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eg, goal achievement time =
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utility function:
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Explicit Estimation Search SThayer and Ruml, 2011!

I troduction m unbiased estimates can be more informed than lower bounds
Planning as Search m nearest goal is the easiest to find

Optimal Planning

Bounded Suboptimal

® Three Heuristics

Strategy
Expansion Order
Bound

EES Performance

minimize solving time subject to cost < w-optimal:

Conclusion

pursue nearest goal estimated to lie within bound

need more information than just lower bound on cost (h(n))!
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h: a lower bound on cost-to-go

f(n) = g(n)+ h(n)
the traditional optimal A* lower bound
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Conclusion

3.

h: a lower bound on cost-to-go

f(n) = g(n)+ h(n)
the traditional optimal A* lower bound

AN

h: an estimate of cost-to-go
unbiased estimates can be more informed

f(n) = g(n) + h(n)
(Thayer and Ruml, ICAPS-11)

AN

d: an estimate of distance-to-go
nearest goal is the easiest to find

(Pearl and Kim, IEEE PAMI 1982,
Thayer et al, ICAPS-09)
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Planning as Search argmin f(rn)
Optimal Planning necopen
Bounded Suboptimal L ] .
m Intuition bestf: open node giving estimated optimal cost
B Three Heuristics
-
m Expansion Order argmln f(n)
necopen
® Bound

m EES Performance

Conclusion

pursue nearest goal estimated to lie within bound

AN

best +: estimated w-suboptimal node with minimum d

argmin d(n)
ne open/\f(n)ﬁw'f(b%tf)
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EES Expansion Order
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Planning as Search

Optimal Planning

Bounded Suboptimal

m Intuition
® Three Heuristics
m Strategy

m Expansion Order

m Bound
m EES Performance

Conclusion

besty: open node giving lower bound on cost

best

f

open node giving estimated optimal cost

AN

best: estimated w-suboptimal node with minimum d

node to expand next:

1.
2.
3.

In other words:

1.
2.
3.

pursue the nearest goal estimated to lie within the bound

bestg
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Conclusion

besty: open node giving lower bound on cost
best+: open node giving estimated optimal cost

f

AN

best: estimated w-suboptimal node with minimum d

node to expand next:

1.
2.
3.

pursue the nearest goal estimated to lie within the bound

In other words:

1.
2.
3.

AN

if f(bests) < w - f(besty) then best >
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EES Expansion Order

besty: open node giving lower bound on cost

Introduction

Planning as Search bestf: open node giving estimated optimal cost

Optimal Planning best - estimated w-suboptimal node with minimum d

Bounded Suboptimal

® Intuition

m Three Heuristics node to expand next:

m Strategy

1. pursue the nearest goal estimated to lie within the bound
oun

m EES Performance 2. pursue the estimated optimal solution

Conclusion 3

In other words:

AN

1. if f(bests) < w- f(besty) then best >

AN

2. else if f(best;) <w- f(bests) then best +
3.
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EES Expansion Order

besty: open node giving lower bound on cost

Introduction

Planning as Search bestf: open node giving estimated optimal cost

Optimal Planning best - estimated w-suboptimal node with minimum d

Bounded Suboptimal

® Intuition

m Three Heuristics node to expand next:

m Strategy

1. pursue the nearest goal estimated to lie within the bound
oun

m EES Performance 2. pursue the estimated optimal solution

Conclusion 3. raise the lower bound on optimal solution cost

In other words:

AN

1. if f(bests) < w- f(besty) then best >

AN

2. else if f(best;) <w- f(bests) then best +
3. else best;

see paper for further justification. Note: no magic numbers!
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EES Respects the Suboptimality Bound

Introduction

Planning as Search

Optimal Planning
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Conclusion

AN

how does f(n) < w - f(bests) ensure the suboptimality bound?
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EES Respects the Suboptimality Bound

Introduction

Planning as Search

Optimal Planning

Bounded Suboptimal

B [ntuition
® Three Heuristics
m Strategy
m Expansion Order

m EES Performance

Conclusion

AN

how does f(n) < w - f(bests) ensure the suboptimality bound?

f(n) < f(n) f(n) is a lower bound for n
]?(n) < w- f(besty) expansion criterion
w - f(besty) < w- f*(opt) because f(besty) is a lower
bound for the entire problem
f(n) < w- f*(opt) suboptimality bound
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EES Performance

Introduction

Planning as Search

bounded suboptimal search:
Bounded Subostimal - minimize time subject to |
Intuition relative cost bound (factor of optimal)
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