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Abstract

In real-time heuristic search, the planner must return the next
action for the agent within a pre-specified time bound. Many
algorithms for this setting are ‘agent-centered’ in that, at ev-
ery iteration, they only expand states near the agent’s current
state, discarding the search frontier afterwards. In this paper,
we investigate the alternative paradigm in which the search
expands a single ever-growing envelope of states. Previous
work on envelope-based methods restricts the agent to move
along the generated search tree. We propose a more flexible
approach in which an auxiliary search is performed within
the envelope to guide the agent toward a promising frontier
node. Experimental results indicate that intra-envelope search
is beneficial in state spaces that are highly interconnected,
such as those for grid pathfinding.

Introduction
Interactive systems, such as robots or user interfaces, often
must be controlled in real time. In this paper, we address
real-time planning, where the planner must return the next
action for the system to take within a specified wall-clock
time bound (Korf 1990). The traditional approach to real-
time planning is agent-centered, meaning a portion of the
state space immediately surrounding the agent — the Lo-
cal Search Space (LSS) — is expanded to some bounded
lookahead (Koenig 2001). For example, in the popular LSS-
LRTA* algorithm (Koenig and Sun 2009), the agent gener-
ates the LSS using A* and then moves toward the frontier
node of lowest f . This paradigm has a significant drawback:
the agent can easily fall into local minima, also known as
heuristic depressions, in which the h values are mislead-
ingly low, distracting the agent from paths leading toward
a goal. To guarantee completeness in domains with local
minima larger than the lookahead, the heuristic values of
nodes within the LSS are raised (Koenig and Likhachev
2006). However, multiple visits to the same state may be re-
quired before the values are high enough, a process known
as ‘scrubbing’ (Sturtevant and Bulitko 2016). Many attempts
have been made at improving the ability of LSS-style al-
gorithms to escape heuristic depressions including analy-
sis of heuristic error and dynamically changing lookahead
(Hernández and Baier 2012; Kiesel, Burns, and Ruml 2015).
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However for any lookahead size achieved with finite re-
sources, one can always imagine a domain with local min-
ima larger than the achieved lookahead.

Time-Bounded A* (TBA*) (Björnsson, Bulitko, and
Sturtevant 2009) represents an alternative to agent-centered
methods and is the first example of what we call Envelope-
based Search (ES) for real-time search problems. TBA* iter-
atively expands a single A* search tree throughout the life of
the algorithm and periodically commits the agent toward the
best node on the A* frontier by tracing and following the
pointers of the tree. Because A* with a consistent heuris-
tic will expand a state at most once, scrubbing is eliminated.
TBA* is able to escape heuristic depressions by directing the
agent toward a more promising branch of the tree without
spending computation time updating heuristic values. How-
ever, the algorithm also has drawbacks stemming from the
fact that its search is rooted at the agent’s start state, an in-
creasingly irrelevant state with respect to the agent as it tran-
sitions away. In the worst case, when a new target node is
selected the agent will backtrack all the way to the start state
before reaching the new branch.

Variants of TBA* that use Weighted A* and Greedy Best
First Search to expand the search graph (Hernández, Baier,
and Ası́n 2016) alleviate this problem by biasing toward
nodes with low h, discouraging the search from finding
new paths that deviate from the tree near the root (remi-
niscent of the ‘low h bias’ described by Richter, Thayer,
and Ruml (2010)). However, even with this enhancement,
the agent’s path through the constructed search graph is still
inflexible since the graph is not typically rewired to exploit
shortcuts between the agent’s current branch and a new tar-
get branch.

We propose a new ES algorithm called Intra-Envelope
Search (I-ES) that seeks to address the flaws in TBA* by
splitting time between expanding nodes on the envelope
frontier and searching through the expanded envelope to
connect the agent with a target node. This target is chosen
periodically as the current best node on the envelope fron-
tier. We show that I-ES is complete in undirected and di-
rected domains under reasonable assumptions. Experimen-
tal results suggest that the new method has superior perfor-
mance in domains in which it is easy to find alternative paths
between states, such as grid pathfinding.



Preliminaries
A heuristic search problem 〈S,E,Goal, h, sroot〉 consists of
a set of states S, a set of edges E labeled with positive costs
between states, a predicate Goal(s) that returns true if s is
a goal, a heuristic function h(s, s′) that estimates the cost
of an optimal path c∗(s, s′) between s and s′, where h(s)
denotes min{s′|Goal(s′)} h(s, s

′), and the agent’s start state
sroot ∈ S. All heuristics used in this paper are admissible,
meaning that they do not overestimate c∗. We denote by g(s)
the cost of the cheapest known path to reach s from sroot,
f(s) = g(s) + h(s), OPEN holds all nodes that have been
generated but not expanded, and fmin is the minimum f
value on OPEN. The successors of state s, denoted ssucc, are
those s′ such that ∃ edge ∈ E : edge = (s, s′), c(s, s′) <
∞. Similarly, spred denotes the predecessors.

Envelope-Based Search
Envelope Search (ES) offers an alternative to the LSS
paradigm of limited lookahead followed by heuristic up-
dates. An ES algorithm maintains a search envelope con-
taining every node expanded throughout the life of the algo-
rithm. ES algorithms direct the agent toward the best node
discovered during the entire search so far, not simply the
best node in the agent’s immediate vicinity. Heuristic de-
pressions are much more easily avoided by ES algorithms
because minima can be fully explored over multiple itera-
tions and thereafter never considered for the agent’s target.
In this way, they can reason about the entire portion of the
state space generated so far, avoiding the obvious blunders
that plague agent-centered algorithms.

The problem of discovering and extracting a path from
the agent to some arbitrary target node is non-trivial. Agent-
centered search in the absence of dead ends typically guar-
antees that a path will be available and easily extracted for
the agent within the time bound by virtue of the fact that
no nodes are considered which are farther away from the
agent than the bound. In Envelope Search, however, the
agent may be arbitrarily far away from the node set as its tar-
get. ES algorithms must be able to incrementally construct
paths connecting the agent to the target so that the time con-
straint is not violated. TBA* and I-ES represent alternative
approaches to this problem.

Time-Bounded A*
Time-Bounded A* (TBA*) (Björnsson, Bulitko, and Sturte-
vant 2009) is an Envelope Search algorithm that maintains
a single A* search tree rooted at sroot throughout the life
of the algorithm. The tree is constructed incrementally ex-
actly as in offline A* by expanding nodes until the constant
time bound is reached. TBA* periodically commits the agent
to the path leading to the current-best node on the frontier
with respect to fmin. This is achieved by tracing back paths
from target nodes via the parent pointers in the A* search
tree. TBA* inherits from A* completeness in solvable in-
finite undirected domains. Though the algorithm can make
no guarantees about overall solution quality since it is real-
time, in practice the underlying optimality of the A* search
tree tends to create high-quality solutions.

Algorithm 1: TBA*
input : bound , tracebackLimit

1 OPEN ← {root}
2 loc ← root
3 while loc 6= goalState do
4 A* from OPEN until bound is exhausted
5 if goal node not traced then
6 newTarget ← TracePath(tracebackLimit)

if newTarget is not null then
7 agentTarget ← newTarget

8 if loc is on path to agentTarget then
9 loc ← loc.next

10 else
11 loc ← loc.parent

Pseudocode for TBA* appears in Algorithm 1. TBA* be-
gins precisely as A*: seeding the open list with the root state
[line 1] and expanding nodes sorted on f [line 4]. The A*
search is paused when bound is reached. Then, the algo-
rithm performs its “Traceback” phase [line 6].The traceback
function takes tracebackLimit as a parameter which places
a constant bound on the amount of time the algorithm can
spend tracing a path. If no trace-in-progress is cached, TBA*
selects the best node from the open list and begins extracting
a path by following parent pointers from the search tree. The
trace terminates on any of three criteria: the trace reaches
the root state, the trace reaches the agent’s location, or the
tracebackLimit is reached. In the last scenario, the trace-in-
progress is cached so that it can be resumed during the next
iteration, and null is returned. When a trace terminates at
the root or the agent’s location, the node at the end of the
path is returned as newTarget and is set as the agent’s target
[line 6]. The agent moves based on a simple decision: if it is
on the path to its current target, continue on that path. If not,
move to the previous state on its current path.

Both the number of nodes expanded by A* and the num-
ber of nodes traced in the Traceback phase are bounded by a
constant, so an iteration guarantees constant time complex-
ity, i.e. O(bound + tracebackLimit).

Björnsson, Bulitko, and Sturtevant (2009) describe some
simple optimizations to the basic algorithm. The ‘threshold’
optimization prevents the agent from choosing a new path
unless the g value of newTarget is at least as high as the g
value of agentTarget . This prevents the agent from switch-
ing rapidly between paths that are roughly as good. This op-
timization was shown to produce 2% better paths in certain
circumstances, and so we include it in our implementation.
A second technique, ‘shortcutting,’ will be discussed below.

Variants: Weighted, Greedy, and Restarting
The original TBA* algorithm, while effective compared
to agent-centered competitors, is flawed due to its re-
liance on g as a function of sroot. Hernández, Ası́n,
and Baier (2014) introduce two variants: Time-Bounded
Weighted A* (TB(WA*)) and Time-Bounded Best-First



@

*

a
dy

b b

dx

nL nR

nU

*

@

a

b

n1
n2

n3

Figure 1: Challenges for TB(WA*) (left), TB(BFS) (right).
Red solid lines approximate the trajectory of TBA* to a cer-
tain time, green dotted lines represent the backtracking path
TBA* takes when a new branch leads to a goal, and blue dot-
ted lines represent a shortcut from the red path to the goal.

Search (TB(BFS)). The modification is simple but power-
ful: instead of an A* search, the underlying search tree is
constructed using Weighted A* or Greedy Best-First Search
respectively. After all, there is no reason that the agent must
necessarily find an optimal path from the root to a goal, as
its actual trajectory is likely to be suboptimal.

TB(WA*) reduces the agent’s dependence on sroot by us-
ing the weighted A* equation f(s) = g(s)+w ∗h(s) where
w > 1.0. This means that the algorithm is not restricted
to finding the optimal path, but rather any path within the
suboptimality bound w. As a result, increasing the weight
can often lead to lower-cost total solutions since the agent is
not forced to backtrack toward an optimal branch of the tree
when the goal is closer to the agent’s current location.

TB(BFS) divorces the search from the concept of g at all
and instead conducts a Greedy Best-First Search ordered on
h. This allows the agent to follow the heuristic greedily. The
search tree is still rooted at sroot, but when the tree is long
and skinny, as it would be with a heuristic accurate enough to
be consistently decreasing, the agent rarely has to backtrack.

Restarting Time-Bounded Weighted A* (TBR(WA*))
(Hernández, Baier, and Ası́n 2016) is a variant that is
complete on directed search graphs (i.e. graphs with non-
reversible edges). In this variant, when the agent attempts to
backtrack but no edge to the previous state exists, the search
graph is discarded. The algorithm then begins expanding a
new search graph rooted at the agent’s current state. In order
to achieve completeness, the heuristic values of all nodes in
the discarded search tree are updated using a Dijkstra backup
in exactly the same manner as LSS-LRTA*.

Shortcuts
Even with greedy envelope expansion, the problem remains
that the agent’s behavior is tied to the search tree anchored
at sroot, a state which is irrelevant after the first iteration. (In
fact, the low h bias of greedy expansion can even worsen the
problem.) Figure 1 presents examples illustrating this poor
behavior. Each case is an instance of grid pathfinding with
four-way movement and the Manhattan distance heuristic.
The start location is marked by @ and the goal by *. As we

will explain, the red solid lines approximate the trajectory of
TBA* up to a certain time. The green dotted lines represent
the backtracking path that TBA* follows when it discovers
another path to the goal. The blue dotted lines represent the
shortcut path through the state space that an agent could have
taken from the end of the red path to reach the goal more
quickly.

The left panel shows a troublesome instance for
TB(WA*). Because h is Manhattan distance and increases
as we move away from the start, the search will begin by
alternately expanding the paths to the left and right until ei-
ther the bottom left (nL) or bottom right (nR) corner node is
expanded. Observe that h(nL) = h(nR) = a + b. Call this
value hb, so f(nL) = f(nR) = b + whb. Assume without
loss of generality that TB(WA*) breaks the tie in favor of
nL. For the ith successor of nL such that i < a, observe that
h(ni) = (a− i) + b. Therefore, f(ni) = b+ i+wh(ni) =
b+i+w(a+b)−wi = b+whb+i(1−w), so f(ni) < f(nR)
if w > 1. Therefore, all nodes in the left corridor will then
be expanded before expanding nR. Assuming that a and b
are large relative to the lookahead size, the agent will move
along the red path toward nU . Then, let di = dxi

+ dyi
be

the distance of a node li past nU , so h(li) = b − dxi
+ dyi

and f(li) = b+ a+ di +wh(li). TB(WA*) will continue to
expand along the red path as long as:

f(li) < f(nR)

b+ a+ di + wh(li) < b+ whb

w(h(li)− hb) < −a− di

w(hb − h(li)) > a+ di

w >
a+ di

hb − h(li)

w >
a+ dxi

+ dyi

a+ dxi
− dyi

which can be made true for any w > 1 by increasing a.
But as dyi

increases relative to a, there will come a point
where w is no longer large enough and nR is expanded. In
the figure, this is where the red path ends. Since nR then
becomes the best node on OPEN, it or its successors will be-
come the agent’s target. Because TB(WA*) moves the agent
only along the search tree, the agent will be forced to back-
track to sroot, instead of discovering the shortcut represented
by the blue dotted arrow.

The right panel shows a troublesome instance for
TB(BFS). Let l be the lookahead. Observe that h(n1) =
h(n2) = a+b. Without loss of generality, assume the search
breaks ties in favor of moving south, so n1 is expanded first
and the agent falls into the local minimum where all nodes
besides n1 have h < a + b. Because the search order is
greedy, nodes along the red path will be expanded until n3

is reached, at which point the search will fill the room by
diagonals. Once the room is filled, TB(BFS) will expand n2

and backtrack the agent along the path it came in by. This
will be longer than a shortcut (such as the blue path) if the
agent has already passed n3 by the time the room has filled.
This is true when the number of actions the agent has taken,
ab
l , is greater than a + b, which happens when l = 1 and



a = b = 3 or when l > 1 and a = b = l2.
The original TBA* paper proposes a ‘shortcut’ optimiza-

tion. When a goal is traced but the agent is not on the goal
branch, a new search is conducted every iteration from the
entire goal path toward the agent. If the agent is found,
the path is extracted and followed (Björnsson, Bulitko, and
Sturtevant 2009). We implemented this technique, but do not
include it in our experiments because, for many of the do-
mains we tested on, the algorithm could not complete within
the allotted time. The technique requires seeding a new open
list from sroot to the discovered goal every iteration after a
goal is found, which is worst-case linear in the size of the
domain, making it impractical in domains of even moderate
size.

Iterative Updates in TBR(WA*) Hernández, Baier, and
Ası́n (2016) make reference to the fact that the heuristic up-
date operation of TBR(WA*) is not bounded by a constant
and suggest it can be done iteratively. In consultation with
the original authors, the following implementation was used
in our experiments: When the agent attempts to backtrack
but cannot, the existing OPEN is cached and reordered on h,
and a new open list is allocated. We will call this new open
list OPENcurrent and the cached one OPENcached. We choose
the best successor s′ of the agent’s current state s with re-
spect to the priority function and seed it into OPENcurrent.
The action transitioning s to s′ is returned for execution.
For every iteration while OPENcached is not empty, a number
of nodes are expanded from OPENcached equal to the num-
ber of nodes expanded in the forward search, thus bound-
ing the number of updates performed by a constant. Note
that expansions from OPENcached are executed as in LSS-
LRTA* (Koenig and Sun 2009). When OPENcached is empty
it is discarded. If the algorithm attempts to restart when
there is already a non-empty OPENcached, then the existing
OPENcurrent is not cached but simply discarded. This en-
sures that there is no way any state can be “discarded” from
OPENcached repeatedly and thus never updated.

Observe that the above maintains completeness by not
disrupting any invariants of the original TBR(WA*). Any
state that is continually visited will eventually be moved to
OPENcached and updated accordingly.

If OPEN is ordered on weighted f , reordering OPENcached

on h is a linear operation in the size of the frontier and thus
still not bounded by a constant. However, it is likely to be
significantly less than the operation of updating the entire
closed list when restarting is triggered, which is linear in
CLOSED, not OPEN, and so represents an improvement over
the scheme presented by Hernández, Baier, and Ası́n (2016).

Intra-Envelope Search
We now turn to a new approach to Envelope Search we call
Intra-Envelope Search (I-ES). Like TBA* and variants, a
single search frontier is maintained throughout the life of the
algorithm. Periodically, the best node on the frontier is se-
lected as the agent’s target, and a search is performed within
the envelope to connect the agent to that target node. These
connection searches allow the agent to “shortcut” through
the state space toward a target node. Pseudocode is presented

in Algorithm 2.
I-ES maintains an open list OPENfr representing the En-

velope frontier. An additional open list OPENbk is main-
tained for the intra-envelope search and is described in detail
below. The algorithm is agnostic to the ordering of the nodes
on these open lists except that the priority function must in-
crease as h increases in order to provide completeness guar-
antees (Theorem 2).

The algorithm takes a parameter bound which is a re-
source limit on the iteration execution time. This limit is split
into 2 parts by multiplying by a factor 0 < r1 < 1. In our
experimentation we used r1 = 0.8, implying more frontier
expansion and less search within the envelope. The “cache”
of the agent’s path is set to an empty list, and OPENfr is
seeded with the root node [line 7].

While the agent has not reached the goal, the algorithm
proceeds in two parts: Exploration and Path Extraction. The
EXPLORE function expands nodes from and adds succes-
sors to OPENfr until boundfr is exhausted [line 9]. Every
state s expanded by EXPLORE has its heuristic value up-
dated to s.h = mins′∈ssucc

s′.h + c(s, s′). This update is
only relevant in directed graphs, where it provides complete-
ness guarantees (Theorem 2).

In Path Extraction, I-ES searches through the envelope to
connect the agent to a target node. There are many possible
techniques for searching within the envelope, but for clarity,
we focus on a simple backward search from a target to the
agent. First, we seed the intra-envelope search open list if a
search is not in progress [line 11]. starget is set as the root of
the backward search and sforward is set as its goal. Note that
if our path cache is non-empty we seed the forward search
from the end of the cached path [line 21].

Next the ENVELOPESEARCH function is executed. Using
the backward strategy (pseudocode in Algorithm 3), nodes
are expanded by examining their predecessors. Note that
only predecessors that have already been generated by the
Exploration stage are examined, ensuring the search remains
within the envelope. The goal of the search is to connect
starget with sforward, so a state s is ordered within OPENbk

using h(sforward, s). EXPAND sets pointers on predecessors
so that the path to starget can be extracted.

If sforward is expanded from OPENbk, the search is ter-
minated and a path is extracted. The EXTRACTPATH func-
tion constructs a path by walking forward from sforward to
starget following pointers set in the envelope search. The
resulting path is appended to pathCache [line 28 - 29].

If no path is available after ENVELOPESEARCH, then a
partial path is constructed by simply taking best successor
of sforward with respect to h. Note that if sforward has not
been expanded yet it is expanded as by EXPLORE during
EXTRACTPARTIALPATH [line 14]. Finally, the agent transi-
tions to the next state in the cached path.

Directed Domains I-ES works in directed search graphs
with one modification. If OPENbk = ∅ and no connec-
tion path has been extracted, the entire envelope is reset:
CLOSEDfr ← {}, OPENfr ← {sagent}. Crucially, heuris-
tic updates for states explored are maintained. If the back-
ward search is empty, this means that the agent cannot reach



Algorithm 2: Intra-Envelope Search (I-ES)
input : bound

1 sagent ← root
2 starget ← null
3 sforward ← null
4 boundfr ← r1 ∗ bound
5 boundi ← (1.0− r1) ∗ bound
6 pathCache← [ ]
7 OPENfr ← {root}
8 while ¬Goal(sagent) do

// Exploration
9 Explore(boundfr)

// Path Extraction
10 if Envelope Search not in progress then
11 ReseedEnvelopeSearch

12 EnvelopeSearch(boundi)
13 if pathCache is empty then
14 pathCache← ExtractPartialPath

15 sagent ← pathCache.first
16 pathCache.removeF irst()

17 define ReseedEnvelopeSearch:
18 starget ← OPENfr.top()
19 OPENbk ← {starget}
20 if pathCache is not empty then
21 sforward ← pathCache.last

22 else
23 sforward ← sagent

Algorithm 3: EnvelopeSearch - Backward Strategy
24 while boundi not exhausted do
25 s← OPENbk.pop()
26 Expand (s)
27 add spred ∩ (CLOSEDfr ∪ OPENfr) to OPENbk

28 if s = sforward then
29 pathCache← pathCache+

ExtractPath(s)
30 break

starget from within the expanded envelope, and so we begin
re-exploring the area of the state space we know the agent
will be able to reach.

Properties of I-ES
We now turn to characterizing conditions under which I-ES
terminates and is complete.

Definition 1 In an undirected domain, ∀s ∈ S, ∀s′ ∈
ssucc, s ∈ s′succ. Otherwise, the domain is directed.

Definition 2 In a solvable domain, ∀s ∈ S, ∃ path p :
p.first = s ∧ Goal(p.last) is true. Any s for which this
does not hold is a dead end.

Theorem 1 I-ES is complete in finite undirected solvable
domains.

Proof: The EXPLORE function will continue to expand
nodes until all descendants of the start state have been ex-
panded, which by definition of a finite solvable state space
must include a goal node. Once a goal is generated, the back-
ward search will be seeded with it during the next call to
RESEEDENVELOPESEARCH. The agent is always either fol-
lowing a path extracted from the intra-envelope search or
transitioning to its best successor as discovered by expand-
ing its current state. Therefore the agent is always within
the envelope. The backward search will eventually expand
sagent since the domain is finite and the agent is always
within the envelope. Thus a path will be extracted to the
goal. �

Furthermore, I-ES is also complete in a broad class of di-
rected domains.

Theorem 2 I-ES is complete in finite directed solvable do-
mains with no dead ends, positive finite edge costs, and pos-
itive finite heuristics.

Proof: We reuse the classic RTA* proof (Korf 1990, Theo-
rem 1): To be incomplete in a finite domain, the agent must
forever traverse a finite set of states S that does not include a
goal. (We note that this implies resetting the envelope fron-
tier an infinite number of times, as at least two nodes will
need to be chosen as targets an infinite number of times.)
The h value of every node expanded by EXPLORE is set to
a value higher than the minimum of its successors, due to
the positive action costs. Therefore, a minimum h value in
S will iteratively be raised until a successor outside S ap-
pears more attractive than any node in S, causing the agent
to leave S and implying a contradiction. �

Theorem 3 I-ES terminates in finite unsolvable undirected
domains.

Proof: If OPENfr empties without finding a goal, EXPLORE
will cause the algorithm to terminate. �

Ordering the Open Lists
I-ES and its theorems are agnostic to the ordering of the
open lists. We explored several priority functions includ-
ing Greedy Best First on h for all open lists, weighted f
for OPENbk, and a weighted f -like function for OPENfr cal-
culated as f(s) = w ∗ h(s) + h(s, sagent) where sagent
is the agent’s current state. This function allows us to ap-
proximate g without having to maintain a rigid graph. Since
each open list could theoretically be ordered using a differ-
ent priority function, the number of configurations possible
is combinatorial in the number of priority functions consid-
ered. For experimental comparison with TBA*, we used a
Greedy Best-First priority function for OPENfr and either
a greedy or a weighted f function for OPENbk. The weight
parameter reported in experiments applies only to the back-
ward open list. In the backward search, g(s) = c(s, starget).

These configurations were identified as the strongest per-
formers in the domains considered; we omit plots and de-
tailed analysis of the other configurations for brevity.



Figure 2: left: 100× 100 Minima map; right: Starcraft Caul-
dron map

Time Complexity
As a real-time algorithm, we analyze time complexity with
respect to per-iteration guarantees. All operations are either
O(1) or otherwise bounded by the constant bound except
where noted below.

The open lists are implemented for our experimental anal-
ysis using binary heaps. Insertion time into a binary heap
takes log time in the size of the heap, which is not bounded
by a constant. Data structures exist for constant time insert,
such as the Fibonacci Heap, but were not used for ease of
implementation.

The EXTRACTPATH function is worst-case linear in the
number of states generated so far since it is possible that all
states generated are on the extracted path. Therefore, EX-
TRACTPATH is not bounded by a constant. It is possible
to iteratively construct the path over mutliple search itera-
tions in a manner similar to TBA*, however, we decided
not to focus on those details since following pointers is a
relatively cheap operation. Profiling of our implementation
revealed that our traceback operations take approximately
200ns as opposed to our expansion operations which take
approximately 4000ns, and furthermore our tracebacks ac-
count for only 2% of total algorithm runtime. For fair com-
parison with TBA* and its variants, we set the TBA* param-
eter tracebackLimit = ∞ allowing it to also extract paths
unbounded by constants.

pathCache was implemented as a linked list which al-
lows constant time insert, delete, and append for both the
start and end of the list.

Experimental Results
We tested variants of TBA* and I-ES on: 1) the 100 15-
puzzles of Korf (1985) using Manhattan distance (MD); 2) a
deterministic version of the racetrack game (Barto, Bradtke,
and Singh 1995) in which a collision brings the velocity to
zero, using MD divided by the maximum achievable speed
and a version of the original Barto racetrack that is scaled
and extended to be 414 x 66; 3) grid pathfinding using
four-way movement and MD in a) the Starcraft cauldron
map (Sturtevant 2012) and b) 1500 x 1500 grids with large
randomly-generated minima, referred to as the Minima do-
main (Figure 2 shows example maps).

Each experiment was given 7GB RAM and 5 minutes.
Real-time bounds were specified using limits on the num-
ber of expanded nodes and the CPU time of every iteration
before the goal was found was recorded. To compensate for
not using a real-time OS, we used the 99th percentile of the
per-iteration CPU times, which was much more stable than
the maximum.

We present the most successful variants of TBA* and I-
ES, with LSS-LRTA* reported as a baseline. For this anal-
ysis, the “Greedy” I-ES variant uses GBFS for both frontier
and intra-envelope expansion, whereas the “Weighted” vari-
ant uses GBFS for frontier expansion and Weighted A* for
intra-envelope expansions. A weight of 3.0 was selected as
a high-performing weight in these domains and compared
against greedy variants.

Figure 3 presents the results. The x-axis represents the
mean over the test instances of the 99th percentile of the
per-iteration CPU time, with error bars representing 95%
confidence intervals. The y-axis represents the mean agent
trajectory cost, expressed as a factor of A*’s off-line opti-
mal solution, again with confidence intervals. Figures 3a and
3b show that, in grid pathfinding, I-ES is significantly supe-
rior to the other tested algorithms for lower time bounds.
Above 15 ms/iteration, TB(WA*) become slightly superior.
Note that even though both TB(BFS) and I-ES expand their
frontiers on a greedy best-first strategy, I-ES has much bet-
ter performance, suggesting the shortcutting inherent to I-ES
makes a crucial contribution in these highly-connected do-
mains.

The Sliding Tile experiments (Figure 3c) offer an interest-
ing contrast. I-ES is somewhat competitive with the TBA*
variants at low iteration durations, but TB(WA*) becomes
much better at higher lookaheads. This suggests that in this
domain the ability of TB(BFS) to find a suitable path quickly
is more important than the ability to switch between paths
opportunistically. This is evidenced by the trajectories of
the I-ES and TB(BFS) plots, which are very similar. Recall
that both I-ES and TB(BFS) expand their frontiers greedily,
but that I-ES spends computation time searching within the
envelope. The time spent on intra-envelope search reduces
the effectiveness of the greedy expansion strategy, though it
is still able to outperform TB(WA*) at low durations even
without a rigid internal graph structure.

Racetrack (Figure 3d) represents a domain where I-ES is
not as competitive, though it does ultimately converge with
TBA* in solution quality. We speculate that this is because
connections between branches in the search tree are difficult
to discover. The distance with respect to node transitions be-
tween two states which share a common location but vary
in speed may be large, and so discovering these connections
takes more computation time than in other domains.

Discussion
Intra-Envelope Search techniques have clear advantages in
certain domains. They exhibit the crucial behavior of be-
ing able to escape heuristic depressions without scrubbing
as evidenced by the high performance of I-ES in the Min-
ima domain. When compared with the leading real-time
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Figure 3: Solution cost as a function of the real-time bound for the best-performing variants of TBA* and I-ES.

search algorithm for these domains, TBA* and variants, I-
ES achieves state-of-the-art performance. By anchoring nei-
ther the search nor the path extraction in the increasingly less
relevant root node, I-ES is very effective at navigating dense
graphs via shortcuts when new target nodes are selected.

The performance of I-ES in grid pathfinding does not
translate as easily to the Sliding Tile and Racetrack domains.
This characteristic is a result of the fact that I-ES spends
computation on its extra intra-envelope search instead of
continuing to expand the frontier with all available time. In
grids, this split search pays dividends in better path qual-
ity because shortcuts between target nodes are discovered.
This is in contrast to TBA* and its variants which restrict
themselves to their pre-constructed graphs. In Racetrack and
Sliding Tile, the state space is not as interconnected and so
the extra time spent trying to find shortcuts ultimately proves
less effective than simply following pointers of a rigidly de-
fined search tree.

We experimented with seeding OPENbk with the entire
search frontier. This resulted in the agent being drawn to-

ward frontier nodes which happened to be near it rather
than the goal. We also experimented with replacing the
backward envelope search with a naive bidirectional search,
however, this did not improve performance. Incorporating
more recent work on bidirectional search (Holte et al. 2015;
Shperberg et al. 2019) could be a promising future direction.

I-ES could be extended into dynamic domains where edge
costs change over time. For example, the forward frontier
search could be replaced with a version of Lifelong Planning
A* (Koenig and Likhachev 2001), or the backward search
could be replaced with a version of D* Lite (Koenig and
Likhachev 2002).

Although the LSS and ES paradigms are the most popular
in real-time search, there are others. For example, the FRIT
algorithm (Rivera et al. 2014) does not rely on LSS expan-
sion as the only means to guide the agent. Instead, a relaxed
search graph (i.e. one with no obstacles) is constructed and
is then updated as the agent discovers that assumed edges do
not exist in the true search graph. This approach shows im-
provements when compared against other LSS algorithms,



but still restricts its learning to areas local to the agent and is
not limited to expanding states at most once.

Real-Time D* (Bond et al. 2010) uses both a forward
search for action selection and a backward search to con-
nect the agent with the goal. However, the backward search
limits the algorithm to domains featuring a single goal state.
I-ES is able to connect the agent to the frontier in the ab-
sence of a discovered goal and can guide the agent toward
the closest goal if multiple have been discovered.

Conclusion
We advanced the paradigm of envelope-based real-time
heuristic search as a contrast to the more traditional agent-
centered approach. We examined TBA*, the previous state-
of-the-art envelope-based approach, and presented examples
of troublesome problems for its way of guiding the agent
towards the promising area of the search frontier. We pro-
posed a new approach, Intra-Envelope Search (I-ES), that
conducts an auxiliary search within the main envelope to
connect the agent to the frontier. We showed that I-ES is
complete in both undirected and directed domains under rea-
sonable assumptions and compared its best configurations
with TBA*’s in several search benchmarks. I-ES exhibits
superior performance in highly-connected domains like grid
pathfinding where shortcuts were easily extracted, although
it did not provide any advantage in more sparsely-connected
state spaces such as racetrack. Given that the main advantage
of envelope-based methods is their avoidance of scrubbing,
which appears so irrational to an observer, we hope I-ES’s
sensible approach to guiding the agent to the frontier will
raise the profile of envelope-based search as an effective ap-
proach for real-time planning.
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