vari-

able was made for each group, which could be either 1 or 0, depending on whether the

group was enabled or not respectively. If a group’s decision variable is 0, that means that

no students could be assigned to that group. This variable will be enabled j for whether or

not group j is enabled.
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To implement a limit on group size, two integer variables were created for each group;

one for the minimum size and one for the maximum size. Since the PLTL leaders said

that they wanted groups to be between 6 and 8 people, we needed two variables to define

group size, so that multiple groups could have different sizes within those numbers with

no penalty. The variables for minimum and maximum group size will be minj and max j

respectively for group j. These variables are integer variables, which is different from the

0-1 decision variables in that they can be any integer number. Having these variables is

necessary to encourage groups to be between the preferred minimum and maximum group

sizes, without going past the absolute minimum and maximum group sizes. Since we want

the user to be able to specify their preferred and absolute minimum and maximum group

sizes, the minimum group size variable is constrained to be between the absolute minimum

and preferred minimum, and the maximum group size variable is constrained to be between

the preferred maximum and the absolute maximum.

Additionally, each group got a decision variable for each professor. This decision variable

could be either 1 or 0, depending on whether that group allowed students who had that

professor for their class assigned to that group or not respectively. This solves the problem

of keeping students with different professors into the different groups. This variable will be

gjk, for whether or not group j allows students from professor k.

To have students’ traits affect group assignments, each group has decision variables for

enabling males, females, freshmen, sophomores, juniors, and seniors, for a total of six decision

variables per group. These decision variables could be either 1 or 0, depending on whether

the group allows students with that trait or not respectively. These decision variables will

be enabled jt for whether or not group j allows students with trait t, where t is either male,

female, freshman, sophomore, junior, or senior.

In the case where PLTL leaders want to avoid singling out traits in their groups (e.g.

groups with only one male), each group has decision variables for whether or not there is only

one member assigned to the group with a certain trait. Each group has a decision variable
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for each trait, for a total of six decision variables per group. These decision variables are

set by constraints to ensure that they are 1 when a student in the group is singled out by

a certain trait, and 0 otherwise. These decision variables will be singlejt for whether or

not group j has a student singled out by trait t, where t is either male, female, freshman,

sophomore, junior, or senior.

In the case where PLTL leaders want to avoid groups consisting entirely of a certain

trait (e.g. all female groups, all freshmen groups, etc.), each group has decision variables for

whether or not all members of a group belong to the same trait. Each group has a decision

variable for each trait, for a total of six decision variables per group. These decision variables

are set by constraints to ensure that they are 1 when all group members share the same trait,

and 0 otherwise. These decision variables will be shared jt for whether or not all members of

group j share the same trait t, where t is either male, female, freshman, sophomore, junior,

or senior.

Since every group gets one decision variable for each student, every group gets one decision

for each professor, every group has three decision variables for group size (enabled, min, and

max), and every group has 18 decision variables for traits (enabled, singled, and shared per

trait), the total number of variables the solver is using is

nm + np + 3n + 18n = n(m + p + 21) (3.1)

where n is the number of groups, m is the number of students, and p is the number of

professors.

Objective Function

The objective function in our program is defined to tell the solver to favor group assignments

that met the criteria described by the PLTL leaders. The objective function is made of many

separate equations that together capture what groups should resemble. In our problem, the
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program is trying to be minimize the value of the objective function.

The full objective function is as follows:

Minimize: Preferences + Sizes + SingleTrait + SharedTrait (3.2)

The first part of the objective function aims to give students their desired groups.

Preferences :
n∑

j=1

m∑
i=1

(pij − v) ∗ xij (3.3)

Where pij is the cost for assigning student i to group j, v is the penalty for leaving a student

unassigned, and xij is whether or not student i is assigned to group j. Subtracting the

penalty for leaving a student unassigned from the cost of assigning a student to a group

encourages the program to place students in to groups since the penalty for assigning a

student to a preferred group is zero.

The second part of the objective function is used to create groups between the users’

preferred minimum and maximum sizes.

Sizes :
n∑

j=1

(−a ∗minj) + (b ∗max j) (3.4)

Where a is the penalty for decreasing the minimum group size minj, and b is the penalty

for increasing the maximum group size max j. This part of the objective function keeps the

minimum group size variable high by multiplying it by the negative penalty for decreasing

the group size minimum, and to keep the maximum group size variable low by multiplying

it by the penalty for increasing the group size maximum.

The two variables minj and max j work together to keep group sizes between the preferred

values. This is shown in Figure 3.2, where the absolute minimum and maximum groups

sizes are 4 and 10 respectively, the preferred minimum and maximum group sizes are 6 and

8 respectively, a = 10, and b = 3. Since the program is trying to minimize the value of
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Figure 3.2: Group Size Variables Affecting Objective Value Score

the objective function, it will prefer to create groups between the preferred minimum and

maximum group sizes, where the objective function value is lowest. Constraints are set in

place to ensure that these variables reflect the actual number of students assigned to the

group, which are described in the next section.

The last two parts of the objective function changes how groups are made based on

students’ traits. The first equation penalizes groups that have a student who is singled out

by their trait.

SingleTrait :
n∑

j=1

ct ∗ singlejt for trait t ∈ Traits (3.5)

Where ct is the penalty for having a single student in group j with trait t. The set of traits

includes males, females, freshmen, sophomores, juniors, and seniors. Several PLTL leaders
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have stated that when students are singled out by gender, they are often less willing to

participate in the group discussion because they feel uncomfortable.

The last equation penalizes groups in which all students share a similar trait.

SharedTrait :
n∑

j=1

dt ∗ shared jt for trait t ∈ Traits (3.6)

Where dt is the penalty for every student in group j sharing trait j. The set of traits is the

same as in Equation 3.5. These two equations are an important part of creating groups that

the user wants.

The benefit of having different penalties for each trait is that it gives more control over

how groups are made. The majority of students in PLTL are female freshmen, so limiting

groups that are entirely female freshman might not be as important as preventing singling

out males. This allows for the most control over how students are assigned to groups.

Constraints

In order to limit which decision variables can be set in combination with others, constraints

are put on the system. These constraints are mathematical equations formed from constants

and solver variables. Our solver has six different constraints, made up of many different

equations.

The first constraint is limiting students to be assigned to either one group or no groups.

In the following equation, we have m students and n groups. The sum of all decision variables

for each student must be less than or equal to 1.

AtMostOneGroupPerStudent :
n∑

j=1

xij ≤ 1 for i = 1, ...,m (3.7)

For constraining the group size variables, three constraints were used for each group. To

constrain enabling groups, for each group, the number of students in that group must be

greater than or equal to the enabled variable and less than or equal to the hard maximum

18



group size multiplied by the enabled variable, where the hard maximum group size is specified

as part of the input.

SetGroupEnabled :enabled j ≤
m∑
i=1

xij ≤ hardMax ∗ enabled j for j = 1, ..., n (3.8)

To limit the group sizes to between a preferred minimum and a preferred maximum, the

minimum and maximum group size variables are constrained to be less than or equal to the

number of students in the group, and greater than or equal to the number of students in

the group respectively. The objective function is trying to limit the minimum and maxi-

mum group sizes from moving past their preferred sizes, but the constraint makes sure if a

group has more or less students than the preferred size, that the group size variables change

accordingly.

For the minimum group size, with group size absolute limits hardMin and hardMax, and

preferred limits prefMin and prefMax, we limit the minimum group size variable with the

following equation.

GroupMin :

−prefMin ≤ (
m∑
i=1

xij)−minj − (prefMin ∗ enabled j) ≤ hardMax

for j = 1, ..., n

(3.9)

For the maximum group size, the same approach is used.

GroupMax :

−hardMax ≤ (
m∑
i=1

xij)−max j + (prefMax ∗ enabled j) ≤ prefMax

for j = 1, ..., n

(3.10)

These two equations make sure that the number of students in the group is in between

the minimum and maximum group size variable values.
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The PLTL leaders made it very clear that it is important that students with different

professors for their lectures do not end up in the same PLTL group. To ensure this, we

used two constraints. The first constraint limits the number of professors a group can be

associated with to 1. For every group j in n groups and every professor k in p professors,

the sum of all the professor decision variables gjk should equal 1.

OneProfessorPerGroup :

p∑
k=1

gjk = 1 for j = 1, ..., n (3.11)

With the previous equation, we ensure that each group only is associated with one pro-

fessor. To make sure that all students in a group share the same professor, for each group j

and for each professor k, we sum the decision variables for that group of every student that

has that professor (xij where student i has professor k). This equation should be less than

or equal to the hard maximum group size multiplied by whether or not group j is associated

with professor k.

StudentsShareProfessor :∑
i∈Mk

xij ≤ hardMax ∗ gjk

for j = 1, ..., n and k = 1, ..., p

where Mk is the set of students with professor k

(3.12)

To give groups more flexibility, and increase the chances of successfully assigning every

student into a group, we allow for a group leader to list multiple potential times they are

available to host a group as part of the input. It is rare that a group leader will host more

than one group per semester, so we want to limit the number of groups one person can host

to one or zero. We can check this by adding all of the enabled decision variables for groups
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led by each group leader.

OneLeaderPerGroup :

0 ≤
∑
j∈Nl

enabled j ≤ 1

for l = 1, ..., L where Nl is the set of groups lead by l

(3.13)

Using traits as part of the objective function required constraints to set decision variables

based on group conditions. The decision variables we are trying to set are singlejt and

shared jt. To set both of these, we need to use enabled jt, to determine whether or not that

group allows members with a certain trait. To set enabled jt, we limit the sum of all people

with trait t to be between enabled jt and hardMax ∗ enabled jt.

SetTraitEnabled :

enabled jt ≤
∑
i∈Mt

xij ≤ hardMax ∗ enabled jt

for j = 1, ..., n where Mt is the set of students with trait t

(3.14)

Setting the decision variable singlejt is done by finding the number of students in group

j with trait t, and if there is one student with that trait, and the trait is enabled for the

group, forcing singlejt to be one.

SetSingleTrait :

0 ≤
∑
i∈Mt

xij + (singlejt − 2 ∗ enabled jt) ≤ hardMax

for j = 1, ..., n where Mt is the set of students with trait t

(3.15)

The same approach is used for setting shared jt, where if the sum of all students in group

j minus the sum of students in group j with trait t is zero and the trait is enabled for the
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group, shared jt is forced to be one.

SetSharedTrait :

0 ≤
m∑
i=1

xij −
∑
i∈Mt

xij + (shared jt − enabled jt) ≤ hardMax

for j = 1, ..., n where Mt is the set of students with trait t

(3.16)

The full problem of assigning students to groups can be defined as follows:

Minimize: Preferences + Sizes + SingleTrait + SharedTrait

Subject to: AtMostOneGroupPerStudent

SetGroupEnabled

GroupMin

GroupMax

OneProfessorPerGroup

StudentsShareProfessor

OneLeaderPerGroup

SetTraitEnabled

SetSingleTrait

SetSharedTrait

(3.17)

3.3 Input

In recent years, the PLTL leaders would send surveys to all of the students in the class to get

their availability for PLTL times. This survey was sent out via Google Forms, and students

had about a week to respond. In the survey, students were asked basic questions, such as

name, email, and professor, and for each PLTL time, the student would put their availability

as either preferred, possible, or impossible. Google Forms automates the collection of this
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data and combines all students’ responses in a Google Sheet, where it can be exported as a

CSV file. The PLTL leaders liked the ease and efficiency that Google Sheets provides, and

recommended that they want to continue using it. We decided that since the data the PLTL

leaders collect comes in a CSV format, that our input should also be a CSV file.

The input to the program needed to be able to cover all of the students’ preferences and

information as well as all of the parameters for the solver. We wanted to make it as easy

as possible for the user to gather all their data to send to the program. To accomplish this,

we came up with two different input formats for the user to use; a simple version, and a full

version.

In the simple version of the input, the user can send a CSV file containing only the

students’ information. The first row of the CSV file contains column headers. The required

column headers are the student’s first name, last name, email, gender, year, professor name,

and notes, followed by group times. The group time columns must be unique, and the

program will not accept repeats. Each row following the header row is information about

the students.

The only required columns to fill out are first name, last name, and email. The other

columns may remain blank, as they are only used for customizing groups in the full version

of the input. The professor name column may be used in the case where there are multiple

professors for that class, and students with different professors should not be in the same

lecture. The notes column is only used to keep track of notes that students may have told

the PLTL leaders, and will not be used while creating groups. These columns seemed to

appear frequently in Google Forms that different PLTL leaders sent out, but not all of the

optional columns were asked in every survey, so making these columns optional prevents the

PLTL leaders from needing to add extra information they might not know to the input.

For each group time column, the only possible options are “Preferred”, “Possible”, and

“Impossible”. This corresponds with what the PLTL leaders told us they ask their students

on the Google Form, so these columns would not have to be edited at all from the data they
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collect.

The goal of this simple version of the output was to limit the amount of information

the PLTL leaders need to add. While they might need to remove columns if they ask extra

questions in their survey, this simple version combines the common questions asked across

all surveys, reducing the chance that information will be missing.

The groups created by the program will use the default parameters set in the program.

We came up with default values for these parameters based on the feedback from the initial

meeting with Professor Bauer and several PLTL leaders. The default parameters set the

group size limits between 4 and 10, with preferred group sizes between 6 and 8. The penalties

for increasing or decreasing the group size past the preferred sizes are 3 and 10 respectively.

One of the reasons for having a higher penalty for decreasing the group sizes is because

students will often drop the class, so small groups will become even smaller. The penalty

for giving a student a group time that is possible but not preferred is 2, and the penalty

for leaving a student unassigned is 50. These numbers reflect how important it is to assign

students, and how while it’s better to give students their preferred choice, a possible choice

is almost as good.

If the PLTL leader wants more control over what groups are being created by the program,

they can send the full version of input in. The full version of input still uses the CSV format,

but it is broken up into three sections: groups, parameters, and students.

The first section is where the user can define groups. This section is important in cases

where two group leaders want to lead different groups at the same time. Groups are defined

by adding a row that starts with “∼∼Group”. We chose this header because it could be

easily distinguished from students names (by starting with “∼∼”), and because we wanted

to define groups in a way that were distinctly different from other rows in this section.

The group header is followed by the group leader’s name, email, and group meeting time.

Repeated leader names, emails, and group meeting times may appear across multiple groups,

but there may not be any repeated combined group leader names and group meeting times.
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The group meeting times do not need to be in any format, as long as there is a corresponding

column for that group time in section three.

At the end of the first section, a row needs to be added that starts with ”∼∼Unassigned”.

Again, the “∼∼” is used to distinguish this row from the students. This section is used in

the output. One important feature of the input is to lock students into groups. This may

be useful if a PLTL leader is contacted by a student who tells them that they need to be

placed in a certain group for any reason. It is also important for hand making groups, and

sending the input to the program to assign the remaining students. Students are considered

locked into a group if a row of their information is added beneath a group. This row must

contain the student’s name, followed by the student’s email. An example of the first section

of the input file can be found in the Appendix in Figure A.1.

The second section is where the student can edit the default parameters for the program.

All parameters are required in the input. These parameters include the parameters used

in the simple version, as well as penalties for having groups with only one male, female,

freshman, sophomore, junior, or senior, and penalties for having groups with all males,

females, freshmen, sophomores, juniors, or seniors. An example of the second section of the

input file can be found in the Appendix in Figure A.2.

The last section is for student information. This section is exactly the same as the simple

version. In this full version, the gender and year columns are recommended to fill out, so

the groups can be created with the students’ traits in mind. Also, if a group meeting time

appears in the first section, it must appear in this section, and vice versa. Again, this section

can not contain any duplicate meeting times, so if multiple groups are listed with the same

time, they will both use the students’ preference from the same column in this section. An

example of the last section of the input file can be found in the Appendix in Figures A.3

and A.4.
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3.4 Output

When considering what the output should be, we also were thinking about what would be

easiest for the PLTL leaders. A common problem that occurs every semester is that students

will sign up for their chemistry class, get placed in their PLTL group, and then drop the

class. Additionally, students may add their chemistry class late and wish to be placed in a

PLTL group. This causes a lot of headache for the PLTL leaders, when they need to insert

people into groups.

To make the process of rearranging the input file to lock students into groups who have

already been placed into groups easier, we decided that the output should also be able to

be used as input. After the program arranges students into groups, the output copies the

information from the input, but adds student rows underneath each group to show which

students were assigned to each group.

This output can be sent back to the program as input, if the PLTL leaders wish to remove

students from groups, or add students to the last section of the input. If the output is sent

directly back to the program, nothing will change because all students have been assigned to

groups. PLTL leaders can delete a row containing student information from the first section,

essentially removing the student from that group, and allowing them to be reassigned.

When a user sends in a simple version of the input, the output will be the full version,

so group assignments can appear and so the PLTL leaders can see which parameters were

used.

To make the PLTL leader easier understand which groups caused the most problems,

above each group is a comment in the file that shows how much penalty that group accrued.

3.5 Application

We thought of many different ways to create the application for this program. Our first

thought was to make a web application where users could upload files, and the output would
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either appear on the screen, or be downloaded as a file. We quickly realized that this would

be a lot of work, and wasn’t as important as focusing on the ILP program. There are also

many problems that can occur when developing with different web browsers and devices in

mind.

Instead, we decided that an email application would be sufficient. Our idea was to have

a front end program regularly be checking a third party email service for new emails. A user

could send data to the program by sending their input as an attachment in an email to our

email address. To accomplish this, we created a new Gmail account, and had our front end

program regularly checking for new emails. This front end program was written in Python.

When a new email is received, the program first checks the email to ensure that the

attached file is formatted correctly. If no CSV file is attached to the email, or multiple CSV

files are attached, the program sends an email back to the sender with a user guide and a

template file attached that they can fill out. If there is a CSV file attached, then the program

reads it to make sure that it is formatted correctly. If there are formatting errors in the file,

such as missing parts or invalid values, the program sends an email back to the sender with

a user guide, a template file, and the file they sent attached. The reply email also lists all

the errors in the file, with specific errors message and line numbers so the user can fix their

mistakes and resend their file.

If the file is formatted correctly, the front end program calls the ILP solver with the file

as input. The ILP solver was created by Gurobi, but to create the ILP model, we wrote a

program in C++. The ILP solver takes the model, creates group assignments, and outputs

the results. The results are saved in a file, which the front end program sends back to the

user in a reply email.

We decided to use a third party email service to increase the longevity of the program.

This should limit the chance of a UNH email being disabled, and prevent the email used by

this program from receiving spam emails from within the network. Another way we plan on

increasing longevity of the program is hosting it on either UNH server Agate or Professor
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Wheeler Ruml’s personal server Katsura. The program has been tested thoroughly on Mica,

a clone of Agate that allows for longer CPU time, but should have no problem running

on Katsura. Professor Ruml Wheeler offered to start the program for the UNH Chemistry

department every semester they need it.

We received very positive feedback from several PLTL leaders about running the program

through an email service, so we did not feel a need to create a web application, or any other

form of service. One user said “I love the gmail format, and the details about what specific

parts of the program is very helpful for problem solving. Its extremely quick which is

amazing. Overall very usable and easy to work with.”

While the program will be hosted on a UNH server, the email interface does not limit

incoming emails strictly to UNH emails. Therefore, anyone who is aware of the email can

use it. This allows the intended user to use any email service they want, and doesn’t restrict

them to using their UNH Outlook email.

3.6 System Requirements

To run Group Assign requires the following system requirements:

• Linux based OS (Ubuntu 18.04.4 LTS used)

• An installation of Python 3 (Version 3.6.9 used)

• GNU Make (Version 4.1 used)

• C++ compiler: g++ (Version 7.5.0 used)

• Pip3 (Version 9.0.1 used)

• A Gurobi license

• An internet connection1

1Internet is only required when using the email interface. Using the ILP solver on its own does not
require an internet connection
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Installation is done by running a shell script provided with the program. This code can

be found in Appendix B.
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CHAPTER 4

RESULTS

4.1 ILP Performance

To test the performance of the ILP, we used both real data from past years students, as well

as synthetic data, based on statistical analysis of the past years’ data. We received 14 files

from Professor Chris Bauer containing student responses from multiple different chemistry

classes across multiple years. These files are typical of current years data, although, Professor

Chris Bauer did mention that this year had the most students that signed up for PLTL.

Class/Year # Students # Groups # Professors Time Taken
CHEM 411 Fall 2019 41 4 1 20.9 ms
ORGO 545 Fall 2016 132 5 1 21.3 ms

ORGO 652 Spring 2019 126 10 1 29.3 ms
ORGO 651 Fall 2018 180 11 1 33.4 ms
CHEM 651 Fall 2019 124 18 1 48.7 ms
Winans Spring 2018 75 23 1 64.4 ms
Buell Spring 2018 69 23 1 65.0 ms
Winans Fall 2016 188 26 1 74.6 ms
Bauer Fall 2017 78 27 1 77.1 ms

Bauer Spring 2018 64 23 1 177.3 ms
Bauer Fall 2016 76 26 1 217.1 ms

CHEM 403 Fall 2019 304 21 2 406.8 ms
CHEM 403 Fall 2018 197 25 2 847.3 ms
CHEM 403 Fall 2016 264 36 2 887.3 ms

Table 4.1: Past Years Data Performance Results

We did have to make modifications to the files in order to match the formatting of the

input, but no modifications to the students data were made. The run times for the past

years data is shown in 4.1. All files took less than one second to complete. The longest run
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Figure 4.1: Past Years Data Performance Results
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time took 887.3 ms, and was one of the largest input files. The average run time was 212.2

ms. It appears from the past years data that our program can scale to support any amount

of input that the PLTL leaders might submit. However, we still needed to test with the

current year’s data.

File # Students # Groups # Professors Time Taken
Bauer (Students Locked In) 76 35 1 20.9 ms

Michael 82 4 1 21.9 ms
Sawyer 188 36 1 113.9 ms

Bauer (No Students Locked In) 76 35 1 223.8 ms
Molly 235 20 3 3227.0 ms

Table 4.2: Current Year Data Performance Results

We had four different people try running our program. The input they submitted was

real data from multiple classes from the spring semester of 2020. Professor Chris Bauer ran

his input twice, one with the students locked in and with different parameters. The results

can be seen in Figure 4.2. Again, almost all files took less than one second to run, with the

exception of Molly’s General Chemistry class. The longest run time took 3.227 seconds, and

was the largest input file. The average run time was 721.5 ms. While this average is higher

than the past years, Molly’s input is an outlier that skews the average significantly. Without

Molly’s file, the average would be 95.4 ms. We felt more confident that the ILP solver was

going to be sufficient enough to justify not needing to implement heuristic methods and local

search. To prove completely that the ILP provides optimal solutions in a reasonable amount

of time, we ran trials of different sized inputs using synthetic data that was generated based

on previous data.

Having previous data let us find statistics about an average class. Between all chemistry

classes that we had past data on, about 23.2% of students were male, and about 77.8% of

the students were female. Roughly 47.7% of the all students in every class were freshmen,

34.3% of students were sophomores, 13.8% of students were juniors, and 4.2% of students

were seniors. For student preferences, among all students for all group times, students said

they preferred a group time about 8.9% of the time, said a group time was possible about
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15.1% of the time, and said a group time was impossible 76% of the time. The percent of

preferences showed variance depending on the number of groups, but we felt this was an

accurate estimate for our testing.

Using this information, we generated synthetic data that matched these statistics to test

the performance of the ILP solver. Since we know that the ILP works well for past and

current data, we wanted to be able to predict the run time based on the number of students,

groups, and professors in the input.

Since Gurobi supports multi-threading, we were able to change the amount of threads

the solver used.

With only one professor, run time stays very low. This was shown in the past and

current data as well. The results are shown in Figure 4.3. The longest run time was with

100 students and 40 groups, and took 1.739 seconds to complete. Often times, with a low

number of students, randomness in the probability of generating the data can cause longer

run times. For instance, the run time for 100 students and 40 groups is about 1600 ms longer

than 150 students and 40 groups, which theoretically should be a harder problem. It can be

expected for inputs with one professor will frequently take approximately one second or less.

When the input contains two professors, run time experiences a significant increase, as

shown in Figure 4.4. The maximum run time for two professors took 464 seconds, or 7.73

minutes, when the input contained 250 students and 25 groups. This 10:1 student to group

ratio also appears in the second longest run time of 304 seconds, or 5.07 minutes, when the

input contained 300 students and 30 groups. Since the default absolute maximum on the

number of students in a group is 10, this is likely due to the easy-hard-easy pattern [29],

where the number of possible solutions is high and the difference between solutions is very

small. Since the solver is trying to assign every student to a group, in order to find the

optimal solution, more of the search space has to be explored. Input with two professors has

varying run times depending on the number of students and groups, as well as the student

to group ratio, but run time is usually less than 10 minutes.
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Figure 4.3: Synthetic Data Performance Results (1 Professor)
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Figure 4.5: Synthetic Data Performance Results (3 Professors)
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Figure 4.6: Easy-Hard-Easy Pattern Shown

Finally, with three professors, run time becomes harder to predict, and randomness in

the input creates a lot of variance in run times. The results are shown in Figure 4.5. The

maximum run time for three professors took one day, when the input contained 300 students

and 30 groups. This also follows the easy-hard-easy pattern found in two professors, with

a student to group ratio of 10:1. Run time with three professors is affected greatly by the

statistics of the students as the input. Students can never be assigned to a group they declare

is impossible for them, so the less possible groups a student has, the less total number of

possible solutions the solver can explore. With three professors, run times range from less

than a second to a whole day.

The easy-hard-easy pattern can be more easily seen in Figure 4.6, where the student to

group ratio of 10 shows the longest run times. There is a large spike in run time at the ratio
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of 10, compared to the ratios before and after it.

Gurobi is very efficient with memory use. When running the program on Mica using

ten cores, a file that had been running for 12 hours had only consumed 20% of the total

memory, which was around 25GB of RAM. Mica has 126GB of memory, and our program

limits run time to one day, so memory should never be a problem. If, however, the amount

of cores used is changed, or a system with less memory is used, memory use can be reduced

by telling Gurobi to use less cores, or by changing the solving method to a method that uses

less memory.
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Figure 4.7: Run Time as Cores Increase

When memory is not a problem, such as on Mica, it is useful to increase the number of

cores Gurobi uses to solve the ILP. We decided that ten cores was a good amount for Mica,

because we wanted to get good performance without using all of the CPUs the server has.
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Figure 4.7 shows how run time is affected by the number of cores used.

Generally, as the number of cores increases, the run time is better. However, this is not

always the case, as some problems get no benefit from using more cores, thus increasing the

run time by setting up threads for the program to run on. When the input is small, the

number of cores does not significantly improve run time. However, with an input of 100

students, 35 groups, and 2 professors, using 10 cores showed a 4 times speed up compared

to one core.

A big problem that UNH Chemistry currently faces is finding rooms for their PLTL

groups. Therefore, it is unlikely that PLTL has the capacity for more than 300 students and

40 groups. At the moment, our program has quickly been able to assign students to groups

with all of the real data the PLTL leaders have sent to it. However, Professor Chris Bauer

said that the most students he could ever imagine signing up for PLTL for one class is 700

students, between three professors. In order to accommodate for the potential scaling of the

PLTL program, we needed to test how well the solver worked under a time constraint.

It is extremely likely that inputs that reach 700 students between three professors could

take days or longer to solve. In these situations, the ILP solver needs to return a plausible

solution that is as close to optimal as it can get. To test this, we ran files with varying

numbers of students, groups, and professors, that took between five and nine minutes to

solve, and recorded objective function values at set time intervals. This should theoretically

scale for files that take days to solve.

As shown in Figure 4.8, most of the time, the solver was able to find the minimum

objective function value for a file before the program returned a solution. This was only not

the case in the file with 250 students, 25 groups, and 3 professors. Therefore, on files that

take between five and nine minutes, you can expect to be within a few values of optimal

within a couple minutes, most of the time. Of course, this will depend on the students data in

the input, and it is never guaranteed. Gurobi also offers the ability to output an optimality

gap, which can be used to know how far from optimal you might be. In testing, we observed
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Figure 4.8: Difference from Optimal After Stopping ILP at Time Intervals
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that the reported optimality gap is on average 0.00061% off of the actual optimality gap.

To calculate this, we took the optimal objective function value for each file, subtracted the

found objective function value at each time limit, and then divided that value by the found

objective function value. The full equation is shown in Equation 4.1. The value Gap is what

was compared against the reported optimality gap by Gurobi.

Gap = |Optimal − Found |/|Found | (4.1)

The objective value found would often be less than the actual minimum objective value

solution with very small run times (1-30 seconds), and this is because while the solver tries

combinations, it may try solutions that are not possible. The ILP solver will return the best

solution it has found when the time limit is reached, and when this happens, there is no

guarantee that all of the constraints were met. The majority of these cases happen before 30

seconds, and therefore, no matter what time a user submits to the program, the minimum

time limit is set to 30 seconds.

As the input scales and increases to files that take a full day, we expect that the time it

takes to find a solution close the the optimal one would scale at the same rate. If a file that

takes seven minutes will find an objective value close to optimal in a couple minutes, a file

that takes a day could expect to find an objective value close to optimal in a 6 hours. This

is not guaranteed, and will depend on the student data in the input.

While the number of students participating in PLTL for a given class is usually less than

300, in the event that PLTL does increase in size, our program will be able to support the

increased input, as long as users are confident.

We feel we have enough evidence to show that our program is fast enough to avoid

implementing heuristic methods and local search. The ILP implementation is sufficient for

the current data being sent in, and all future data according to Professor Chris Bauer.
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4.2 Unit Testing

When dealing with files as input, there’s a lot that can go wrong. To ensure that files

are formatted correctly when they are read in by the ILP solver, our front end program

tests the file thoroughly for any possible errors. These errors include if the file is blank or

empty, group information missing, duplicate groups (leader and time), student information

missing, missing sections, missing parameters, invalid parameters, duplicate parameters,

group meeting times missing from the students section, group preference times missing from

the groups section, duplicate group preference times, and invalid preferences.

As more PLTL leaders used the program during its development and testing phase, more

errors were able to be detected. Most of the errors we ran in to had to do with extraneous

characters in files, such as duplicate carriage returns or a Byte Order Mark. Some errors

were simple problems like spelling errors or invalid values. It is extremely important that

any possible errors could be detected and addressed now, to ensure the program will work

years in to the future.

To accomplish this, we created a suite of unit tests to confirm that problems were being

detected by the front end program, and came up with as many possible tests we could. The

results of the tests are shown in Table 4.3.

If the front end program found no problems with the file, we also ran it on the ILP

program to make sure the results looked correct for the input. This was to make sure that

not only our front end program worked correctly, but that our ILP model was correct.

Unit testing was very important for this program to ensure that years from now, no

changes to the program need to be made. The testing done on the program will help to

increase the longevity of the program, allowing it to be used by UNH Chemistry for years.
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Test Name
Valid File

Minimal File
Empty File

Non-Related/Irrelevant File
Random White-space and Capitals

Simple Version
Most Students Preferences Impossible
All Students Preferences Impossible
Large Group of Students Locked In
Small Group of Students Locked In

Student Locked In Not In Student Section
Duplicate Student Locked In

Missing Group Info
Duplicate Groups

Misspelled Group Info
No Groups

Unassigned Section Missing
Missing Parameters

Duplicate Parameters
Misspelled Parameters

Invalid Parameter Values
Extraneous Lines in Parameters
Parameters Placed Out of Order

Student Header Row Missing
Student Header Row Misspelled
Student Header Row No Groups

Student Header Row Extra Groups
Missing Student Info
Duplicate Students
Invalid Student Info

No Students

Table 4.3: Unit Tests

44



Gmail Yahoo Outlook
0

10

20

30

40

50

60

Ti
m

e 
Ta

ke
n 

(s
ec

on
ds

)
Solving Time
Email Overhead Time

Figure 4.9: ILP solver and Email Overhead Times

4.3 Usability

Using an email application on top of the ILP solver introduces an element of latency in

the performance of the application. While all of the tests above were performed directly on

the ILP program, without using the email, it is important to show that even with an email

interface on top of the program, it still behaves as expected. The round trip time it takes

for a user to send their email and receive their results should depend on what email service

they are using, and be independent of the ILP solver.

Two files with different numbers of students, groups, professors, and parameters were

used for testing, and the average of three trials is displayed in Figure 4.9. The first column

of each group are the results from the first file, and the last column of each group are the

results from the second file. The red bars show that no matter what email service is being
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used, the time it takes the ILP program to run remains the same. The green columns show

that each email service has its own overhead time, and is independent of the ILP solver.

Additionally, the overhead time remains fairly constant for each email service, meaning that

if you know how long it takes the ILP program to run, you can estimate how long it will

take for the full round trip time of using the program.
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CHAPTER 5

FEEDBACK

Since the development of this program relied so heavily on feedback from the UNH Chemistry

department, we worked closely with PLTL leaders, as well as Professor Chris Bauer, to ensure

that the program met their needs.

5.1 In-Person Feedback

During development, we sat in with students trying the program for the first time to see

what they had questions on, and see how someone who is unfamiliar with the program would

behave using it. The focus was to make sure that our understanding of how the program

would be used is actually what would happen when the PLTL leaders who were unfamiliar

with our program used it.

After the initial prototype program was made, we were able to sit in with PLTL leaders

Molly Hanlon and Ryan Dussault to see how they handled the program for the first time.

We gave them a quick introduction to the program and explained the process, and then let

them try to use it on their own. There was a lot of confusion in setting up the input file,

but we were able to guide them through the process. Once they understood how to set up

the file, they were able to send it to the program and get their results. At this stage in the

design, our program required that every student is placed in a group. Unfortunately, we

didn’t plan for input where there were not enough groups for every student to be assigned

to a group. Molly and Ryan both agreed that it would be beneficial for the program to be

able to leave students unassigned, and we were able to add the change to their program.

47



Molly and Ryan were having troubles with formatting the input file, but we were not sure

if this would be a problem for other PLTL leaders. Molly and Ryan both admitted that they

were not very good with technology, and that the format was confusing for them. As more

PLTL leaders tried using the program, we found that it usually took each leader between

three and five tries to successfully format the input. Because of this, we felt that we needed

an easier way for PLTL leaders to submit their input to the program, while still capturing

all the requirements they need, which became the motivation for the simple version of the

input.

5.2 Survey Feedback

As PLTL leaders used the program, we sent them a Google Forms survey asking for their

feedback. We got responses from four PLTL leaders, with a variety of positive and negative

feedback. Three students answered that to do this task manually would have take them

hours (90 minutes, 3 hours, and 4 hours). The fourth student said that they had never had

to do this task for a large group. We can assume that since the group was large, it would

take that student hours as well.

The speed up this program provided was significant. The student that had never done

this task manually, as well as the student that said it would have taken them 90 minutes,

said it took them 30 minutes to figure out how to use the program and get their results.

For these students, our program was able to provide at least a three times speedup from the

manual process. Molly and Ryan, who learned how to use the program with our help, said

it took them five minutes, for a speedup of 36 times the manual process. One student was

unable to get the program to work.

For the students who were successful in running the program, all three liked the groups

suggested by the program. One even said ”They were organized as well as any manual

group”. They were most satisfied with the group sizes, and the amount of students that got a

preferred time slot. While two of the students did not have any suggestions for improvements
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to the groups, one student suggested that the gender diversity of the groups were mostly

good, but they didn’t like that one group had only females. This was not brought up in our

initial meeting with PLTL leaders, but we decided that this could be an optional feature. In

addition to avoid singling out traits, we added the optional feature to our program to avoid

creating groups of only traits.

The PLTL leaders felt the program was very usable, and they enjoyed the Gmail format.

Two of them mentioned that they felt the program was daunting, but after explanation

and experimentation that it was easy and efficient. In the following question, both of these

students suggested that there be some sort of separate document that provides instructions

on setting up the file. Ryan and Molly mentioned that if they were not with us to help them

set up the input file, that it would have been harder. This feedback was very important

to hear, because it told us that the instructions we left in the template file were not clear

enough. From these suggestions, we decided to create a user guide that is sent to the user

when ever there is an error with their input file.

This user guide provides step by step instructions, as well as pictures, to help the user

correctly format the input. It talks about both the simple version and the full version, and

also discusses fixes for any error messages it responds with.

A suggestion for what additional information the program should take into account was

students comments. While the program does offer the ability to write comments above a

line, these comments do not follow the student around to the groups they are placed in.

Because of this, we added the Notes column to the header row to allow any notes the PLTL

leader might have on the student to follow that student around the file.

Another suggestion was to take in to account what order the students filled the survey

out. This is especially significant for this year, since the number of students who signed up

for PLTL was much higher than expected. Due to the excess of students, not all students

were able to be placed. Because of this, the PLTL leaders suggested that there should be

priority given to those who respond to the survey first. to accomplish this, we add a small
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penalty to every student based on their order in the input.

pij +
1

5 + m− i
(5.1)

In equation 5.1, pij is the cost of assigning student i to group j, for m students.

All of the PLTL leaders had positive things to say about the program, talking about

how easy it was to use, the amount of time it saves, and the email format. The negative

feedback about the program was mostly about the learning curve and how the input was

confusing. This was another motivation to creating a user guide, so future PLTL leaders will

have instructions to follow and solutions to their problems.

This survey was the best feedback we received about our program. Almost all of the

users had no help using the program, so their experience was unbiased. Since we were so

involved in designing and making the program, we often had trouble taking a step back and

seeing things from the bigger picture. The feedback from these new users helped us see

problems that we couldn’t see before, and inspired new features to the program that the

leaders wanted to see.
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CHAPTER 6

CONCLUSION

6.1 Summary

UNH Chemistry has been sorting students in to groups based on preference and availability

for years, but they’ve been doing the process by hand. This process is tedious, error-prone,

and inefficient. Previous students have attempted to make a solution for them by creating a

program to automate the process. This program did not meet their standards, and did not

last long due to issues in the deployment of the program, as well as cross platform operating

system errors. We decided that the problem was well enough understood to lock in a certain

set of constraints, and solve their problem more efficiently.

To solve their problem, we created an email application that users can send their group

information to that will reply with a file containing groups assignments for students based

on their preferences and traits. To accomplish this, we used the Gurobi ILP solver, which is

sufficiently quick to solve the input. In extreme scenarios, the average run time still remained

under one minute. It is not obvious to us that the problem is NP-hard, but we used an ILP

solver for convenience, to guarantee optimal solutions, and to still get reasonable run times.

The program was designed with a strong influence from the users’ feedback. Many

features of the program were requests from Professor Chris Bauer and PLTL leaders, and

we listened to their feedback during the development process. Additionally, their testing of

the program helped us to discover problems, as well as provided more test data for us. We

demonstrated that the system we’ve developed is useful for classes that run PLTL groups.

In the future, Professor Wheeler Ruml has offered to host the program. He will work
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with Professor Chris Bauer to coordinate when to start the program every semester, and

will not have to interact with the program afterwords. Performance testing and unit testing

have ensured that the program will last for years to come.

6.2 Limitations

This program can only solve the task of assigning students in to groups based on their

preferences and traits. Unlike the timetabling problem, this program assumes that meeting

times have already been created, and does not attempt to schedule the groups for non-

overlapping times. Additionally, this program only uses the students’ availability for specific

times, and does not create groups from blocks of available times.

6.3 Possible Extensions

As part of the feedback from PLTL leaders who used the program, there were some ideas

that we did not implement because it went outside the scope of Professor Chris Bauer’s

requests.

A potential extension on this program could be creating suggested groups for the unas-

signed students. This could either be done by looking at what times they said they were

available and creating suggested groups from known availability, or by looking across past

data to find the most available times among all students and creating suggested groups from

unknown availability.

Another extension could be extending the priority system for students. Currently, priority

is assigned at a flat rate based on order of appearance in the input. This could be expanded

to either be a parameter, or a new column in the input, where students can be assigned a

priority, which won’t guarantee them a spot, but will strongly influence their assignment.

Finally, if the PLTL system expands to UNH Biology, a possible extension would be

allowing students to be assigned to two different groups; one for chemistry, and one for

biology. These times would need to not overlap, and group leaders would need to be assigned
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to either chemistry or biology as part of the input. This would likely increase run times

significantly, and there might be a more efficient way of implementing this change.
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APPENDIX A

Example Input File

Figure A.1: Example Input File: Section 1 (Groups)
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Figure A.2: Example Input File: Section 2 (Parameters)
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Figure A.3: Example Input File: Section 3 (Students) Part 1
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Figure A.4: Example Input File: Section 3 (Students) Part 2
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APPENDIX B

Installation Script Code

########################################

# Get Gurobi files

########################################

# Make folder for UNH Group Assign to live in

mkdir UNHGroupAssign

# Download Gurobi

wget https://packages.gurobi.com/9.0/gurobi9.0.1_linux64.tar.gz

# Extract the files and remove the tar

tar xvzf gurobi*

rm -rf gurobi*.tar.gz

# Move all of the files in to the current folder

mv gurobi*/linux64/* UNHGroupAssign

rm -rf gurobi*

########################################

# Untar UNH Group Assign files

########################################
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# Extract files

tar xvzf UNHGroupAssign.tar.gz -C UNHGroupAssign

rm -rf UNHGroupAssign.tar.gz

########################################

# Setup Gurobi

########################################

# Enter the UNH Group Assign Folder

cd UNHGroupAssign

# Get the license from a license key

# YOU WILL BE PROMPTED TO ENTER A LICENSE KEY

./bin/grbgetkey

# Make the Gurobi C++ file

cd src/build

make

cp libgurobi_c++.a ../../lib

cd ../..

########################################

# Setup the UNH Group Assign program

########################################

# Make the c++ program

make
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# Install the python packages

pip3 install google-api-python-client google-auth-httplib2 google-auth-oauthlib

--upgrade --user
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APPENDIX C

User Guide
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How to Use 

So you’re a PLTL leader, and you want to use UNH Group Assign to make your 

life a little easier… No problem! UNH Group Assign will take your students’ 

responses and create your PLTL combinations for you. 

SETUP 

Before we start, we want to make sure that you have all the necessary 

information you need to use the program. You may have already sent out a 

Google Form to collect all your data, but to use this program, the following 

information is necessary: 

• First Name 

• Last Name 

• Email 

Also, the following information is not necessary, but is optional if you want more 

customizable groups: 

• Gender 

• Year 

• Professor 



Now that you have everything you need, go to your Google Form responses, and 

click on the three dots in the top right corner. 

 

Next, click “Download responses (.csv)” to export all your students’ responses in 

to a CSV (comma separated values) file. 

 

SIMPLE VERSION 

Depending on what questions you asked in your Google Form, you may be able 

to use this file without changing it at all. The first row in your .csv file should be: 



| First Name | Last Name | Email | Gender | Year | Professor Name | Notes | 

Followed by your groups. 

Here’s an example: 

 

While only one group is shown here, you can list as many groups as you want! 

FILLING IN THE DATA 

Here’s some things you should know: 

• The first row is REQUIRED. Even though some of the data in these 

columns is optional, the titles in each column are required to be there. 

• You can have repeat first and last names, and both columns should be 

filled in. 



• Each row should have a unique email; watch out for students who submit 

responses twice and remove the duplicates! 

• Gender is optional, but the only supported answers are Male and Female; if 

you have answers other than this, leave the cell blank. This information can 

be used to take gender into account when making groups. 

• Year is optional, but the only supported answers are Freshman, 

Sophomore, Junior, and Senior; if you have answers other than this, leave 

the cell blank. This information can be used to take year into account when 

making groups. 

• Professor Name is optional. If the class you lead has multiple professors, 

this column is used to make sure students with different professors don’t 

appear in the same group. 

• Notes is optional. Sometimes students have additional comments they 

want the leaders to be aware of. This is only used for your convenience, so 

you can keep track of what extra notes students have for you. 

• Under each group is what the students’ preferences go. This can either be 

“Preferred”, “Possible”, or “Impossible”. If a cell is left blank, it will be 

treated as Impossible. 

Rearrange your csv file until it follows the format above. 



FULL VERSION 

For more control over the groups being made, attached to the email is a file 

called GroupAssignTemplate.csv. This can be filled out with your data to make 

the groups more customizable. 

 

This file is made up of three sections: Section 1 (Groups), Section 2 (Parameters), 

and Section 3 (Students). We’re going to describe how to fill out each section in 

depth.  

NOTE: Any line in the file that starts with ‘#’ will be ignored by the program but 

will be kept in the output. You can write comments in the file by starting the line 

with #. Any line that is completely blank will be removed from the output. 

Section 1: Groups 

Section 1 is where you list your group leaders, their emails, and their group times. 

To add a group to section 1, add a new row that starts with “~~Group”, followed 

by the group leader’s name, email, and group meeting time. Below is an example 

of Section 1 filled with groups. 



 

You can list multiple groups per leader if the group times are different (e.g. Luke 

Skywalker could also be listed for a group at Wednesday 11:10 AM-12:30 PM). 

You can also list multiple groups that have the same time if the group leader’s 

name is different (e.g. Princess Leia’s group time could be the same as Baby 

Yoda’s group time). The group’s day and time do not need to be in any format, as 

long as they match a group time in the students’ preferences section in Section 3. 

 

Below all the groups should be a row that starts with ~~Unassigned. Here is 

where all students who weren’t assigned to a group will be listed. Below is an 

example. 

 

If you need to lock a student in to a group to make sure that they are assigned to 

that group, add their name and email below that group. You can optionally list 



the student’s preference for that group, their gender, year, professor, and any 

notes about that student. These optional values will appear in the output 

whether you include them or not. Below is an example. 

 

Section 2: Parameters 

The parameters are how you change what the groups look like. In this section, 

you will find values that you can set for the program to use. 

 

• Smallest Possible Group Size 



o This is absolute minimum number of students a group can contain 

(besides 0) 

• Largest Possible Group Size 

o This is the absolute maximum number of students a group can 

contain 

• Smallest Preferred Group Size 

o This is the smallest group size you would prefer. Groups can be 

larger than this, or smaller than this up to the Smallest Possible 

Group Size for a penalty. 

• Largest Preferred Group Size 

o This is the largest group size you would prefer. Groups can be 

smaller than this, or larger than this up to the Largest Possible Group 

Size for a penalty. 

• Increase Preferred Group Size Penalty 

o Here you can set the penalty for increase the size of a group past the 

Largest Preferred Group Size. For every group, every number past 

Largest Preferred Group Size will accrue this penalty. 

 

 



• Decrease Preferred Group Size Penalty 

o Here you can set the penalty for decreasing the size of a group past 

the Smallest Preferred Group Size. For every group, every number 

past Smallest Preferred Group Size will accrue this penalty. 

• Student Non-Preferred Assignment Penalty 

o This is the penalty for assigning a student to a possible group rather 

than a preferred group. 

• Unassigned Penalty 

o This is the penalty for not assigning a student to any group. 

• Singling Out Male/Female/Freshman/Sophomore/Junior/Senior Penalty 

o Groups that have just one 

male/female/freshman/sophomore/junior/senior in them will be 

given this penalty. If this parameter is 0, then the program will not 

avoid singling out these traits in groups. 

• All Males/Females/Freshmen/Sophomores/Juniors/Seniors Penalty 

o Groups that are entirely 

male/female/freshmen/sophomores/juniors/seniors will be given this 

penalty. If this parameter is 0, then the program will not avoid 

creating groups with these traits shared between all members. 

 



• Time Limit 

o This parameter is the time limit on the solver. The maximum limit is 

600 seconds (5 minutes), and the minimum is 20 seconds. 

Section 3: Students 

Section 3 is where you put the student information. This is exactly the same 

format as the simple version. 

USING THE PROGRAM 

To use the Group Assign program, all you need to do is send an email to 

UNHGroupAssign@gmail.com! The subject can be left blank, or anything you 

want it to be. The body of the email can be left blank or anything you want it to 

be. Make sure you attach your csv file in this email and hit the send button. 

 

After your email is sent, our program will receive it and send you an email 

notification when you have reached the front of the queue. In most cases, 

moments later you should receive a result with your group assignments. Only in 

cases where the input contains a lot of students and groups might it take more 



than a minute. Additionally, the program will automatically stop at 5 minutes and 

send back the best results it could find. 

If you don’t see a response soon, it could be for a few reasons.  

• If you used your UNH email, you might need to whitelist 

UNHGroupAssign@gmail.com to your account in order to receive emails. 

(https://www.thebalancesmb.com/whitelist-email-sender-3515045). 

• If you are using Gmail, Google delays the sending of emails, so you have 

time to undo a send. Check your Gmail settings to see how long your delay 

is. 

ERRORS 

So, you sent in your file and there were errors. Don’t worry, they can be fixed. We 

send back an email saying what parts of the file are wrong so you can change it 

and send it back. We try to be as specific as possible when sending back error 

messages, but sometimes it might be confusing as to why you got an error. 

Here’s a list of all errors and potential fixes. 

• Group leader name missing 

o Every group in section 1 must start with ~~Group, followed by a 

group leader’s name. This must not be blank. 



• Group leader email missing 

o Every group in section 1 must start with ~~Group, followed by a 

name, and then the group leader’s email. This must not be blank. 

• Group meeting time missing 

o Every group in section 1 must start with ~~Group, followed by a 

name, email, and then the group’s meeting time. This must not be 

blank. 

• _ is already leading a group at _ 

o This means that there were two groups listed in section 1 with the 

same group leader at the same time. Change either the leader’s 

name, the time the group meets, or remove the duplicate. 

• No groups were found in the file 

o You either had an ~~Unassigned section with no ~~Group’s before it, 

or the program got to the end of the file and couldn’t find any lines 

that started with ~~Group. Add ~~Group’s to section 1 or use the 

simple version to save time. 

• The “~~Unassigned” section was not found in the file 

o If you have ~~Group’s listed in section 1, add a line below the last 

group that starts with ~~Unassigned. See the template file for an 

example. 



• No parameters found in the file 

o The program reached the end of the file and couldn’t find any 

parameters. If you got this error in conjunction with “No groups were 

found in the file” or “The “~~Unassigned” section was not found in 

the file”, it is likely because the program reached the end of the file 

already, and this problem will go away when the first problem is 

fixed. 

• Parameter value for _ is missing 

o Every parameter in section 2 starts with the name of the parameter, 

followed by a positive integer value. This must not be blank. 

• Parameter value for _ must be a number 

o Every parameter in section 2 starts with the name of the parameter, 

followed by a positive integer value. This must be a number (e.g. 1), 

and not spelled out (e.g. one). 

• Parameter value for _ must not be negative 

o Every parameter in section 2 starts with the name of the parameter, 

followed by a positive integer value. This must not be a negative 

number (0 is not considered negative). 

 



• Smallest Possible Group Size must be smaller than the other group sizes 

o Smallest Possible Group Size parameter must be smaller than 

Smallest Preferred Group Size, Largest Preferred Group size, and 

Largest Possible Group Size. 

• Largest Possible Group Size must be larger than the other group sizes 

o Largest Possible Group Size parameter must be larger than Smallest 

Possible Group Size, Smallest Preferred Group Size, and Largest 

Preferred Group Size. 

• Smallest Preferred Group Size must be larger than the Smallest Possible 

Group Size 

o Change the parameters’ values to fix this error 

• Smallest Preferred Group Size must be smaller than Largest 

Preferred/Possible Group Sizes 

o Change the parameters’ values to fix this error 

• Largest Preferred Group Size must be larger than Smallest 

Preferred/Possible Group Sizes 

o Change the parameters’ values to fix this error 

• Largest Preferred Group Size must be smaller than Largest Possible Group 

Size 

o Change the parameters’ values to fix this error 

 



• Invalid Parameter Name _ 

o Your file had a parameter name spelled incorrectly, or an extraneous 

line was placed in the parameters section. Check the template file 

for reference. This error can also occur if not all of the parameters 

are found, and the program reaches the end of the file trying to find 

the missing parameters. 

• Missing Parameters: [_, …, _] 

o If the program reaches the end of the file because not all of the 

parameters were found, this error will list which parameters were 

missing from section 2. 

• Section 3 not found in file 

o This error occurs when the program reaches the end of the file 

without finding the header line. The header line must start with First 

Name, Last Name, Email, Gender, Year, Professor Name, and Notes. 

If any of these are spelled wrong, you will see this error. If you can’t 

figure out what’s wrong, try copy and pasting the header line from 

the template file into your file and try again. 

 

 



• Duplicate time _ in preferences 

o If your header row in section 3 has repeat column names for group 

time preferences, this error will tell you which time has been 

repeated. 

• Group time _ missing associated preference column 

o When this error occurs, it means that you have a ~~Group listed in 

section 1 that meets at time _, and there is no column in the header 

row in section 3 that has the same time. Either remove the ~~Group 

row from section 1 or add a column for that time in section 3. 

• Preference time _ has no associated group 

o The opposite of the error above, this error occurs when you have a 

time listed in the header row in section 3 that doesn’t appear in any 

~~Group’s in section 1. To fix this, either remove the column from 

section 3 or add a ~~Group to section 1 with this time. 

• Student name missing 

o This error can occur for two reasons: either a student row that 

appears under a group in section 1 doesn’t start with a name, or a 

student row in section 3 doesn’t have a first and last name listed 

under the First Name and Last Name columns. These cells must not 

be blank. 



• Student email missing 

o This error can occur for two reasons: either a student row that 

appears under a group in section 1 doesn’t have an email after the 

student’s name, or a student row in section 3 doesn’t have an email 

listed under the Email column. These cells must not be blank. 

• Student email ‘_’ repeated 

o Every email listed in the Email column must be unique. If a student 

email is repeated, it is likely that a student filled out the Google 

Form twice. Remove the duplicate row, or change one of the 

duplicate emails. 

• Student preference <_> is invalid 

o Student preferences must be either “Preferred”, “Possible”, or 

“Impossible”. This can be left blank to represent impossible, but any 

other misspellings of these words will not be accepted. 
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