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Abstract

Suboptimal search algorithms can often solve much larger
problems than optimal search algorithms, and thus have broad
practical use. In the past decade several algorithms have been
proposed that improve performance over the basic weighted
A*, but these algorithms rely special heuristics and data struc-
ture implementations, meaning that they require significantly
more effort to implement and use than basic weighted A*.
The goal of this paper is to provide a simple algorithm that
is easy to implement and can achieve state-of-the-art perfor-
mance. The paper does this in three ways. First, it stud-
ies the influence of node re-openings during search, show-
ing the potential savings and cost of re-openings. As most
existing suboptimal algorithms re-open states, turning off re-
openings can often improve performance. Second, it studies
termination conditions, providing a better termination con-
dition for approaches like Optimistic search. Finally, taken
together with recently-developed priority functions, a general
framework for Improved Optimistic Search is developed that
is both simpler than existing algorithms and also has better
performance in

1 Introduction
Most real-world problems are too large or have significant
other constraints that prevent finding optimal solutions. This
motivates a broad literature in suboptimal search, as al-
lowing even a small amount of suboptimality can signifi-
cantly decrease the time needed to find a solution. The clas-
sic algorithm for suboptimal search is Weighted A* (WA∗)
(Pohl 1970), which finds solutions that have cost which is
at most w times the optimal solution cost. There are many
variants of suboptimal solvers, including those with un-
bounded solution length (such as Greedy Best First Search
(Russell and Norvig 2009)), and those with bounds on the
solution length produced (Stern, Puzis, and Felner 2011;
Valenzano et al. 2013). Research has also addressed the
use of multiple heuristics (Thayer and Ruml 2011) or cus-
tomized heuristics (Wilt and Ruml 2015) that can improve
the performance of suboptimal solvers.

This paper studies the simple setting of w-bounded sub-
optimal search with a single heuristic function, by build-
ing on algorithms like WA∗, A∗ε (Pearl and Kim 1982), and
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Optimistic Search (Thayer and Ruml 2008). In addition to
building a more general parameterized algorithm, Improved
Optimistic Search (IOS), the paper also develops improved
termination conditions and performs a general study of the
problem of node re-expansions in WA∗.

Like Optimistic Search, IOS uses a focal list to search and
find a solution, and an open list to prove the suboptimality
of the solution found. But, in many cases the maximum f -
cost of a state expanded in the focal search can be used to
prove that the solution is within the optimality bound with-
out expanding states in the open list. IOS is also able to use
a broader class of priority functions (Chen and Sturtevant
2019) that have recently been developed and are compatible
with the IOS framework.

Summarizing this, IOS represents a new family of algo-
rithms for which many re-expansions can be avoided, that
can use new classes of priority functions, and that has better
termination conditions. IOS is not only much simpler that
most existing algorithms, but also has similar or improved
performance on a broad class of empirical domains.

2 Background and Related Work
Shortly after the development of heuristic search algorithms
(Hart, Nilsson, and Raphael 1968), suboptimal variants were
also developed, beginning with WA∗. WA∗ uses a priority
function of f(n) = g(n) + w · h(n) and returns w-optimal
solutions, or solutions that are no more than w times longer
than the optimal solution. WA∗ has widespread use because
it has good performance and is very simple to implement, us-
ing the same data structures as A∗ – typically a binary heap.
One particularly useful feature of WA∗ is that it can main-
tain its optimality bound even if it does not re-open closed
states when it finds a shorter path to them during search. It
can, however, re-open closed states if desired (Sepetnitsky,
Felner, and Stern 2016).

Looking more broadly, suboptimal search algorithms
have two tasks. The first is finding a solution, and the sec-
ond is proving that the solution is within the suboptimality
bound. While WA∗ handles these tasks together, it can be
more efficient to separate these concerns. The most common
way of separating these concerns is through dividing states
into both an open list and a focal list (Pearl and Kim 1982).
The open list is sorted by g(n)+h(n) and is used for proving
the suboptimality bound, while the focal list is sorted by a
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Figure 1: Sample isolines associated with WA∗, ΦXDP and
ΦXUP .

different metric, and is used for finding a solution. The open
list is required to re-expand states that have been previously
expanded in focal in order to prove optimality.

A∗ε (Pearl and Kim 1982) was the first focal list algorithm,
where the focal list was a of states subset taken from the
open list and sorted with different priority. The re-expansion
policy for A∗ε is not explicitly described, but the typical as-
sumption is that it performs re-expansions whenever shorter
paths are found to a previously expanded state (whether
from focal or open). A∗ε only expands states from focal
that have already been proven to be within the suboptimality
bound.

Optimistic search (Thayer and Ruml 2008) is another fo-
cal list algorithm that performs re-expansions during search.
The primary change between Optimistic search and A∗ε is
that Optimistic search uses the focal list to find a solution
before expanding the open list and trying to prove that the
solution is within the suboptimality bound. Like A∗ε , Opti-
mistic search performs re-openings both on focal and open
when shorter paths are found. When trying to find solutions
that are w-optimal, the Optimistic search paper suggest ex-
ploring the focal list using WA∗ with weight of wf = 2w−1
when a suboptimality bound of w is desired, although no
theoretical justification is provided for this weight. Opti-
mistic search can use similar data structures as A∗, it just
requires two priority queues.

Explicit Estimate Search (EES) (Thayer and Ruml 2011)
and its variants use additional heuristics, learned estimates,
and priority queues to estimate the search effort required to
reach the goal in addition to the distance to the goal. While
this can make EES efficient in practice, EES is more difficult
to implement than other algorithms as EES requires three
priority queues, a heuristic function, and a distance function.
At least one of these queues is typically implemented using
balanced binary trees for efficiency purposes.

Dynamic Potential Search (DPS) (Gilon, Felner, and
Stern 2016) uses a dynamic priority function which can be
implemented using a single priority queue. But, because of
the dynamic nature of the search, DPS must occasionally
re-order the states on the priority queue. This can be done
more efficiently if costs can be partitioned into buckets, but
like other focal list algorithms DPS must also re-open closed
states when it finds a shorter path.

Recent work (Chen and Sturtevant 2019) has studied
the issue of node re-expansions and suggested alternate
priority functions that can be used with best-first search.
In particular, a class of function Φ(x, y) are proposed
for which best-first search can use a priority function of
f(n) = Φ(h(n), g(n)). Given certain restrictions on Φ,
it can be shown that closed states do not need to be re-
opened during search to maintain a w-optimal solution
bound. Two particular priority functions are of interest, the
convex downward curve ΦXDP (x, y) = 1

2w [y + (2w −
1)x +

√
(y − x)2 + 4wyx] and the convex upward curve

ΦXUP (x, y) = 1
2w (y + x +

√
(y + x)2 + 4w(w − 1)x2).

Sample isolines for all states with a given priority are shown
in Figure 1. The slope of these curves shift where the subop-
timality in the path is allowed. The convex downward curve
(ΦXDP ) requires that the path is near-optimal near the start,
with greater suboptimality allowed near the goal, while the
convex upward curve (ΦXUP ) requires the path to be near-
optimal near the goal. This contrasts with WA∗ which per-
mits uniform suboptimality across the entire search path.

3 Problem Definition
A suboptimal heuristic search problem is defined by an n-
tuple (s, g, succ(), c(), h(), w), where s is the start state, g
is the goal state, succ is a successor function that computes
the successors of a given state, c is a cost function that pro-
vides the cost to move from a state to its successor, and h
is a heuristic function that estimates the cost between any
state and the goal. Let d(a, b) be the optimal cost between
any two states. It is assumed that the heuristic is admissible
∀nh(n, g) ≤ d(n, g) and consistent h(a) ≤ h(b) + d(a, b).
Finally, w is the suboptimality bound on the solution re-
turned. An algorithm that solves a suboptimal heuristic
search problem must return a path between s and g that has
cost at most w times the cost of the optimal solution. The
g-cost of a node, g(n), is the current path cost in a given
priority queue.

4 Improved Optimistic Search
Improved Optimistic Search (IOS) is built on a general
framework that uses two searches. One search is designed to
optimistically find a solution as quickly as possible through
expansions on FOCAL, while the other search is designed to
prove that the solution found is within the bound through ex-
pansions on OPEN. Although portions of OPEN and FOCAL
can be merged for efficiency purposes, these are logically
treated as two separate searches. OPEN is a standard A*
open list with f(n) = g(n) + h(n). FOCAL uses a priority
function ff (n) with a recommended bound of wf = 2w−1.
The exact priority function used in FOCAL is discussed in
Section 4.5.

The general IOS algorithms is shown in Algorithm 1.
If we ignore the re-opening policies (lines 13-18), the ap-
proach is very simple. It will expand the best state on
FOCAL until an incumbent solution I is found (line 6),
where c(I) is the cost of the solution I . Then it will expand
the best state on OPEN until w-optimality is proven (line
12). If re-openings are allowed, states re-opened on FOCAL



Algorithm 1 Improved Optimistic Search
1: procedure IMPROVED OPTIMISTIC SEARCH(start, goal, w)
2: Push(start, OPEN)
3: Push(start, FOCAL)
4: I ← ∅ [ c(I) =∞) ]
5: while c(I) not w-optimal do
6: if est. path length of best on FOCAL < c(I) then
7: Expand best from FOCAL
8: if best == goal then
9: I ← path(best)

10: end if
11: else
12: Expand best from OPEN
13: if child s has shorter path to s on FOCAL then
14: // Choose one of the following policies:
15: (a) Update cost of s on FOCAL // Update
16: (b) Re-open s on FOCAL // Re-open
17: if s ∈ I then
18: (c) update cost of I // Solution-update
19: end if
20: end if
21: end if
22: end while
23: return failure
24: end procedure

in line 16 will then be re-expanded in line 6. Because some
priority functions, such as ΦXUP , are not directly estimating
the length of the solution that will be found, line 6 explicitly
uses the estimated path length.

Re-openings are one of a number of parameters that can
be tuned in an implementation of IOS. Section 4.1 describes
the termination conditions, Section 4.3 describes policies
for re-opening states, Section 4.5 describes possible prior-
ity functions used in FOCAL, and Section 4.6 discusses the
recommended bound of wf = 2w − 1.

4.1 Termination and Proving Bounds
Existing algorithms, such as Optimistic search and EES, use
the minimum f -cost of a state on OPEN, fmin, to prove the
optimality of the solution. In particular, fmin on OPEN is
a lower-bound on the optimal solution cost. This holds be-
cause, with a consistent heuristic, the minimum f -cost in
OPEN never decreases, and at the goal the f -cost is equiva-
lent to the solution cost. Thus, a solution found in FOCAL
with cost less than or equal to w · fmin is guaranteed to be
w-optimal. If the solution cannot immediately be proven to
be optimal, states on OPEN are expanded until the bound on
the solution quality is proven. While IOS uses this termi-
nation condition (c(I) ≤ wfmin), it can also use a second
termination condition.

The typical priority function used with WA∗ is f(n) =
g(n) +wh(n). Under this priority function, the priority rep-
resents the estimated solution cost, because when the goal is
reached, h(n) = 0 and f(n) = g(n). An alternate formula-
tion of this priority function, which will perform identically,
is f ′(n) = g(n)

w + h(n). In this formulation, the f -cost is
not an estimate of the solution cost that will be found, but an
estimate of the optimal solution cost, akin to fmin in OPEN.
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Figure 2: A plot of each state expanded in the focal list in a
problem with wf = 2.0 and w = 1.5.

Now, consider what happens in a WA∗ search with weight
of wf > w using this alternate formulation of the priority
function. Because WA∗ does not need to re-expand states
to achieve w-optimality, when the search with weight wf
expands a state with priority f ′max, this guarantees that the
optimal solution has cost no less than f ′max. Thus, any so-
lution with cost less than or equal to w · f ′max is guaranteed
to be w-optimal. This implies that in IOS the maximum f -
cost of any state expanded from FOCAL can be used to pro-
vide an additional termination condition for search. If WA∗
always found solutions that were exactly w-optimal, then
this wouldn’t be useful. But, in practice it typically finds
solutions that are much closer to optimal than the bound.
Thus, the second termination condition for IOS is to termi-
nate when c(I) ≤ wf ′max, assuming f ′(n) = g(n)

w + h(n).
The effect of this bound is illustrated in Figure 2. This fig-

ure plots (h(n), g(n)/w) for every state that is expanded in
a WA∗ search problem with w = 2. Each point represents an
estimate of the optimal solution cost. Because the solution
was found with f ′(n) = 50.08 (actual path cost 100.16), the
optimal solution must be no shorter than 50.08. But, it is
possible to get better bounds on the actual solution quality
found. First, the start state has f ′(n) = 60.41. Thus, the
suboptimality is known to be no more than 100.16/60.41 =
1.66. But, the state expanded with maximum f -cost (shown
in red) has f ′(n) = 68.30, so the suboptimality bound can
be reduced to 100.16/68.30 = 1.47.

Now, consider if IOS is searching with w = 1.5 and wf =
2. On this problem, a WA∗ search using wf = 2 will find
and be able to prove that the solution found is w-optimal.
No additional expansions in OPEN will be needed to prove
the bound. Previous algorithms that are unaware of the im-
proved bound would be required to expand the states until
the minimum f in OPEN is raised to 100.16/1.5 = 66.77.

This approach works in this problem because the max-
imum f -cost is found at a state other than the start state.
This is related to the definition of the high-water mark used
for analyzing greedy best-first search (Wilt and Ruml 2014;
Heusner, Keller, and Helmert 2018). If the start state is in
a local minima, then the maximum f -cost needed to escape



100as c

b

g

603 < f(n) < 1002

500

1 100

2 100

h(n) = 0

100200

200

f(a) = 1000 f(c) = 1002

f(b) = 1001 603

f(a) = 601 f(c) = 603 t0 t1 t21 1 ti

h(ti) = N − 1 − i

b0 b1 b21 1 bi

e
1

N
h(e) = N

g

h(bi) = N − 1 − i

c(ti, bi) = (i + 1)(w − 1)
w

t0 t1 t21 1 t3

b0 b1 b21 1 b3

e
1

5
5

g

t4

b4

N = 5
w = 3

4

4 3

3 2

2

1

1

0

0
10
3

8
3

6
3

4
3

2
3

1

1

1

1

(a) (b) (c)

Figure 3: (a) Best-case from performing re-openings in an example with w = 5. (b) Generic example where re-openings require
O(N2) re-expansions. (c) Specific instance of part (b) for N = 5 and w = 3.

the local minima will be larger than the f -cost of the start
state and provide a better bound in practice.

4.2 Best and Worst-Case Analysis for
Re-Expansions

Given the improved termination conditions, the next step is
to study the impact of node re-openings and re-expansions
during search. A node re-opening occurs when a shorter
path to a node is found and the node is placed back on a pri-
ority queue. A re-expansion occurs when a node is expanded
after being re-opened. This section demonstrates that node
re-openings can have a significant negative or positive im-
pact on performance. Previous work has studied the influ-
ence of re-openings on solution quality in WA∗ (Valenzano,
Sturtevant, and Schaeffer 2014), but we are not aware of any
work that shows worst-case bounds for the total number of
expansions. These cases are similar to the analysis of in-
consistent heuristics and BPMX (Felner et al. 2011), but the
examples are unique to WA∗ and the underlying heuristics
are consistent.

The first example, in Figure 3(a), shows how performing
re-openings can provide arbitrarily large savings. In this fig-
ure edges are labeled with their cost in black. Nodes are
labeled with their h-cost in red. If re-openings are not al-
lowed, a WA∗ search with w = 5 will expand s, followed
by a with f(a) = 1000 and b with f(b) = 1001. Then, be-
cause a cannot be re-opened, the cloud of nodes at the bot-
tom, which can be arbitrarily large, will be expanded with
f(n) > 603. However, if re-openings are allowed, then a
will be re-opened with f(a) = 601, shown in blue. This
leads to c being expanded with f(c) = 603, followed by
the goal with f(g) = 203. With re-openings, only 6 ex-
pansion are required, but without re-openings, an arbitrarily
large number are needed.

The second example, in Figure 3(b) shows the potential
cost of performing re-openings. While this is an artificial ex-
ample, the example is reflective of similar real-world prob-
lems that arise in grid pathfinding problems. Figure 3(b) is a
scalable example that works for any weight w > 1 and any
parameter for the problem size, N . The start state is t0 and
the goal is g. There is a top row of states ti and a bottom
row of states bi with identical heuristics and unit edge costs
between states in the same row. But, the cost of the edge be-
tween the top and bottom paths gradually increases along the

path. After expanding the top row, the states going across the
bottom row from left-to-right will have decreasing f -costs.
Thus, the bottom nodes will be expanded right-to-left. After
expanding each node, all subsequent nodes to the right in the
row will be re-expanded, as the g-cost has decreased.

We provide a concrete instance of the general graph in
Figure 3(c) for N = 5 and w = 3. Table 1 shows the order of
the node expansions in this example. There are 22 total node
expansions; b4 is expanded N = 5 times, b3 is expanded 4
times, and so on.

In general, the top nodes (ti) will each be expanded once.
The bottom nodes (bi) will have N(N+1)

2 cumulative expan-
sions. The last two nodes (e and g) will each be expanded
once. Cumulatively there are 2N + 2 = O(N) nodes in
the graph and there will be N(N+1)

2 + N + 2 = O(N2)
total expansions. This is equivalent to the worst case perfor-
mance of A∗ variants B and B’ with inconsistent heuristics
(Martelli 1977; Mérő 1984; Felner et al. 2011). It is unclear
if WA∗ can have worse performance if the edge costs were to
grow exponentially, but it would be simple to build weighted
versions of algorithms like B or B’ to ensure a maximum of
O(N2) expansions in the WA∗ paradigm.

Summarizing the results here, we provide examples show-
ing that re-openings in WA∗ can result in arbitrarily large
savings or O(N2) total expansions in a problem with O(N)
states. Thus, the choice of whether to use re-openings is go-
ing to depend on the properties of a domain. If there are
many transpositions, such as in grid maps, the overhead of
re-openings can be expensive.

4.3 Re-expansion Policies
Given the potential impact of re-expansions, several poli-
cies for dealing with re-expansions are studied. Because re-
expansions never occur with a consistent heuristic in OPEN,
there are only two contexts in which re-openings can oc-
cur: (1) When expanding states in FOCAL, a shorter path to
a state in FOCAL may be discovered. (2) When expanding
states in OPEN, a shorter path to a state in FOCAL may be
discovered.

When a shorter path is found there are three simple poli-
cies that can be followed in either context, although more
complex policies have been studied (Sepetnitsky, Felner, and
Stern 2016). The re-open policy always moves states from
CLOSED back to FOCAL when a shorter path is found. The



Table 1: The order of expansions in Figure 3(c)

Order State f -cost Order State f -cost
1 t0 12.00 12 b1 11.33
2 t1 10.00 13 b2 9.33
3 t2 8.00 14 b3 7.33
4 t3 6.00 15 b4 5.33
5 t4 4.00 16 b0 12.67
6 b4 7.33 17 b1 10.67
7 b3 8.67 18 b2 8.67
8 b4 6.67 19 b3 6.67
9 b2 10.00 20 b4 4.67
10 b3 8.00 21 e 16.67
11 b4 6.00 22 g 6.67

update policy updates the g-cost and parent pointers of a
state when a shorter path is found, but does not re-open the
state by placing it back on FOCAL. The ignore policy ig-
nores states that are already found on CLOSED.

An additional policy can be used when a state from OPEN
leads to a shorter path in FOCAL. This policy relies on
the fact that IOS has an incumbent solution when expand-
ing OPEN. If all states on the incumbent solution path are
marked, the search will know when it has updated (reduced)
the cost of the incumbent solution by reducing the g-cost of
one of the states on the path. In this case, the cost of the in-
cumbent solution can be reduced without re-expanding the
path to update all g-costs. The search must simply take note
of the reduction in g-cost, and reduce the stored incumbent
solution cost by the same amount. This policy is called the
solution-update policy. Note that if shorter paths are found
to several different states on the incumbent solution path,
only the maximum improvement can be used for updating
the incumbent solution cost. Thus, in Algorithm 1, one of
the three policies following line 13 should be used.

4.4 Sequential or Interleaved Expansions
There are two key differences between Optimistic search
and A∗ε . First, A∗ε interleaves expansions from OPEN and
FOCAL before a solution is found. Second, in A∗ε FOCAL
is defined as the subset of states on OPEN which have been
proven to be w-optimal. Because of this definition, A∗ε is
restricted from expanding FOCAL in the same best-first or-
dering as WA∗. This contrasts with Optimistic search and
IOS which are greedy with respect to ff in FOCAL. Opti-
mistic search only interleaves expansions after a solution is
found if it is using the re-open policy.

Is it worthwhile to interleave expansions in OPEN and
FOCAL in IOS before finding a solution? There are two
primary arguments against this. First, by interleaving ex-
pansions the FOCAL search may expand states with g-cost
greater than the cost of solution that is found, and then waste
effort proving that these states are optimal. This cannot hap-
pen in A∗ε because of the way that FOCAL is defined, but
it could happen in the simplified FOCAL list used by IOS.
Second, IOS can only use the solution update policy if a
solution is found. If expansions are interleaved before a so-
lution is found this option will not be available. Thus, a full

re-open policy would be needed to propagate shorter solu-
tions from OPEN to FOCAL, which may be too expensive
in practice. As a result, IOS does not interleave expansions
between OPEN and FOCAL before a solution is found.

4.5 Alternate Priority Functions for FOCAL

Given that it may be beneficial for IOS to avoid re-
expansions, IOS is only studied with priority functions for
FOCAL that do not require re-opening states when an expan-
sion from FOCAL leads to a shorter path to another state on
FOCAL. There are currently three options that are indepen-
dent of the weight used in FOCAL. The first option is to use
the WA∗ priority function. The second and third options are
to use the ΦXDP or ΦXUP functions. These priority func-
tions can be dropped into most A∗ implementations with lit-
tle or no changes to data structures, so the influence of these
priority functions will be a point of study in experimental
results.

4.6 Weights in FOCAL

Previous work has suggested using wf = 2w − 1 (Thayer
and Ruml 2008). This weight is provided without justifica-
tion, but in our work on re-expansions (Chen and Sturtevant
2019), we were surprised to derive this same weight in our
analysis. In this section we provide a slightly deeper look
into this work. We do not yet have a clear justification of the
weight. But, we present the connection as an open problem
to explain more deeply by the research community.

We begin by considering the isoline (or contour) of all
states that have the same priority. In WA∗, this would be
states with b = 1/w ·g(n)+h(n), where b is the value of the
priority function for a particular isoline. If we re-write this
as a function of y on x/y axes, where the x-axis corresponds
to h-costs and the y-axis corresponds to g-costs, then the
function becomes b = (1/w)y + x or y = (b − x)w. If we
measure the slope of this curve by taking the derivative with
respect to x, we see that the slope is a constant −w. Under
this formulation the slope is the negation of the optimality
bound. A constant slope means that WA∗ allows uniform
suboptimality from the beginning to the end of the path that
is discovered.

The Φ functions introduced by Chen and Sturtevant
(2019) change where the suboptimality is allowed along a
path. Thus, the slope of the isolines of the priority function
change across a path, as seen in Figure 1. From the theoret-
ical assumptions, it is possible to show that slope cannot be
larger than −1 and cannot be smaller than −2w + 1 for any
given w > 1. Thus, if one wants to return a solution with
suboptimality w1 and not perform re-expansions, the iso-
lines of the priority function used cannot exceed a slope of
−2w1 + 1, which corresponds to a weight of w2 = 2w1− 1,
the same weight recommended in previous work.

If we analyze the slope of ΦXDP (x, y) = 1
2w [y + (2w −

1)x+
√

(y − x)2 + 4wyx] we find that each isoline has the
form y = ((b − x)(bw − wx + x))/b, where b is some
fixed priority of ΦXDP (x, y). (That is, we substitute b for
ΦXDP (x, y) and then solve for y as above.) For this curve,
the slope at x = b is −1 and the slope at x = 0 is 1− 2w:



Table 2: Node reductions in IOS using the improved termi-
nation condition.

Bound With Bound No Bound Gain
1.25 15,402 16,802 9.1%
1.50 10,797 11,219 3.9%
2.00 7,348 7,842 6.7%
3.00 5,425 5,750 6.0%

Table 3: Node reductions in IOS using solution updating.

Bound Updating No Updating Gain
1.25 11,423 15,402 34.8%
1.50 8,715 10,797 23.9%
2.00 6,573 7,348 11.8%
3.00 5,386 5,425 0.7%

∂y

∂x
= (2(w − 1)x)/b− 2w + 1|x=0 = 1− 2w

Related to this, ΦXUP (x, y) is the priority function that has
a slope of −1 at x = 0 and 1− 2w at x = b.

Thus, wf = 2w−1 may work well because it is related to
the maximum slope that is allowed by an isoline that main-
tains w-optimality. It is an open question for researchers to
further explain this connection.

4.7 Sketch of the Completeness of IOS
Assuming that the search used to drive expansions in FOCAL
is complete on finite problems, then IOS will also be com-
plete. There are three cases to handle: (1) If there is no so-
lution the search can terminate after exhausting FOCAL and
return that there is no solution. (2) If the search in FOCAL
finds a solution that is more than w-optimal, it will con-
tinue to expand OPEN until the optimal solution is found,
and then terminate with the optimal solution. (3) Finally,
if the search finds a solution that is w-optimal in FOCAL
then it will be able to prove this by performing expansions
in OPEN. Because the problem is finite, a solution exists,
and re-expansions are not necessary inside OPEN, fmin will
be increased to a value sufficiently large to prove the quality
of the solution before the goal is expanded in OPEN.

5 Experimental Results
Experimental results are broken into two pieces. First, the
influence of different parameters is studied on a set of test
domains. Then, a broader comparison between different al-
gorithms is studied across new domains.

5.1 Study of Parameters
This section studies the influence of four IOS parameters
across four domains. These domains are pathfinding on grid-
based benchmarks (Sturtevant 2012) with an octile heuristic,
the sliding-tile puzzle with Manhattan distance, the heavy
sliding-tile puzzle with heavy Manhattan distance, and the
heavy pancake puzzle with a modified GAP heuristic. The

heavy sliding-tile puzzle uses linear weights - the cost of
moving tile n is n. The heavy pancake puzzle uses the max-
imum size of the top and bottom pancake in a stack being
flipped as the action cost (Gilon, Felner, and Stern 2016).

For grid maps we tested on 15,928 problem instances
from the Dragon Age: Origins (DAO) map set. All maps
and problem sets were used, except that for each problem
bucket on a map we only used a single random instance out
of each bucket of 10 problems. In the sliding tile puzzle
we used the standard 100 Korf instances. On the pancake
puzzle we test on 50 random instances. None of the results
compared have significant impact on running time, so only
node expansions are reported.

Study of Re-openings The first parameter we study is the
impact of re-opening states. Because of the nature of the re-
sults, a numerical comparison is not necessary. In the grid
pathfinding problems re-opening is catastrophically bad, as
it appears that near worst-case performance occurs in prac-
tice. This is partially because grid pathfinding has many
small cycles with different costs, especially due to the diag-
onal edge weights. On other domains, allowing re-openings
results only has a small impact on average performance, with
the exception of the heavy sliding-tile puzzle, where perfor-
mance is approximately 30% worse with re-openings. Al-
though near-worst-case performance is seen in one domain,
the theoretical best-case improvements is never seen. Thus,
re-openings are always turned off in further experiments.

Study of Improved Termination Condition Next we
look at the impact of the improved termination condition.
The improved condition is able to help when there is a local
minima around the start state. But, if the state with fmax is
the start state, then this condition has no impact. As with
re-openings, the improved termination condition has a dif-
ferent impact in grids than in the other domains. On grids
there is a small but notable improvement in performance,
while in the other domains there is no significant gain. We
illustrate this gain using IOS with a standard WA∗ focal list
using wf = 2w − 1 in Table 2. The largest gains in node
expansions comes with the smallest optimality bound.

Study of Solution Updating Next we study the impact of
the solution-update policy. That is, when re-expansions are
disabled, but expansions in OPEN are allowed to shorten the
incumbent solution. This reduces the work needed to prove
the suboptimality bound and improves solution quality. This
parameter has the largest improvement on grid maps with
low weights. These gains are presented on top of the gain
from the improved termination condition in Table 3.

Re-openings have the potential to be valuable, in that
shorter solutions can be propagated through the search
space. But, in grid domains this propagation is too expen-
sive. The solution updating approach is a less expensive
way of recovering shorter solutions without performing re-
openings in practice.

Study of Alternate Priority Functions In the final por-
tion of this study, we look at the impact of the best previous
enhancements with different priority functions for FOCAL
that avoid node re-expansions. Results are presented across



DAO Grids 15 Puzzle Heavy 15-Puzzle Heavy Pancake
Bound ΦXDP WA*(wf ) ΦXUP ΦXDP WA*(wf ) ΦXUP ΦXDP WA*(wf ) ΦXUP ΦXDP WA*(wf ) ΦXUP

1.25 10,940 11,423 11,695 264,112 350,976 521,722 668,032 397,710 741,031 - - -
1.50 8,533 8,715 8,573 35,280 47,659 76,756 427,210 152,310 174,369 211,783 1,074,523 -
2.00 6,829 6,573 6,266 12,050 14,240 17,397 64,128 71,672 85,007 3,412 23,567 405,185
3.00 5,818 5,386 5,060 4,468 4,633 6,627 48,226 52,868 48,949 63 382 10,342

Table 4: Average performance for IOS with WA*, XDP and XUP as priority functions for FOCAL.

all domains. No algorithms perform re-openings, but solu-
tion updating and the improved termination conditions are
enabled.

The complete results are in Table 4. For each domain,
three different priority functions are used along with 4 dif-
ferent weights. All approaches are able to solve all problems
except in the Heavy Pancake puzzle, where some algorithms
could not solve problems with lower weights.

IOS with the ΦXDP has the best performance in 11 of
the 15 weight/domain combinations tested. The only excep-
tion is the Heavy 15-puzzle, where there are a few problems
where ΦXDP has very poor performance. We are continuing
to study this domain to better understand the performance
here.

5.2 Comparison Against Other Algorithms
Experimental results continue with a broader set of algo-
rithms. These include the original version of Optimistic
search, Weighted A*, EES, and DPS. We also tested WA*
using the new priority functions ΦXDP and ΦXUP . These
are compared to IOS with solution updating, no re-openings,
and the improved termination condition. Additionally, vari-
ants of EES and Weighted A* are used that drop duplicates
(denoted by DD in the results.) Note that EES is using a
distance function not used by the other algorithms.

The domains used for these tests feature a variety of grid-
like domains. The potential duplicate states test the effect
of the new strategies towards dealing with the duplicates in
each domain. Lifecost and uniform cost grids (Thayer and
Ruml 2008), and heavy vacuum world (Thayer and Ruml
2011) are used, along with the racetrack domain (Cserna et
al. 2018). The results in each of these domains are found in
Tables 5-8.

Each table reports the average number of nodes expanded
across a variety of domains and suboptimality bounds.
Across the variety of domains tested there is not a single
dominant algorithm, although the ΦXDP variants of IOS
and WA* consistently perform well. In the life-cost grids,
shown in Table 5, WA∗(ΦXDP ) does well at the lowest
suboptimality bound, but then loses out to IOS(ΦXDP ).
In the heavy version of vacuum world, shown in Table 8,
WA∗(ΦXDP ) outpaces the other algorithms until the higher
suboptimality bounds where IOS(ΦXUP ) eventually ex-
pands the fewest number of nodes. We see an incredibly
poor behavior for DPS and both versions of EES in this
domain. In the racetrack domain, all of the algorithms
have nearly the same behavior except for the EES variants
and DPS. EES DD requires fewer expansions than the rest
and performs similarly to EES until higher suboptimality

bounds. At those bounds EES performs a large number of
re-expansions, while EES DD can avoid those expansions.
Additionally, DPS can, without explicitly avoiding dupli-
cates, expand far fewer nodes than any of the other algo-
rithms. In unit-cost grids WA∗(ΦXDP ) and IOS(ΦXUP )
do well in comparison to the other algorithms, although
EES DD is competitive at the lower suboptimality bounds.
However, again eventually at higher weights we see IOS ex-
panding fewer nodes.

Although there is no clear dominating algorithm from
these results, using the ΦXDP and ΦXUP priority functions
within WA∗ and IOS can often outperform or equal the cur-
rent state-of-the-art in suboptimal heuristic search. This is
notable because it is a much simpler algorithm to implement.

6 Conclusions and Future Work
This paper develops a new algorithm framework, Improved
Optimistic Search (IOS) which is easy to implement, and
provides strong performance across a wide variety of do-
mains. IOS can use new recently developed priority func-
tions that avoid node re-expansions to improve performance.
IOS improves performance through a novel termination con-
dition, and options for inexpensively updating the cost of the
optimal solution without performing re-expansions.
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Table 8: Average node expansion in Heavy Vacuum World


