
Best-first Utility-guided Search

Wheeler Ruml
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304 USA
ruml at parc dot com

Elisabeth H. Crawford
Computer Science Department

Carnegie Mellon University
Pittsburgh PA 15213 USA
ehc at cs.cmu dot edu

Abstract
In many shortest-path problems of practical inter-
est, insufficient time is available to find a prov-
ably optimal solution. In dynamic environments,
for example, the expected value of a plan may de-
crease with the time required to find it. One can
only hope to achieve an appropriate balance be-
tween search time and the resulting plan cost. Sev-
eral algorithms have been proposed for this setting,
including weighted A*, Anytime A*, and ARA*.
These algorithms multiply the heuristic evaluation
of a node, exaggerating the effect of the cost-to-go.
We propose a more direct approach, called BUGSY,
in which one explicitly estimates search-nodes-to-
go. One can then attempt to optimize the overall
utility of the solution, expressed by the user as a
function of search time and solution cost. Exper-
iments in several problem domains, including mo-
tion planning and sequence alignment, demonstrate
that this direct approach can surpass anytime algo-
rithms without requiring performance profiling.

1 Introduction
Many important tasks, such as planning, parsing, and se-
quence alignment, can be represented as shortest-path prob-
lems. If sufficient computation is available, optimal solutions
to such problems can be found using A* search with an ad-
missible heuristic [Hart et al., 1968]. However, in many prac-
tical scenarios, time is limited or costly and it is not desirable,
or even feasible, to look for the least-cost path. Furthermore,
in dynamic environments, a plan’s chance of becoming in-
valid increases with time, making any plan based on current
knowledge less valuable as time passes. Instead of ensuring
an optimal solution, search effort should be carefully allo-
cated in a way that balances the cost of the paths found with
the required computation time. This trade-off is expressed by
the user’s utility function, which specifies the subjective value
of every combination of solution quality and search time. In
this paper, we introduce a new shortest-path algorithm called
BUGSY that explicitly acknowledges the user’s utility func-
tion and uses it to guide its search.

A* is a best-first search in which the ‘open list’ of unex-
plored nodes is sorted by f(n) = g(n) + h(n), where g(n)

denotes the known cost of reaching a node n from the ini-
tial state and h(n) is typically a lower bound on the cost of
reaching a solution from n. A* is optimal in the sense that
no algorithm that returns an optimal solution using the same
lower bound function h(n) visits fewer nodes [Dechter and
Pearl, 1988]. However, in many applications solutions are
needed faster than A* can provide them. To find a solution
faster, it is common practice to increase the weight of h(n)
via f(n) = g(n) + w · h(n), with w ≥ 1 [Pohl, 1970].
There are many variants of weighted A* search, including
A∗

ε
[Pearl and Kim, 1982], Anytime A* [Hansen et al., 1997;

Zhou and Hansen, 2002], and ARA* [Likhachev et al., 2004].
In ARA*, for example, a series of solutions of decreasing cost
is returned over time. The weight w is initially set to a high
value and then decremented by δ after each solution. If al-
lowed to continue, w eventually reaches 1 and the cheapest
path is discovered. Of course, finding the optimal solution
this way takes longer than simply running A* directly.

These algorithms suffer from two inherent difficulties.
First, it is not well understood how to set w or δ to best sat-
isfy the user’s needs. Setting w too high or δ too low can
result in many poor-quality solutions being returned, wasting
time. But if w is set too low or δ too high, the algorithm may
take a very long time to find a solution. Therefore, to use
a weighted A* technique like ARA* the user must perform
many pilot experiments in each new problem domain to find
good parameter settings.

Second, for anytime algorithms such as ARA*, the user
must estimate the right time to stop the algorithm. The search
process appears as a black box that could emit a significantly
better solution at any moment, so one must repeatedly esti-
mate the probability that continuing the computation will be
worthwhile according to the user’s utility function. This re-
quires substantial prior statistical knowledge of the run-time
performance profile of the algorithm and rests on the assump-
tion that such learned knowledge applies to the current in-
stance.

These difficulties point to a more general problem: any-
time algorithms must inherently provide suboptimal perfor-
mance due to their ignorance of the user’s utility function. It
is simply not possible in general for an algorithm to quickly
transform the best solution achievable from scratch in time t
into the best solution achievable in time t + 1. In the worst
case, visiting the next-most-promising solution might require

starting back at a child of the root node. Without the ability to
decide during the search whether a distant solution is worth
the expected effort of reaching it, anytime algorithms must be
manually engineered according to a policy fixed in advance.
Such hardcoded policies mean that there will inevitably be
situations in which anytime algorithms will either waste time
finding nearby poor-quality solutions or overexert themselves
finding a very high quality solution when any would have suf-
ficed.

In this paper we address the fundamental issue: knowl-
edge of the user’s utility function. We propose a simple vari-
ant of best-first search that represents the user’s desires and
uses an estimate of this utility as guidance. We call the ap-
proach BUGSY (Best-first Utility-Guided Search—Yes!) and
show empirically across several domains that it can success-
fully adapt its behavior to suit the user, sometimes signifi-
cantly outperforming anytime algorithms. Furthermore, this
utility-based methodology is easy to apply, requiring no per-
formance profiling.

2 The BUGSY Approach
Ideally, a rational search agent would evaluate the utility to
be gained by each possible node expansion. The utility of
an expansion is equal to the utility of the eventual outcomes
enabled by that expansion, namely the solutions lying below
that node. For instance, if there is only one solution in a tree-
structured space, expanding any node other than the one it
lies beneath has no utility (or negative utility if time is costly).
We will approximate these true utilities by assuming that the
utility of an expansion is merely the utility of the highest-
utility solution lying below that node.

We will further assume that the user’s utility function can
be captured in a simple linear form. If f(s) represents the
cost of solution s, and t(s) represents the time at which it
is returned to the user, then we expect the user to supply
three constants: Udefault, representing the utility of returning
an empty solution; wf , representing the importance of solu-
tion quality; and wt, representing the importance of compu-
tation time. The utility of expanding node n is then computed
as

U(n) = Udefault − min
s under n

(wf · f(s) + wt · t(s))

where s ranges over the possible solutions available under n.
(Note that we follow the decision-theoretic tradition of better
utilities being more positive, requiring us to subtract the esti-
mated solution cost f(s) and search time t(s).) This formu-
lation allows us to express exclusive attention to either cost
or time, or any linear trade-off between them. The number
of time units that the user is willing to spend to achieve an
improvement of one cost unit is wf/wt. This quantity is usu-
ally easily elicited from users if it is not already explicit in the
application domain. (The utility function would also be nec-
essary when constructing the termination policy for an any-
time algorithm.) Although superficially similar to weighted
A*, BUGSY’s node evaluation function differs because wf is
applied to both g(n) and h(n).

Of course, the solutions s available under a node are un-
known, but we can estimate some of their utilities by using

time

bound

nearest

cheapestupper

‘optimistic
lower bound’

utility

cost

Figure 1: Estimating utility using the maximum of bounds on
the nearest and cheapest solutions.

functions analogous to the traditional heuristic function h(n).
Instead of merely computing a lower bound on the cost of the
cheapest solution under a node, we also compute the lower
bound on distance in search nodes to that hypothetical cheap-
est solution. In many domains, this additional estimate en-
tails only trivial modifications to the usual h function. Search
distance can then be multiplied by an estimate of time per
expansion to arrive at t(s). (Note that this simple estimation
method makes the standard assumption of constant time per
node expansion.) To provide a more informed estimate, we
can also compute bounds on the cost and time to the nearest
solution in addition to the cheapest. U(n) can then be esti-
mated as the maximum of the two utilities. For convenience,
we will also notate by f(n) and t(n) the values inherited from
whichever hypothesized solution had the higher utility.

Figure 1 illustrates this process. The two solid dots repre-
sent the solutions hypothesized by the cheapest and nearest
heuristic functions. The dashed circles represent hypotheti-
cal solutions representing a trade-off between those two ex-
tremes. The dotted lines represent contours of constant utility
and the dotted arrow shows the direction of the utility gradi-
ent. Assuming that the two solid dots represent lower bounds,
then an upper bound on utility would combine the cost of the
cheapest solution with the time to the nearest solution. How-
ever, this is probably a significant overestimate. Taking the
time of the cheapest and the cost of the nearest is not a true
lower bound on utility because the two hypothesized solu-
tions are themselves lower bounds and might in reality lie
further toward the top and right of the figure. Note that un-
der different utility functions (different slopes for the dotted
lines) the relative superiority of the nearest and cheapest so-
lutions can change.

2.1 Implementation
Figure 2 gives a pseudo-code sketch of a BUGSY implemen-
tation. The algorithm closely follows a standard best-first
search. U(n) is an estimate, not a lower bound, so it can
overestimate or change arbitrarily along a path. This implies
that we might discover a better route to a previously expanded
state. Duplicate paths to the same search state are detected in
steps 7 and 10; only the cheaper path is retained. We record
links to a node’s children as well as the preferred parent so
that the utility of descendants can be recomputed (step 9) if

BUGSY(initial, U())
1. open← {initial}, closed← {}
2. n← remove node from open with highest U(n) value
3. if n is a goal, return it
4. add n to closed
5. for each of n’s children c,
6. if c is not a goal and U(c) < 0, skip c
7. if an old version of c is in closed,
8. if c is better than cold,
9. update cold and its children
10. else, if an old version of c is in open,
11. if c is better than cold,
12. update cold
13. else, add c to open
14. go to step 2

Figure 2: BUGSY follows the outline of best-first search.

g(n) changes [Nilsson, 1980, p. 66]. The on-line estimation
of time per expansion has been omitted for clarity. The exact
ordering function used for open (and to determine ‘better’ in
steps 8 and 11) prefers high U(n) values, breaking ties for
low t(n), breaking ties for low f(n), breaking ties for high
g(n). Note that the linear formulation of utility means that
open need not be resorted as time passes because all nodes
lose utility at the same constant rate independent of their esti-
mated solution cost. In effect, utilities are stored independent
of the search time so far.

The h(n) and t(n) functions used by BUGSY do not have
to be lower bounds. BUGSY requires estimates—there is no
admissibility requirement. If one has data from previous runs
on similar problems, this information can be used to convert
standard lower bounds into estimates [Russell and Wefald,
1991]. In the experiments reported below, we eschew the
assumption that training data is available and compute cor-
rections on-line. We keep a running average of the one-step
error in the cost-to-go and distance-to-go, measured at each
node generation. These errors are computed by comparing
the cost-to-go and distance-to-go of a node with those of its
children. If the cost-to-go has not decreased by the cost of the
operator used to generate the child, we can conclude that the
parent’s value was too low and record the discrepancy as an
error. Similarly, the distance-to-go should have decreased by
one. These correction factors are then used when computing
a node’s utility to give a more accurate estimate based on the
experience during the search so far. Given the raw cost-to-
go value h and distance-to-go value d and average errors eh

and ed, d′ = d(1 + ed) and h′ = h + d′eh. Because on-line
estimation of the time per expansion and the cost and dis-
tance corrections create additional overhead for BUGSY rela-
tive to other search algorithms, we will take care to measure
CPU time in our experimental evaluation, not just node gen-
erations.

2.2 Properties of the Algorithm
BUGSY is trivially sound—it only returns nodes that are
goals. If the heuristic and distance functions are used without
inadmissible corrections, then the algorithm is also complete

if the search space is finite. If wt = 0 and wf > 0, BUGSY
reduces to A*, returning the cheapest solution. If wf = 0 and
wt > 0, then BUGSY is greedy on t(n). Ties will be broken
on low f(n), so a longer route to a previously visited state
will be discarded. This limits the size of open to the size of
the search space, implying that a solution will eventually be
discovered. Similarly, if both wf and wt > 0, BUGSY is com-
plete because t(n) is static at every state. The f(n) term in
U(n) will then cause a longer path to any previously visited
state to be discarded, bounding the search space and ensuring
completeness. Unfortunately, if the search space is infinite
and wt > 0, BUGSY is not complete because a pathological
t(n) can potentially mislead the search forever.

If the utility estimates U(n) are perfect, BUGSY is optimal.
This follows because it will proceed directly to the highest-
utility solution. Assuming U(n) is perfect, when BUGSY ex-
pands the start node the child node on the path to the highest
utility solution will be put at the front of the open list. BUGSY
will expand this node next. One of the children of this node
must have the highest utility on the open list since it is one
step closer to the goal than its parent, which previously had
the highest utility, and it leads to a solution of the same qual-
ity. In this way, BUGSY proceeds directly to the highest util-
ity solution achievable from the start state. It incurs no loss in
utility due to wasted time since it only expands nodes on the
path to the optimal solution.

It seems intuitive that BUGSY might have application in
problems where operators have different costs and hence the
distance to a goal in the search space might not correspond
directly to its cost. But even in a search space in which all
operators have unit cost (and hence the nearest and cheapest
heuristics are the same), BUGSY can make different choices
than A*. Consider a situation in which, after several expan-
sions, it appears that node A, although closer to a goal than
node B, might result in a worse overall solution. (Such a sit-
uation can easily come about even with an admissible and
consistent heuristic function.) If time is weighted more heav-
ily than solution cost, BUGSY will expand node A in an at-
tempt to capitalize on previous search effort and reach a goal
quickly. A*, on the other hand, will always abandon that
search path and expand node B in a dogged attempt to op-
timize solution cost regardless of time.

In domains in which the cost-to-goal and distance-to-goal
functions are different, BUGSY can have a significant advan-
tage over weighted A*. With a very high weight, weighted
A* will find a solution only as quickly as the greedy algo-
rithm. BUGSY however, because its search is guided by an
estimate of the distance to solutions as well as their cost, can
actually find a solution in less time than the greedy algorithm.

3 Empirical Evaluation
To determine whether such a simple mechanism for time-
aware search can be effective in practice with imperfect es-
timates of utility, we compared BUGSY against seven other
algorithms on three different domains: gridworld path plan-
ning (12 different varieties), dynamic robot motion planning
(used by Likhachev et al. [2004] to evaluate ARA*), and mul-
tiple sequence alignment (used by Zhou and Hansen [2002] to

#
oooooooo
o # o
o # o
o # o

##o# #o
Soo# G

jhgiggh
j-grmgg
o-grm-o

Figure 3: Examples of the test domains: dynamic motion
planning (left), gridworld planning (top right), and multiple
sequence alignment (bottom right).

evaluate Anytime A*). All algorithms were coded in Objec-
tive Caml, compiled to native code, and run on one processor
of a dual 2.6GHz Xeon machine with 2Gb RAM, measuring
CPU time used. The algorithms were:
A* detecting duplicates using a closed list, breaking ties on

f in favor of high g,
weighted A* with w = 3,
greedy A* but preferring low h, breaking ties on low g,
speedy greedy but preferring low time to goal (t(n)), break-

ing ties on low h, then low g,
Anytime A* weighted A* (w = 3) that continues, pruning

the open list, until an optimal goal has been found,
ARA* performs a series of weighted A* searches (starting

with w = 3), decrementing the weight (δ = 0.2, follow-
ing Likhachev et al.) and reusing search effort,

A∗

ε from among those nodes within a factor of ε (3) of the
lowest f value in the open list, expands the one esti-
mated to be closest to the goal.

Note that greedy, speedy, and A* do not provide any inherent
mechanism for adjusting their built-in trade-off of solution
cost against search time; they are included only to provide a
frame of reference for the other algorithms. The first solu-
tion found by Anytime A* and ARA* is the same one found
by weighted A*, so those algorithms should do at least as
well. We confirmed this experimentally, and omit weighted
A* from our presentation below. On domains with many so-
lutions, Anytime A* often reported thousands of solutions;
we therefore limited both anytime algorithms to only report-
ing solutions that improve solution quality by at least 0.1%.
A∗

ε performed very poorly in our preliminary tests, taking a
very long time, so we omit its results as well. 1

3.1 Dynamic Robot Motion Planning
Following Likhachev et al. [2004], this domain involves mo-
tion planning for a mobile robot (see Figure 3 for an exam-

1Although Pearl and Kim do not discuss implementation tech-
niques (their results are presented solely in terms of node expan-
sions), it seems that their algorithm could be made to operate more
efficiently by designing a special coordinated heap and balanced bi-
nary tree data structure. We have not pursued this yet.

U() BUGSY ARA* Sp Gr
time only 72 66 75 88

10 microsec 72 66 75 88
100 microsec 69 66 74 88

1 msec 58 63 70 83
10 msec 51 47 47 56

0.1 sec 66 59 53 55
1 sec 69 65 56 56

10 secs 67 69 53 54
100 secs 67 69 53 53

Table 1: Results on dynamic robot motion planning.

ple). Rather than finding the shortest path, the objective is
to find the fastest path, taking into account the maximum
acceleration of the robot and its inability to turn quickly at
high speed. Solution cost corresponds to the duration of the
planned robot trajectory. In effect, each utility function spec-
ifies a different trade-off between planning time and plan ex-
ecution time. The state representation records position, head-
ing, and speed. The path cost heuristic (h(n)) is simply the
shortest path distance to the goal, divided by the maximum
speed. This is precomputed to all cells at the start of the
search. The plan cost lower bound f(n) is the usual cost-
so-far (g(n)) plus this cost-to-go (h(n)). For speedy and
BUGSY, the distance in moves to the goal is also precom-
puted. The search cost estimate t(n) is this distance divided
by the number of search nodes expanded per second, which
was estimated on-line as discussed above. No separate esti-
mates were made for BUGSY of the distance to the cheapest
goal or cost of the nearest goal, so U was estimated only on
this single f and t values. Legal state transitions (ignoring
position) were precomputed. Unlike the heuristics, this was
the same for all algorithms and was not included in the search
time. We used 20 worlds 100 by 100 meters (discretized as in
Likhachev et al. every 0.4 meters), each with 20 linear obsta-
cles placed at random. Starting and goal positions and head-
ings were selected uniformly at random. Instances that were
solved by A* in less than 10 seconds or more than 1000 sec-
onds were replaced.

Table 1 compares the solutions obtained by each algorithm
under a range of different possible utility functions. Each
row of the table corresponds to a different utility function.
Recall that each utility function is a weighted combination of
path cost and CPU time taken to find it. The relative size of
the weights determines how important time is relative to cost.
In other words, the utility function specifies the maximum
amount of time that should be spent to gain an improvement
of 1 cost unit. This is the time that is listed under U() for
each row in the table. For example, ”1 msec” means that a
solution that takes 0.001 seconds longer to find than another
must be at least 1 unit cheaper to be judged superior. The
utility functions tested range over several orders of magnitude
from one in which only search time matters to one in which
100 seconds can be spent to obtain a one unit improvement in
the solution cost.

Recall that, given a utility function at the start of its search,
BUGSY returns a single solution representing the best trade-

off of path cost and search time that it could find based on the
information available to it. Of course, the CPU time taken
is recorded along with the solution cost. Greedy (notated Gr
in the table) and speedy (notated Sp) also each return one
solution. These solutions may score well according to util-
ity functions with extreme emphasis on time but may well
score poorly in general. The two anytime algorithms, Any-
time A* and ARA*, return a stream of solutions over time.
For these experiments, we allowed them to run to optimality
and then, for each utility function, post-processed the results
to find the optimal cut-off time to optimize each algorithm’s
performance for that utility function. Note that this ‘clairvoy-
ant termination policy’ gives Anytime A* and ARA* an un-
realistic advantage in our tests. However, both A* and Any-
time A* performed extremely poorly in this domain and are
omitted from Table 1. To compare more easily across differ-
ent utility functions, all of the resulting solution utilities were
linearly scaled to fall between 0 and 100. Each cell in the
table is the mean across 20 instances.

The results suggest that BUGSY is competitive with or bet-
ter than ARA* on all but perhaps one of the utility functions.
In general, BUGSY seems to offer a slight advantage when
time is important. Given that BUGSY does not require per-
formance profiling to construct a termination policy, this is
encouraging performance. As one might expect, Greedy per-
forms well when time is very important, however as cost be-
comes important the greedy solution is less useful. Compared
to greedy, speedy is not able to overcome the overhead of
computing two node evaluation functions.

3.2 Gridworld Planning
We considered several classes of path planning problems on
a 500 by 300 grid, using either 4-way or 8-way movement,
three different probabilities of blocked cells, and two differ-
ent cost functions. In addition to unit costs, under which ev-
ery move is equally expensive, we used a graduated cost func-
tion in which moves along the upper row are free and the cost
goes up by one for each lower row. Figure 3 shows a small
example solution under these costs (the start and goal posi-
tions are always in these corners). We call this cost function
‘life’ because it shares with everyday living the property that
a short direct solution that can be found quickly (shallow in
the search tree) is relatively expensive while a least-cost solu-
tion plan involves many annoying economizing steps. Under
both cost functions, simple analytical lower bounds (ignor-
ing obstacles) are available for the cost (g(n)) and distance
(in search steps) to the cheapest goal and to the nearest goal.
These quantities are then used to compute the f(n) and t(n)
estimates. Because A* can perform well in this domain and
our experiments include utility functions that make it worth
finding the optimal solution, we diluted BUGSY’s estimated
lower-bound correction factors by dividing them by 5, de-
creasing the severity of any overestimation.

Table 2 shows typical results from three representative
classes of gridworld problems. As before, the rows repre-
sent a broad spectrum of utility functions, including those in
which speedy and A* are each designed to be optimal. Each
value represents the mean over 20 instances. Anytime A* is
notated AA*. In the top group (unit costs, 8-way movement,

U() BUGSY ARA* AA* Sp Gr A*
unit costs, 8-way movement, 40% blocked

time only 99 100 99 99 100 69
500 microsec 98 96 96 95 95 69

1 msec 98 91 93 90 91 69
5 msec 95 60 68 56 56 68

10 msec 94 44 57 34 34 74
50 msec 95 85 77 33 33 91

cost only 95 96 96 33 33 96
unit costs, 4-way movement, 20% blocked

time only 97 98 98 98 99 19
100 microsec 95 94 95 94 95 21
500 microsec 91 67 70 61 62 28

1 msec 86 62 43 28 29 50
5 msec 82 81 42 22 22 91

10 msec 79 87 46 20 20 92
cost only 76 93 93 19 19 93

‘life’ costs, 4-way movement, 20% blocked
time only 99 92 88 100 96 16

1 microsec 97 94 90 93 98 17
5 microsec 92 89 85 52 92 18

10 microsec 93 86 83 12 88 30
50 microsec 97 86 87 11 85 87

100 microsec 97 91 89 11 85 94
cost only 94 97 97 11 82 97

Table 2: Results on three varieties of gridworld planning.

40% blocked), we see BUGSY performing very well, behav-
ing like speedy and greedy when time is important, like A*
when cost is important, and significantly surpassing all the
algorithms for the middle range of utility functions. In the
next group (4-way movement, 20% blocked), BUGSY per-
forms very well as long as time has some importance, again
dominating in the middle range of utility functions where bal-
ancing time and cost is crucial. However, its inadmissible
heuristic means that it cannot perform quite as well as A* or
ARA* at the edge of the spectrum when cost becomes crit-
ical. (Of course, one can always disable BUGSY’s correc-
tion factors when running under such circumstances, but pre-
sumably in practice one would be using A* search anyway if
search time weren’t an important consideration.) In the bot-
tom group in the table (‘life’ costs, 4-way movement, 20%
blocked), we see a similar general pattern: BUGSY performs
very well across a wide range of utility functions, dominat-
ing other algorithms for the middle range of utility functions.
However, it does fall slightly short of A* when solution cost
is the only criterion.

3.3 Multiple Sequence Alignment
Alignment of multiple strings has recently been a popular do-
main for heuristic search algorithms [Hohwald et al., 2003].
An example alignment is shown in Figure 3. The state rep-
resentation is the number of characters consumed so far from
each string; a goal is reached when all characters are con-
sumed. Moves that consume from only some of the strings
represent the insertion of a ‘gap’ character into the others. We
computed alignments of three sequences at a time, using the

U() BUGSY ARA* AA* Sp Gr A*
time only 99 100 100 100 100 22

1 msec 100 99 99 97 98 22
5 msec 99 97 97 88 92 24

10 msec 98 92 94 74 83 26
50 msec 87 80 81 14 42 90

0.1 sec 69 89 68 11 33 93
cost only 57 95 95 9 27 95

Table 3: Results on multiple sequence alignment.

standard ‘sum-of-pairs’ cost function in which a gap costs 2,
a substitution (mismatched non-gap characters) costs 1, and
costs are computed by summing all the pairwise alignments.
Sequences were over 20 characters, representing amino acid
triplets. The uniform random sequences that are popular
benchmarks for optimal alignment algorithms are not suit-
able in our setting because the solution found by the speedy
algorithm (merely traversing the diagonal, resulting in many
substitutions) is very often the optimal alignment. Instead, we
use biologically-inspired benchmarks which encourage opti-
mal solutions that contain significant numbers of gaps and
matches. Starting from a ‘common ancestor’ string which
does not become part of the instance, we create sequences
by deleting and substituting characters uniformly at random.
In the instances used below, the ancestors were 1000 char-
acters long and the probabilities of deletion and substitution
were both 0.25 at each position. The heuristic function h(n)
was based on optimal pairwise alignments that were precom-
puted by dynamic programming. The lower bound on search
nodes to go was simply the maximum number of characters
remaining in any sequence. As in gridworld, A* is a feasible
algorithm and thus we dilute BUGSY’s correction factors by
5.

Table 3 shows the results, with each row representing a
different utility function and all raw scores again normalized
between 0 and 100. Each cells represents the mean over 5 in-
stances (there was little variance in the scores in this domain).
Again we see the same pattern of performance. BUGSY per-
forms very well when time is important and surpasses the
other algorithms when balancing between cost and time. It
does fall short of A* when cost is paramount, due to its inad-
missible heuristic.

4 Discussion
We have presented empirical results, using actual CPU time
measurements and a variety of search problems, demonstrat-
ing that BUGSY is at least competitive with state-of-the-art
anytime algorithms. For utility functions with an emphasis on
solution time or on balancing time and cost, it often performs
significantly better than any previous method. However, for
utility functions based heavily on solution cost it can some-
times perform worse than A*. BUGSY appears quite robust
across different domains and utility functions.

When its utility estimates are perfect, BUGSY is optimal.
However, more work remains to understand the exact trade-
off between accuracy and admissibility. Our empirical expe-
rience demonstrates that attempting to correct lower bounds

into more accurate estimators can impair BUGSY’s perfor-
mance when solution quality is very important. However,
it seems foolish not to take advantage of on-line error esti-
mation to bring these bounds closer to the accurate estimates
that would allow BUGSY to be optimal. In this paper, we have
chosen to merely dilute the correction factors. In the future,
we hope to be able to analyze the given utility function in the
context of the domain and determine whether admissibility is
worth preserving.

We have done preliminary experiments incorporating sim-
ple deadlines into BUGSY, with encouraging results. Because
it estimates the search time-to-go, it can effectively prune so-
lutions that lie beyond a search time deadline. Another simi-
lar extension applies to temporal planning: one can specify a
bound on the sum of the search time and the resulting plan’s
execution time and let BUGSY determine how to allocate the
time.

Note that BUGSY solves a different problem than Real-
Time A* [Korf, 1990] and its variants. Rather than perform-
ing a time-limited search for the first step in a plan, BUGSY
tries to find a complete plan to a goal in limited time. This
is particularly useful in domains in which operators are not
invertible or are otherwise costly to undo. Having a complete
path to a goal ensures that execution does not become en-
snared in a deadend. It is also a common requirement when
planning is but the first step in a series of computations that
might further refine the action sequence.

In some applications of best-first search, memory use is a
prominent concern. In a time-bounded setting this is less fre-
quently a problem because the search doesn’t have time to ex-
haust available memory. However, the simplicity of BUGSY
means that it may well be possible to integrate some of the
techniques that have been developed to reduce the memory
consumption of best-first search if necessary.

When planning in a dynamic environment, we assume not
only that BUGSY is provided with a utility function that cap-
tures the decrease in expected plan value as a linear function
of time, but also that the algorithm has full access to knowl-
edge of how the domain changes. It would be very interest-
ing to combine the utility-based search of BUGSY with tech-
niques to exploit localized changes in the search space, such
as used in ARA*.

5 Conclusions
As Nilsson notes, “in most practical problems we are inter-
ested in minimizing some combination of the cost of the path
and the cost of the search required to obtain the path” yet
“combination costs are never actually computed . . . because
it is difficult to decide on the way to combine path cost and
search-effort cost” [1971, p. 54, emphasis his]. BUGSY ad-
dresses this problem by letting the user specify how path cost
and search cost should be combined.

This new approach provides an alternative to anytime algo-
rithms. Instead of returning a stream of solutions and relying
on an external process to decide when additional search ef-
fort is no longer justified, the search process itself makes such
judgments based on the node evaluations available to it. Our
empirical results demonstrate that BUGSY provides a simple

and effective way to solve shortest-path problems when com-
putation time matters. We would suggest that search proce-
dures are usefully thought of not as black boxes to be con-
trolled by an external termination policy but as complete in-
telligent agents, informed of the user’s goals and acting on the
information they collect so as to directly maximize the user’s
utility.

References
[Dechter and Pearl, 1988] Rina Dechter and Judea Pearl.

The optimality of A*. In Laveen Kanal and Vipin Kumar,
editors, Search in Artificial Intelligence, pages 166–199.
Springer-Verlag, 1988.

[Hansen et al., 1997] Eric A. Hansen, Shlomo Zilberstein,
and Victor A. Danilchenko. Anytime heuristic search:
First results. CMPSCI 97-50, University of Massachusetts,
Amherst, September 1997.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions of Systems Sci-
ence and Cybernetics, SSC-4(2):100–107, July 1968.

[Hohwald et al., 2003] Heath Hohwald, Ignacio Thayer, and
Richard E. Korf. Comparing best-first search and dynamic
programming for optimal multiple sequence alignment. In
Proceedings of IJCAI-03, pages 1239–1245, 2003.

[Korf, 1990] Richard E. Korf. Real-time heuristic search. Ar-
tificial Intelligence, 42:189–211, 1990.

[Likhachev et al., 2004] Maxim Likhachev, Geoff Gordon,
and Sebastian Thrun. ARA*: Anytime A* with prov-
able bounds on sub-optimality. In Proceedings of NIPS
16, 2004.

[Nilsson, 1971] Nils J. Nilsson. Problem-Solving Methods in
Artificial Intelligence. McGraw-Hill, 1971.

[Nilsson, 1980] Nils J. Nilsson. Principles of Artificial Intel-
ligence. Tioga Publishing Co, 1980.

[Pearl and Kim, 1982] Judea Pearl and Jin H. Kim. Studies
in semi-admissible heuristics. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, PAMI-4(4):391–
399, July 1982.

[Pohl, 1970] Ira Pohl. Heuristic search viewed as path find-
ing in a graph. Artificial Intelligence, 1:193–204, 1970.

[Russell and Wefald, 1991] Stuart Russell and Eric Wefald.
Do the Right Thing: Studies in Limited Rationality. MIT
Press, 1991.

[Zhou and Hansen, 2002] Rong Zhou and Eric A. Hansen.
Multiple sequence alignment using anytime A*. In Pro-
ceedings of AAAI-02, pages 975–976, 2002.

