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ABSTRACT

Active Goal Recognition Design

by

Kevin C. Gall

University of New Hampshire, May, 2021

In Goal Recognition Design (GRD), the objective is to modify a domain to facilitate early

detection of the goal of a subject agent. Most previous work studies this problem in the offline

setting, in which the observing agent performs its interventions before the subject begins

acting. In this thesis, we generalize GRD to the online setting in which time passes and

the observer’s actions are interleaved with those of the subject. We illustrate weaknesses

of existing metrics for GRD and propose an alternative better suited to online settings.

We provide a formal definition of this Active GRD (AGRD) problem and propose both an

optimal algorithm and a suboptimal algorithm for solving it. AGRD occupies an interesting

middle ground between passive goal recognition and strategic two-player game settings.
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CHAPTER 1

Introduction

Goal recognition is the problem of identifying the goal of a subject agent from observations of

its actions [Sukthankar et al., 2014]. The inputs to a goal recognition problem are a domain,

a set of possible goals, and observations of a subject acting in the domain. The output is

the subject’s goal or a probability distribution over possible goals. Applications range from

educational games [Ha et al., 2011], in which an education system may wish to discover a

student’s goal to be able to adapt the learning experience dynamically, to adversarial settings

[Ang et al., 2017], in which a defense system may try to predict the target of an attacker.

In this thesis, we study Goal Recognition Design (GRD) [Keren et al., 2014], where the

objective is to modify a domain to facilitate early detection of the goal of a subject agent

acting to achieve one of a known finite set of goals. The inputs to a GRD problem are a

domain, a set of possible goals, a set of interventions we are allowed to execute that modify

the domain, a budget that constrains the interventions we can execute, and a starting state

for an agent acting in this domain. The output is an ordered sequence of interventions to

execute on the domain. While most previous work studies this problem in the offline setting,

we propose a variant, Active Goal Recognition Design (AGRD), in which the observing agent

executes its interventions online while the subject is acting. The thesis we pursue in this

research is:

Active Goal Recognition Design is a useful new problem setting that sits between

passive Goal Recognition and two-player games.

In contrast to most work in Goal Recognition and GRD, where the observer is removed
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from the subject’s execution through the system, AGRD models the interaction between the

observer and the subject explicitly, drawing on game-theoretic approaches to multi-agent

systems [Shoham and Leyton-Brown, 2009]. However, full 2-player games model a host of

dynamics under the assumption that the two players act strategically to maximize their own

utility. Instead, we are only concerned with neutral observers and non-strategic subjects.

These assumptions model domains where the observer is not trying to interfere with the

subject, but is able to reason about their interactions to facilitate goal recognition as quickly

as possible.

For example, consider a playground with an area that includes a sand pit for toddlers and

an area with tall slides that are dangerous for younger children. Now consider an arriving

toddler very excited to play and not listening to her caregiver. She might run toward both

the sand pit and the tall slide, since they are in the same direction. As those with small

children know, toddlers can have a strong independent streak. Her caregiver would want to

know which was her goal as soon as possible so that they could intervene before she gets to

the slide, but take no other action if she is going to the sand pit so as to avoid a tantrum.

Conventional offline GRD would require the designers of the playground to plan in advance

a wall separating the two areas. In this case, the toddler must decide which direction she

is going in plenty of time for the caregiver to see and react. In the absence of such specific

foresight by the designer, the caregiver must step in the middle of the path, forcing the child

to go left or right and thus revealing her goal. Clearly, real-world environments do not always

have the luxury of offline design efforts to optimize the recognition of agents’ goals. Further,

there is a wide range of applications where online interaction can supplement offline GRD

from caregiving to automated remote assistance [Oh et al., 2014], and even cyber security

[Boddy et al., 2005; Edelkamp et al., 2009].

The rest of this thesis will be structured as follows:

• In Chapter 2, we describe the prior work this thesis builds on.

• In Chapter 3, we illustrate limitations of the conventional approaches to GRD and

2



discuss the challenges of adapting Goal Recognition Design problems to online settings.

• In Chapter 4, we define a formal problem setting for the Active Goal Recognition

Design (AGRD) problem and present theoretical analysis of its characteristics.

• In Chapter 5, we propose an algorithm, Opt-AGRD, for solving AGRD problems, prove

its optimality, and evaluate its performance on a set of benchmark domains.

• In Chapter 6, we propose IW-AGRD, another algorithm based on Opt-AGRD, that

exhibits anytime behavior and computes suboptimal solutions by exploring a reduced

state space. We evaluate its performance relative to Opt-AGRD.

• In Chapter 7, we conclude with a discussion of related work and possible directions for

further research.
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CHAPTER 2

Prior Work

2.1 Plan Recognition

Goal recognition is closely related to plan recognition, the problem of identifying an agent’s

plan either after or during execution. Many approaches to plan recognition use plan li-

braries or policies known a priori, to which observations are matched [Bui, 2003; Avrahami-

Zilberbrand and Kaminka, 2014; Kabanza et al., 2010; Mirsky et al., 2018]. However, quality

plan libraries can be difficult to acquire for new domains. In our work, we do not assume

the existence of plan libraries, and so must model possible behaviors another way. Plan

Recognition as Planning [Ramı́rez and Geffner, 2009] is a technique that matches observa-

tions to plans generated using classical planners, shifting the burden from acquiring quality

plan libraries to crafting planning models robust enough to capture enough details of subject

behavior. This work has been applied to probabilistic and stochastic settings [Ramı́rez and

Geffner, 2010; Oh et al., 2014] and lays the foundation for Goal Recognition Design, which

builds on the idea of subjects as agents in a planning domain to identify and eliminate plans

that make goal recognition difficult. Masters and Sardina [2019] study Goal Recognition,

building on the work of Ramı́rez and Geffner. They compute target areas, based on distance

to the goals, where an agent’s presence would indicate with high probability that they are

pursuing a specific goal.
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2.2 Goal Recognition Design

Goal Recognition Design (GRD) was first proposed by Keren et al. [2014], then extended for

sub-optimal agents, partial observability, and partially-informed agents [Keren et al., 2015;

Keren et al., 2016a; Keren et al., 2016b; Keren et al., 2020]. In a GRD problem, the observer

executes interventions in the domain, typically by adding or removing actions, that alter the

possible plans the subject can execute. The number of interventions an observer can execute

is usually constrained by a user-specified budget. The objective is to minimize worst-case

distinctiveness (wcd), the length of the longest (or more generally, the cost of the most

expensive) possible plan prefix before the subject’s true goal is the only possible goal given

the prefix. Possible plan prefixes depend on the setting, but in the simplest case are limited

to prefixes of optimal plans. A non-distinct plan prefix is a prefix compatible with multiple

goals the agent could be pursuing. Solutions to GRD problems are sequences of interventions

in the domain that do not exceed the user’s budget and that change the set of plans available

to agents to minimize wcd.

Wayllace et al. [2017] modify GRD to handle stochastic domains (S-GRD) where the

subject agent’s actions’ outcomes are not deterministic. They propose a new objective,

expected case distinctiveness (ecd), to deal with stochasticity. ecd is the expected time

that an agent’s path will be non-distinct given that the agent is following an optimal policy

to its goal. By using an expectation, their algorithm can select an intervention that is

expected to reduce the non-distinctiveness of the agent’s path, even if the intervention does

not necessarily reduce wcd.

2.3 Active Observers

There is a growing body of work on observers who use agency in the domain to help reveal the

subject agent’s goal more quickly. Kabanza et al. [2010] and Bisson et al. [2011] explore ‘pro-

voking actions’ to force opponents to reveal their intentions through their reactions. These
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works depend on direct cause-effect relationships between provoking actions and opponent

reactions. By contrast, our work allows observers to plan longer-term sequences of interven-

tions without immediate effect. Mirsky et al. [2018] model plans as context-free grammars

with nonterminals that can be refined via productions into primitive actions. They query

the subject online about whether a coarse plan can be refined to the correct hypothesis and

can thus prune significant portions of the observer’s hypothesis set. However, their observer

does not have agency to act in the world.

Shvo and McIlraith [2020] introduce Active Goal Recognition, where the observer is

granted agency to act within the domain. The work focuses on partially observable domains,

so they limit the observer’s plans to facilitating observations that do not alter any of the

subject’s possible plans. They choose interventions to maximally reduce the size of their goal

hypothesis prior to the next observation of the subject. Our work proposes a more complete

formulation where the observer is allowed to invalidate possible subject plans and execution

of observer and subject actions are interleaved.

Goal Elicitation Planning [Amos-Binks and Cardona-Rivera, 2020] defines a setting where

the observer’s interventions are interleaved with the subject’s actions as the observer seeks to

minimize wcd online. From the start configuration, they generate a set of possible plans for

the observer, then select from this set as the subject begins executing its own plan. However,

once committed to a plan, their formulation does not permit an observer to react to actions

the subject takes, even if the subject transitions to a part of the state space unaffected by

the observer’s plan. Moreover, once an observer plan finishes executing, it has no means

of generating a new plan to further reduce wcd. By contrast, our formulation allows the

observer to react to subject actions and adjust its plan accordingly.

6



CHAPTER 3

GRD in Online Settings

Existing work on GRD optimizes distinctiveness in the form of wcd or ecd. In this chapter,

we analyze these metrics and identify problematic cases. We then discuss an alternative

that has advantages in online settings. We also emphasize the importance of modeling the

passage of time.

3.1 Objective Functions

Intuitively, a goal recognition system should report the correct goal of a subject quickly

enough that the observer has time to react to this information. Distinctiveness, the under-

lying metric of wcd and ecd, focuses solely on how quickly goals can be identified. We will

contrast this with ψ, an objective that incorporates the reaction time an observer will have

to use the information about the subject’s goal.

3.1.1 Distinctiveness

One underlying problem with wcd as an objective function is that its focus on the worst

case can cause useful interventions to be overlooked. Consider Figure 3.1, which represents

a deterministic domain where the wcd equals the optimal cost to goal A. There are two plan

prefixes whose length equals wcd: one that leads to both B and C and becomes distinct at

time step wcd + 1, and one that leads to goal B and passes through goal A at time step wcd,

also becoming distinct at wcd + 1. The red circle indicates an intervention that eliminates

the plan to B that passes through A. However, the standard GRD objective would ignore

7



A

B

C

Start

wcd

wcd

Intervention

Figure 3.1: wcd misses the intervention

this intervention since it does not affect wcd. Clearly if the agent’s goal is A, it is preferable

to distinguish it even if the distinctiveness of B and C cannot be reduced.

To address this issue, we look to expected case distinctiveness (ecd) [Wayllace et al.,

2017]. ecd is a function which takes a state s in a Stochastic Shortest Path Markov Decision

Process (SSP-MDP) and returns the expected length of the subject’s non-distinct path prefix

through the MDP. To find ecd(s), they recursively find ecd of all the successors of s and

weight each of them by the transition probabilities of actions leading to the successor and

the actions’ likelihood w.r.t. a set of given prior probabilities over possible goals. The base

case of ecd is a state for which the goal is uniquely identifiable. Though ecd was designed

for stochastic domains, determinism is merely a special case. Let us weight each goal in

Figure 3.1 equally so that we can compute ecd for the start state. Each successor of the

start state leads to a branch that becomes distinct at wcd + 1, and each goal has equal

probability, so before executing the intervention, ecd(Start) can be computed by taking the

weighted average of the distinctiveness over all goals: ecd(Start) = wcd
3

+ wcd
3

+ wcd
3

= wcd .

It is clear that by executing the intervention, ecd(Start) = 0 + wcd
3

+ wcd
3

= 2
3
wcd since goal

A becomes distinct after taking a single step, thus identifying that the intervention is worth

executing.

However, ecd still has a key flaw: as a measure based on distinctiveness, it is insensitive

8
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s1

a1

a2

s2

s3

s4

s5

A

B

C

Figure 3.2: ecd provides no guidance

to the time remaining after the goal is identified, the reaction time. Consider Figure 3.2, in

which there are three possible goals with a priori equal probability: A, B, and C. All arrows

describe deterministic actions of cost 1. There are two possible interventions: removing a1 or

a2. It is possible that an agent pursuing goal A will not reveal their goal until it is achieved

by taking the path 〈r, s2, s4, A〉. The only way to guarantee that all goals will be identified

before they are achieved is to remove action a1. However, removing either a1 or a2 will have

identical effects on ecd since their removal is symmetrical. A plan to goal A via s4 is distinct

after 3 steps, which is the same as a plan to C via s5, despite the fact that A is achieved in

3 steps where C is not. Therefore, a1 will not be identified as a more urgent intervention

than a2 despite our intuition that a1 is better. In offline GRD with budget constraints, a

more sophisticated prioritization is important for executing the most impactful interventions

with limited resources. When intervening online, prioritization is even more critical since we

may not have time to execute all impactful interventions prior to the subject transitioning

beyond them.

3.1.2 ψ: Fraction of the subject’s plan

In their work on Active Goal Recognition, Shvo and McIlraith [2020] compute a different

objective: the fraction of the subject’s plan that is completed prior to the goal being recog-

nized. Their approach does not directly minimize this metric, but its use is indicative of the

9



A

B

A

B C C

Figure 3.3: Tree for calculating ecψ on root node.

properties of a useful online detection system, e.g. one that considers the reaction time the

observer will have to utilize the information once the goal is identified. Pursuing this idea,

let us formally define this metric.

Definition 1 ψ : S × G → [0, 1] is a function that takes a state and a goal and returns the

fraction of the plan that has been executed to achieve that goal relative to a start state sroot :

ψ(s, g) =
|OptimalPlanToState(sroot , s)|
|OptimalPlanToGoal(sroot , g)|

. (3.1)

We will clarify all of our assumptions in Section 4.1. For the purpose of this argument, we

use plan length as a measure of time and so use the fraction of the executed plan length over

the total plan length. Let ecψ be a function that behaves exactly as ecd except, instead of

returning the expected distinctiveness of a state, it returns the expectation of ψ for the first

state where we can identify the subject’s true goal. As with ecd, lower numbers are better.

10



Returning to the example from Figure 3.2, if we replace ecd with ecψ, it becomes clear

that removing a1 is the best intervention. Figure 3.3 shows the tree induced by finding ecψ

of the root state r. Goals are represented as diamonds. Leaf nodes are those for which the

subject could only be pursuing one goal, and are represented as rectangles, except where

a leaf node is a goal. For clarity, we represent transitions the subject would execute after

their goal is distinct with dotted lines, however these nodes are not traversed in the tree to

calculate ecψ. The value of a leaf node representing state s is ψ(s), and the values of non-leaf

nodes are the average values of its children weighted by the probability of the action that

leads to that each child, which depends on the goal priors for the goals that child could lead

to. For example, children of the root node r have values 1
3
, 13

16
, and 1

4
for successors s1, s2,

and s3 respectively. Again, we assume all goals are equally likely, so the total probability of

the subject transitioning to s1 is 1
6

because there is a 1
3

probability the subject is pursuing

goal A, and if the subject is pursuing goal A, there is a 1
2

probability they will transition to

s1, so 1
3
× 1

2
= 1

6
. Accordingly, the respective action probabilities for s2 and s3 are 2

3
and 1

6
.

Therefore, the value of ecψ(r) = 1
3
× 1

6
+ 13

16
× 2

3
+ 1

4
× 1

6
= 23

36
≈ 0.64.

Observe that for a subject pursuing B, the effect of removing a1 or a2 is identical, so let

us isolate the effect of these interventions for cases where the subject is pursuing either goal

A or C. We can decompose ecψ = pA × ecψA + pB × ecψB + pC × ecψC where pX is the

probability of Goal X, and ecψX is the expected ψ for instances where the subject’s goal is

actually revealed to be Goal X. Since all goals in our example are equally likely, we must

simply prove that removing a1 has larger effect on ecψA than removing a2 has on ecψC .

Figure 3.4 shows the reduced tree corresponding to ecψA. The branch of the tree where

the subject transitions toward Goal B is faded since a subject whose ground truth goal is

A would not pursue that branch, but we leave it in the figure so that it is clear when the

subject’s goal actually becomes distinct. A subject pursuing A could transition to s1 in

which case their plan is distinct after 1 step, so ecψA(s1) = 1
3
. If action a1 is still available,

the subject could also transition to s2 in which case the only remaining plan to A is not

11



A

B

A

Figure 3.4: Tree isolating instances where Goal A is revealed to be the actual subject goal

distinct from a plan to B until A is achieved, i.e. ecψA(s2) = 1. Assuming that each action

that leads to the subject’s goal is equally likely, ecψA(r) = 1
2
× 1

3
+ 1

2
× 1 = 2

3
If we remove

a1, then the plan that is distinct after one step is the only one remaining, so ecψA(r) = 1
3
,

a reduction of 1
3
. Repeating this for a subject pursuing C, prior to any interventions we

have ecψC(r) = 1
2
× 1

4
+ 1

2
× 3

4
= 1

2
. After removing a2, ecψC(r) = 1

4
, a reduction of 1

4
.

Since the reduction from removing a1 (1
3
) is greater than the reduction from removing a2

(1
4
), minimizing ecψ would prioritize a1 for removal.

ecψ effectively normalizes both distinctiveness and reaction time across all goals so that

the urgency of distinguishing a goal is inversely proportional to the length of the optimal plan

to achieve it. In other words, close goals are prioritized over distant goals. The normalizing

effect of ψ provides guidance when interventions have effects of similar magnitude. More

weight is given to those that affect close goals because a reduction in time to identify the goal

accounts for a larger fraction of the plan to a close goal than a distant one. This guidance is

important in online settings with time pressure where we may not have time to execute all

meaningful interventions, and so must prioritize them.
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Figure 3.5: Temporal reasoning in AGRD.

3.1.3 Choosing Objectives

Ultimately, the choice of objective is domain-specific. Consider a wildlife photographer who

wishes to photograph a rare animal and knows that they can be found at one of a few streams

at certain times of day. They set up mics and low-fidelity cameras in the environment that

allow for basic tracking, but to get the Pulitzer Prize shot, they need the stream. Perhaps the

photographer knows that if the animal senses them, it will run off to drink at another stream,

so they need as much time as possible to set up at the correct stream so that they can be well

hidden by the time the animal arrives. One can imagine various interventions to encourage

the animal to choose a direction, for instance by setting up a barrier at some common trail to

force the animal to take a different, more distinct path to one of the streams. Distinguishing

close goals may not be a priority in this case because, if there is not enough time to set up,

then the photographer will not get the shot anyway. In this case, maximizing the reaction

time is paramount, no matter how close or far the distinguished goal is. In Chapter 4, we

will define the objective function of our problem setting generically to accommodate varying

requirements appropriate to different domains.

3.2 Temporal Reasoning

Our consideration of reaction time in the formulation of ψ illustrates a gap in the conventional

Active Goal Recognition setting: a formal treatment of the passage of time. If we wish to

minimize a metric based on ψ, we need to be able to execute interventions that are still

13



relevant by the time they are carried out. For example, consider Figure 3.5. In this simple

Grid-World with 4-way movement, the subject agent (blue) has one of two goals (orange).

The observer agent (red) may block any green cell it is adjacent to. The observer follows

the same movement rules as the subject, and they can occupy the same cell. We assume

the subject follows optimal plans and the observer must not change the optimal cost to any

goal. By any of the discussed objectives, it is clear that blocking I-1 would force the subject

to reveal its goal more quickly than I-2, since the subject must turn left or right after one

step. However, under a realistic online model where the subject’s and observer’s actions are

interleaved, the observer agent does not have enough time to reach and block I-1 before the

subject enters that cell. An observer reasoning with temporal awareness will identify that

I-2 is actually the optimal intervention since the subject would then turn away from the

corridor at the latest after they reach cell I-1.
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CHAPTER 4

Active Goal Recognition Design

We now propose a new problem setting that combines elements of prior models and applies

them to the online setting to explicitly model the passage of time and enable the consideration

of sequences of interventions.

4.1 Preliminaries

We assume action outcomes are deterministic and that the subject and observer take turns

executing actions. Both agents immediately observe the effects of the other’s action prior

to selecting their next action. All actions take fixed time to execute, though costs can vary.

We assume the subject agent acts optimally with respect to the domain costs C∗ (defined

formally in Section 4.2) and that it is unaware of or agnostic to the observer. This means

the subject is not antagonistic to the observer by attempting to disrupt or hinder the goal

recognition process through purposeful choice of maximally non-distinct plan prefixes. It

also means that the subject’s planning is not strategic, i.e. it is not affected by interventions

the observer has not yet taken. Because we assume the subject is non-strategic, we will also

assume that, given a goal g, all optimal plans the subject could execute to achieve g are

equally likely.

We assume that the observer is neither assisting nor impeding the subject, and thus it

must not change the optimal cost to achieve any goal. The observer’s interventions can,

however, remove optimal plans available to the subject as long as the new system state

includes at least one plan for each goal the subject may be pursuing whose cost equals the
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remaining cost-to-go of the optimal plan(s) the observer invalidated. Accordingly, we assume

that if the plan the subject was executing is invalidated by an intervention, it is immediately

able to select a new optimal plan to its goal.

4.2 Problem Formulation

Definition 2 An AGRD domain is a tuple D = 〈S,Asubj , Aobs〉 where S is a set of sys-

tem states representing the subject, observer, and their environment and Asubj and Aobs are

functions that, given state s, return the actions available in s to the subject and observer,

respectively. An action a ∈ A(s) is a function that maps a state to its successor and the

positive non-zero cost c(a(s)) of that transition.

An action that maps a state to itself is called an identity action and can be used by the

observer when it does not have a more useful action to execute. We refer to actions returned

by Aobs , i.e. observer actions, as interventions.

Definition 3 An AGRD Problem Instance is a tuple I = 〈D, sroot ,G, PG, ρ〉 where D is an

AGRD domain, sroot is the start state, G = {g1, ..., gn} is the set of possible goals the subject

could be pursuing, where a goal g ∈ G is a set of states, PG = {p1, ..., pn} where pi is the

prior probability for gi ∈ G, and ρ is an objective function mapping a state to a real number.

Definition 4 An action sequence αs0 ∈ As0 = 〈a1obs , a1subj , ..., anobs , ansubj 〉 is a sequence of

alternating interventions and actions starting from state s0 such that s′i = aiobj (si−1), si =

aisubj (s
′
i), aiobj ∈ Aobj (si−1), and aisubj ∈ Asubj (s

′
i−1). As0 refers to the space of all possible

action sequences rooted at s0, which represents all possible evolutions of the system.

α describes the interleaved action execution of both the observer and subject as the system

evolves. We define the space of all possible action sequences as A. Action sequences are

different from the plans entertained by the subject, which do not include interventions. In

a slight abuse of notation, we will refer to the accumulated cost incurred by subject actions
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along an action sequence from sroot to s as csubj (s) and the number of subject actions in the

sequence as lengthsubj (s).

Definition 5 A subject plan φs0,g = 〈a1, ..., an〉 is a sequence of actions starting from state

s0 such that si = ai(si−1), ai ∈ Asubj (si−1), and sn ∈ g.

We will use this concept to define the behavior of an optimal subject which, according to

our assumptions, is ignorant of the observer.

Definition 6 For a problem instance I with start state sroot , C
∗(g) is the minimum cost

among all subject plans φsroot ,g and we notate a plan of this cost as φ∗sroot ,g.

Because we assume the observer cannot change the optimal cost to any goal, C∗(g) always

refers to the original optimal cost of g. The optimal cost to g from an intermediate state s

along an optimal path to g is C∗(g)− csubj (s), which we will denote as C∗(s, g)

Definition 7 Hs is the set of goals g that the subject could be pursuing.

We refer to sets H as goal hypotheses. They represent the remaining goals an optimal subject

could be pursuing. We describe how goals are pruned from H in Section 4.3.1.

Definition 8 A solution to an AGRD instance I is a policy π : S → Aobs that maps all

states s reachable via an action sequence αsroot to an intervention aobs .

For any intervention aobs(s) = s′, any subject plans from s may be invalidated as long as

∀g ∈ Hs, C
∗(s, g) = C∗(s′, g). In other words, an intervention cannot change the optimal

cost to achieve any goal that is in the goal hypothesis of the original state.

4.3 Defining Optimal Solutions

We define optimal solutions in terms of a generic objective function ρ : S → R that maps a

state to a real number. We maximize the expected value of ρ over a state space tree formed
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Figure 4.1: Example state space tree induced by eρ(sroot).

by simulating interventions and subject actions; see Figure 4.1 for an example. At any state,

there exists some number of optimal subject plans to each possible goal. Each intervention

may change the available optimal plans by invalidating or enabling subject plans. In the

figure, the intervention a1obs invalidates one of the two plans to goal G1 so that there is only

one plan left to G1 in the state s1. Each subject action may also reduce the number of

optimal plans if the subject transitions beyond non-distinct plan prefixes. In the figure, a

subject that takes a3subj transitions beyond the final non-distinct prefix that could still lead to

G1. In other words, the number of subject plans available to goal G1 in s3 is 0, meaning G1

can be pruned from the goal hypothesis for s3. Since |Hs3| = 1, s3 is a leaf node of the tree

whose value will be defined as ρ(s3). The value of non-leaf nodes is computed by backing up

the value of child nodes to their parents. We take the minimum over possible interventions

since we are looking for interventions that minimize our objective, but we must take the

expectation over possible subject actions (weighted, as we explain below, by conditional

goal probability) because we assume a non-strategic subject. This is an expectimin tree

(expectation nodes depicted as circles, min as triangles) in contrast to the more common

two-player zero-sum game minimax tree.

Definition 9 Let Ps be a probability distribution over all actions the subject could take in

state s, representing the probability the subject will select the corresponding action.
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We will formally derive Ps and our method for pruning goals from H in Section 4.3.1.

Definition 10 eρ : S → R is a function that computes the expectation of the best achievable

ρ of a given state for a given scoring function ρ:

eρ(s) =


ρ(s) if |Hs| ≤ 1

min
aobs∈Aobs(s)

score
(
aobs(s)

)
otherwise

(4.1)

score(s) = E
asubj∼Ps

[
eρ
(
asubj (s)

)]
. (4.2)

The mutual recursion among equations 4.1 and 4.2 yields the alternating layers of the state

space tree as in Figure 4.1. Each leaf of this tree corresponds to a unique action sequence

α ∈ A, or in other words, one unique evolution of the system.

We now define an optimal intervention in terms of eρ and score. Given a problem instance

I, an optimal policy π∗ returns the intervention a∗obs that is expected to lead to the lowest

score:

a∗obs = argmin
a∈Aobs(s)

score(a(s)) . (4.3)

A perfectly rational observer in some state will execute the intervention that is expected to

minimize the penalty value ρ when the goal is revealed. According to our assumptions, the

subject does not act strategically or in response to the observer’s objective. Therefore, the

expectation is distributed by our prior belief as action probabilities Ps, which are computed

using Bayesian updates as the system evolves as we discuss next. eρ and score encode these

assumptions allowing us to produce the optimal intervention.

4.3.1 Goal Probabilities

The probability distribution Ps over subject actions in a state s depends on the probability

distribution over the goals it might be pursuing from that state. At sroot , these are PG. As

the subject acts to achieve its goal, some goals may become inconsistent with the subject’s
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executed plan, requiring us to compute a goal posterior describing the updated probabilities

over remaining goals given our observations. We denote these posteriors as PHs , referring to

the probability of each goal in the goal hypothesis Hs for the state s. We compute PHs via

a sequence of Bayesian updates where the goal posterior of each update is used as the prior

for the next.

Let PHs(gi) be the prior probability of gi before some action a is executed in state s, and

let Plans i(s) return all optimal subject plans φ∗s,gi . From our assumption that all optimal

plans to a given goal are equally likely, the likelihood Ps(a|gi), the probability of subject

action a given gi, is the fraction of optimal plans to gi for which a is the next action:

Ps(a|gi) =
|Plans i(a(s))|
|Plans i(s)|

. (4.4)

Then the marginal likelihood Ps(a), the probability of a, is

Ps(a) =
∑
gi∈Hs

PHs(gi)Ps(a|gi) (4.5)

and Bayes’ rule tells us the posterior PHs(gi|a), the probability of the goal gi given an action

a such that a(s) = s′, is

PHs′ (gi) = PHs(gi|a) =
PHs(gi)Ps(a|gi)

Ps(a)
. (4.6)

In other words, PHs′ (gi) ∝ PHs(gi)Ps(a|gi). The normalization factor is the sum of the action

likelihood times goal prior over all possible goals (Eq. 4.5).

Eq. 4.6 is computed over all goals to get the full posterior PHs′ . When we receive our

next observation, PHs′ will be used as the prior in the update for that observation. If the

subject transitions to a successor that is not on any optimal plan to some goal gi, Ps(a|gi),

and thus the posterior PHs′ (gi), becomes 0, and gi is pruned from the hypothesis Hs′ .
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4.3.2 Objectives ρ

The metrics discussed in Chapter 3 can be defined as alternative functions ρ.

Definition 11 Function ρψ : S → [0, 1] returns the fraction of the subject’s plan that has

been executed:

ρψ(s) =


lengthsubj (s)

lengthsubj (s)+|φ∗s,g |
if |Hs| = |{g}| = 1

0 otherwise .

(4.7)

Note that in Definition 3.1, ψ is initially defined assuming a stable domain that does not

alter with the progression of the system. Equation 4.7 is defined in terms that are resilient to

changes in the domain that may, for instance, invalidate the original subject plan φ∗sroot ,g. This

redefinition of ψ ultimately maintains the same semantics: the fraction of the subject’s plan

that has been executed to that state. Minimizing eρψ within our optimal solution prioritizes

distinguishing goals that will be achieved more quickly, thus preventing goals from being

achieved before they are distinguished.

To see how wcd and ecd relate to our approach, we can re-frame distinctiveness:

Definition 12 Function ρd : S → R≥0 returns the length of the action sequence the subject

has executed:

ρd(s) =


lengthsubj (s) if |Hs| = 1

0 otherwise .

(4.8)

Here again, Equation 4.8 defines distinctiveness not in terms of a subject plan φ∗sroot ,s that

may no longer exist, but using the notation introduced to describe action sequences α. Using

eρd approximately minimizes ecd, not wcd, since we are using an expectation instead of a

global value. eρd and ecd are not exactly equivalent because of differences in how the action

probability is computed, namely that eρd considers the number of possible plans the subject

could be pursuing whereas ecd considers only the relative size of goal hypotheses between

actions. Nevertheless, using ρd, our formulation can optimize distinctiveness if an application

requires it.
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4.4 Analysis

We establish properties of an optimal solution by analyzing the tree induced by eρ. Let Teρ

refer to this tree.

Lemma 1 Given any state s and an optimal subject action asubj ∈ Asubj (s) with asubj (s) = s′,

∀g ∈ Hs′ , C
∗(s, g) > C∗(s′, g).

Proof: According to Definition 2, action costs are > 0, therefore csubj (s) < csubj (s
′). An

optimal subject must always choose an action that reduces the remaining cost to achieve their

goal by exactly the cost of the action, or they are not acting optimally. The goal hypothesis is

the set of goals that an optimal subject could be pursuing at some state, meaning every action

taken has reduced the optimal cost to achieve every goal in the remaining goal hypothesis.

Therefore, the remaining cost to achieve any goal in Hs′ is monotonically decreasing and not

equal to its predecessor. �

Lemma 2 Given any two states s and sa such that the node in Teρ representing sa is an

ancestor of the node representing s, ∀g ∈ Hs, C
∗(sa, g) ≥ C∗(s, g).

Proof: First note that for any successor s′ = aobs(s), our neutral observer assumption

requires that the remaining costs to achieve goals in the goal hypothesis remain the same.

i.e. ∀g ∈ Hs, C
∗(s, g) = C∗(s′, g).

Lemma 1 tells us that for any successor of a subject action s′ = asubj (s), ∀g ∈ Hs′ , C
∗(s, g) >

C∗(s′, g). We can therefore say more generally that for any successor s′, ∀g ∈ Hs′ , C
∗(s, g) ≥

C∗(s′, g). This statement describes a relationship between parent and direct successor, how-

ever we can trivially generalize it to any ancestor by the transitive property of inequalities.

�

Theorem 1 Teρ is a Directed Acyclic Graph (DAG).
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Proof: We must prove that no node of Teρ has an edge to an ancestor node or itself.

We begin by proving that edges defined by subject action transitions exhibit this property.

Per Lemma 1, for any successor s′ of a subject action, C∗(s′, g) is monotonically decreasing

for all goals in the hypothesis Hs′ . If the successor s′ were also an ancestor of the state s, or

if s = s′, Lemma 2 would imply ∀g ∈ Hs′ , C
∗(s, g) ≤ C∗(s′, g), which contradicts Lemma 1.

We now prove that edges defined by observer interventions also exhibit this property. Let

s now refer to the parent state of a transition defined by aobs . First note that due to the

interleaving of observer and subject actions, observer interventions are executed on either

the root of the tree or successors of subject actions. Applying Lemmas 1 and 2, we can

say that for all ancestors sa of s, ∀g ∈ Hs, C
∗(sa, g) > C∗(s, g). According to our neutral

observer assumption, the observer cannot execute an intervention that changes the optimal

cost to any goal. Therefore, we cannot transition to any ancestor of the current state. The

observer can, however, execute an identity intervention that does not change the system

state, i.e. s′ = s. However, the successor node of an identity intervention is not the same

node of Teρ as its predecessor, despite representing the same underlying state, because the

successors of s′ are defined by subject actions Asubj (s
′), not observer interventions. As noted

above, the subject will act to reduce the remaining cost to its goal, therefore preventing a

return to any ancestor. �

While our formulation does not require that subject actions have a fixed minimum cost,

for the remainder of our analysis, let us make the reasonable assumption that one exists:

bcc = min
a∈Asubj ,s∈S

c(a(s)) . (4.9)

Let us also assume that Asubj and Aobs return finite sets of actions for any one state. We

define our maximum branching factor accordingly:

b = max
A∈{Asubj ,Aobj },s∈S

|A(s)| . (4.10)
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Theorem 2 The size of Teρ is finite.

Proof: Lemma 1 establishes that every action the subject takes monotonically reduces the

remaining cost to achieve all goals in the successor’s goal hypothesis. Since the minimal cost

of any action is bcc, we can trivially upper-bound the depth of Teρ . To avoid confusion with

notation of distinctiveness using d, we refer to the depth bound of Teρ as κ:

κ ≤ 2 ∗max
g∈G

C∗(g)

bcc
. (4.11)

If every action the subject executes has cost bcc, then the subject can take at most

a number of actions equal to the cost of the most expensive goal divided by bcc. Since

the subject and observer interleave actions, the tree depth can be bounded by twice the

maximum number of actions a subject can take. We have established that the depth κ and

the branching factor b are both finite. Therefore, Teρ must be finite. �

Theorem 2 establishes that κ is bounded by the cost of the most expensive goal. However,

leaf nodes of Teρ are defined as those for which |Hs| ≤ 1 (Eq. 4.1). The tree does not descend

down to states where the subject has achieved their goal if the goal becomes distinct prior

to achievement.

Theorem 3 Let

ġ = argmax
g∈G

C∗(g) Most expensive goal

g̈ = argmax
g∈G/{ġ}

C∗(g) Second most expensive goal

Then the depth of Teρ is bounded by the second most expensive goal g̈ ∈ G:

κ ≤ 2 ∗ C
∗(g̈)

bcc
. (4.12)

Proof: Let κ1 and κ2 refer to the maximum number of actions that can be taken prior to
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a subject achieving the most and second most expensive goals, respectively:

κ1 = 2 ∗ C
∗(ġ)

bcc

κ2 = 2 ∗ C
∗(g̈)

bcc

κ1 ≥ κ2 . (4.13)

After κ2 actions have been taken, the subject is guaranteed to have achieved g̈ if that was

their goal. If g̈ was not their goal, after κ2 actions there can be at most one goal that has

not been achieved: ġ. Thus, the size of the hypothesis will be 1, it is a leaf node, and the

tree does not expand beyond it making the depth bound κ = κ2. �

Corollary 1 The size complexity of Teρ is bounded by O(bκ).

Proof: This follows from the definition of b and κ as applied to a tree graph structure. �

We conclude our analysis by considering the optimal substructure of Teρ . Problems

that exhibit optimal substructure are those where the optimal solution contains optimal

solutions to its subproblems [Cormen et al., 2009]. This property can be leveraged to speed

up computation with dynamic programming solutions. Teρ has this property due to the

recursive definition of eρ, but let us formalize this.

Theorem 4 Teρ exhibits optimal substructure.

Proof: We assert both that branches defined by the expectation over subject actions and

those defined by the minimum over observer interventions have optimal substructure. We

will prove both by contradiction. Let us assume that the optimal solution at a branch rooted

in some node n includes at least one suboptimal value from among its children.

Subject Action Nodes : Let n be a node of Teρ whose value is the expectation over children

defined by subject actions. Subtrees induced by each subject action are considered with

weight according to the action’s marginal likelihood, and we need only consider subtrees
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where the likelihood is greater than 0. A suboptimal value for a child representing some

state s of a subject action node is one that is greater than eρ(s) (Eq. 4.1). If any value used

in the expectation over subtrees of n are sub-optimal, then the value of n could be improved

(i.e. reduced) by instead using the optimal value, computed with eρ, of the child node. This

contradicts our assumption, so subject action nodes must exhibit optimal substructure.

Observer Intervention Nodes : Let n be a node of Teρ whose value is the minimum of its

children over all possible interventions. A suboptimal value for a child representing state s

is one that is greater than score(s) (Eq. 4.2). Our assumption requires that the value of n

be derived from a suboptimal value of one of its children. However, we could further reduce

this value by instead using score. This contradicts our assumption, so observer intervention

nodes must exhibit optimal substructure. �

At first glance, this appears to be helpful in exploring Teρ , since dynamic programming

algorithms can take advantage of optimal substructure to save computation by preventing the

exploration of duplicate sub-trees. However, recall that Teρ implicitly captures the history of

the subject’s and observer’s actions through the incremental computation of Ps via Bayesian

updates. As a consequence, nodes of Teρ that share the same system state s may have

different posteriors P i
Hs

where P i
Hs

is one of many possible goal posteriors for state s whose

values depend on the specific action sequence α corresponding to the branch of Teρ the

subject and observer have traversed.

Consider Figure 4.2, which represents a progression of states through a Grid-World do-

main with identical rules as Figure 3.5. Here g1 and g2 refer to the subject’s possible goals.

At the start state sroot , the observer can block cells I-1 and I-2 in either order before the

subject reaches cell C-1. s2 refers to the system state where the subject is located in C-1

and both I-1 and I-2 are blocked. A subject in s2 must take an action that distinguishes

their goal, but the order in which I-1 and I-2 are blocked is not inherently described by the

state; s2 is identical in either case. However, the order the interventions are executed changes

the resulting goal posteriors of s2. Assume both goals are equally likely. In the figure, the
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Figure 4.2: The goal posteriors would be calculated differently with a different ordering of inter-
ventions

observer blocks I-1 first (state s′1). From the subject’s location in s′1, there remain 6 plans

available to achieve g1, and 10 plans for g2. If the subject moves toward C-1 via action a1subj ,

only 3 plans to g1 and 6 plans to g2 would remain. The goal posteriors for the observation

of a1subj would be computed as:

Action Likelihoods Ps′1(a
1
subj |g1) =

3

6
=

1

2

Ps′1(a
1
subj |g2) =

6

10
=

3

5

Marginal Likelihood Ps′1(a
1
subj ) =

1

2

(
1

2
+

3

5

)
=

11

20

Bayesian updates p11 =
1
2
× 1

2
11
20

=
5

11
(4.14)

p12 =
1
2
× 3

5
11
20

=
6

11
. (4.15)

Now when the observer blocks I-2 (state s′2), the symmetry of the domain is restored and

only 3 subject plans remain to either goal. If the subject moves into C-1 (state s2), there

will be only 1 plan for each goal (going left for g1 or right for g2), and the resulting posteriors
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will be unchanged in this transition since the likelihood of that action given either goal is

the same:

Action Likelihoods Ps′2(a
2
subj |g1) =

1

3

Ps′2(a
2
subj |g2) =

1

3

Marginal Likelihood Ps′2(a
2
subj ) =

5

11
× 1

3
+

6

11
× 1

3
=

1

3

Bayesian updates p21 =
5
11
× 1

3
1
3

=
5

11
(4.16)

p22 =
6
11
× 1

3
1
3

=
6

11
. (4.17)

The posterior P 1
Hs2

is therefore {p1 = 5
11
, p2 = 6

11
}.

Since this example is small and symmetrical, it is easy to see that if our observer had

chosen to block I-2 first, the posterior at s2 would be P 2
Hs2

= {p1 = 6
11
, p2 = 5

11
}. In other

words, the goal posteriors would be reversed despite P 1
Hs2

and P 2
Hs2

sharing identical system

state s2. The differences in posteriors will diverge more in domains that are not symmetrical,

or if we do not assume uniform priors.

The imbalance in the number of plans remaining to the subject in state s′1 makes its

first action more informative. By contrast, when both goals share plan counts in state s′2,

the subject’s action to move down is not discriminative. This suggests an emergent strategy

on the part of the observer agent: creating imbalance in the number of plans to different

goals could actually lead to greater divergence in our posteriors. This in turn informs where

we should focus interventions since efforts are concentrated on goals that are more likely

according to our posterior. To describe this strategy intuitively, if we make one goal more

difficult to achieve by a certain path, e.g. by blocking options along that path, we can infer

that an agent that still follows that path is more likely to be pursuing other goals. This

property has consequences for how we model the problem in algorithm design. We need a

model that can distinguish the nodes of Teρ that differ only in the goal posterior. In other
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words, we need to model a belief state over the subject’s possible goals.

4.5 AGRD as a POMDP

Active Goal Recognition Design can be reframed as a Partially-Observable Markov Decision

Process (POMDP). A POMDP is a tuple 〈S,Ω, A, T,R〉 where S is the state space, Ω is

the space of possible observations of states s ∈ S, A is the set of available actions, T is

a transition function that returns the probability of transitioning to state s′ after taking

action a in state s, and R is the reward function the agent receives for transitioning to

a given state. We will formulate the POMDP as a Belief MDP where our belief state is

composed of the system state as defined in an AGRD problem instance plus our belief about

the subject’s goal, which is fully summarized by the goal posteriors incrementally computed

by our Bayesian update (Equation 4.6, Page 20).

We first examine the state space S and observations Ω. A state s ∈ S = 〈ω, g〉 where ω is a

fully observable state variable and g, the subject’s true goal, is a hidden state variable. ω ∈ Ω

corresponds exactly to a state in our AGRD problem formulation: it describes the subject,

observer, and their shared environment. Since the subject’s goal is hidden, an observation

could be consistent with multiple states. For example, if there are 3 possible goals in an

AGRD problem instance, ω is consistent with s1 = 〈ω, g1〉, s2 = 〈ω, g2〉, and s3 = 〈ω, g3〉.

However, a transition in an MDP can only result in a single successor state, so to reason

about our POMDP, we formulate it as a Belief MDP where our state representation is

a “belief” state that describes our belief about the current state we are in. This belief

must be a probability distribution over possible current states and must be updated after

each observation we receive, thereby fully summarizing the history of execution within the

MDP. We have already defined our goal posteriors as incremental Bayesian updates given

sequential observations, so let the belief state b = 〈ω, P i
Hω
〉 where P i

Hω
represents the ith

possible goal posterior we could obtain at the observable state ω. We will need the posterior

when describing how the POMDP transition function changes to operate on belief states.
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The actions A of the POMDP include only the observer interventions, not subject actions.

Executing an intervention aobs on a state s alters some observable state deterministically. Let

us call this intermediary state ŝ. The successor we ultimately transition to, s′, is distributed

by T (s, aobs , s
′), which models the uncertainty we have about which action a subject will

take after aobs is executed. Even if we know its goal, we still do not know which plan the

subject is executing, so we define T in terms of the action likelihoods from Equation 4.4

(Page 20):

T (s, aobs , s
′) = Pŝ(asubj |g) (4.18)

Where

aobs(s) = ŝ

asubj (ŝ) = s′

s = 〈ω, g〉, s′ = 〈ω′, g〉 .

However, the true goal g is hidden, and therefore the transition function T is also hidden

as it requires exact knowledge of g. We therefore require Tb, a transition function that can

operate on our belief states.

Tb distributes successors not by the likelihood of an action given a goal, but instead by

the marginal likelihood from Equation 4.5 (Page 20):

Tb(b, aobs , b
′) = Pb̂(asubj ) (4.19)

Where

aobs(b) = b̂

asubj (b̂) = b′

b = 〈ω, P i
Hω〉, b

′ = 〈ω′, P i
Hω′
〉 .

The marginal likelihood is computed from priors over goals, here given as P i
Hω

. The posterior
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P i
Hω′

is computed by our Bayesian update (Equation 4.6), and represents the update of our

belief state when a new observation is received.

In the AGRD problem, the objective is to minimize eρ. Therefore, the reward R for a state

is simply −ρ(s). Any belief state where the hypothesis |Hω| ≤ 1 is defined as an absorbing

state. Recall that in both Equations 4.7 and 4.8, ρ(s) = 0 if |Hs| 6= 1, so maximizing our

reward is the same as minimizing the ρ value achieved in an absorbing state.

4.5.1 Solving AGRD

Having mapped our problem to an MDP, we briefly consider MDP solving algorithms.

Value Iteration [Bellman, 1957] and its many variants can optimally solve MDPs, however

they require the state space upfront to perform Bellman Backups and converge to the optimal

policy. This is problematic for our formulation since the state space could be very large, and

to produce it upfront one needs to compute explicit transition functions and goal posteriors

for every single state.

MDP solving algorithms based on RTDP are better suited to the tree structure of our

domain. LRTDP [Bonet and Geffner, 2003] can converge to the optimal policy more quickly

than Value Iteration. Since it explores the state space via “rollouts,” state information can

be lazily computed as it simulates transitions, and the exploration is necessarily limited

to the reachable state space. However this is still inefficient as an optimal solution since

convergence requires LRTDP to visit states with more than one branch multiple times in

subsequent rollouts before all states are “labeled.”

We therefore propose in the next chapter a specialized optimal algorithm for solving an

Active Goal Recognition Design problem instance. Theorem 1 proves that Teρ , the tree

explored by the optimal solution, is a Directed Acyclic Graph. Therefore, unlike LRTDP

and Value Iteration, each state of the augmented state space need only be visited at most

once. Our algorithm will exploit this as it exhaustively explores every branch of the tree in

a Depth-First Search.
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CHAPTER 5

Optimal Algorithm

We now propose an algorithm to solve an AGRD problem instance optimally. We describe

the algorithm in detail and present analysis to prove correctness. We evaluate its performance

on a new set of benchmark domains for this problem, and finally we suggest enhancements.

5.1 Algorithm

Algorithm 1: Opt-AGRD : Optimal AGRD

Input : I - problem instance
Output: Achieved ρ once the goal is known.

1 let D, sroot ,G, PG, ρ refer to the components of I
// Initialize Goal Hypothesis

2 H ← GoalHyp(G, sroot , sroot)
3 PH ← PG
4 s← sroot
5 while |H| > 1 do
6 , amin ← DFS-Intervention(D, ρ,H, PH , s)

7 s← amin(s)
8 s′ ← ObserveSubjectTransition(s)
9 H,PH ← UpdateHypothesis(H,PH , s, s

′)

10 s← s′

11 return ρ(s)

Opt-AGRD is a straightforward encoding of the optimal solution presented in Section 4.3.

We initialize the goal hypothesis and the probability of each goal in the hypothesis to the set

of all goals and their priors [Lines 2-3]. The main loop invokes DFS-Intervention, which

is mutually recursive with DFS-Action, to determine which intervention produces the best
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score for the current state. It executes the best intervention, then observes the subject’s

action. It computes the new goal hypothesis and posterior goal probabilities by taking the

goal priors and conditioning them (with normalization) on the subject’s observed transition

[Lines 7-9]. These posteriors are used as the priors for the next iteration.

Proposition 1 Opt-AGRD implements Equation 4.3 (Page 19) and, given a state and goal

priors, applies the optimal intervention to the domain.

Proof: As long as DFS-Intervention returns the optimal intervention (Proposition 2),

Opt-AGRD applies the optimal intervention to the domain [Line 7]. �

DFS-Intervention and DFS-Action, Algorithms 2 and 3 respectively, explore Teρ

depth-first to produce a score for each visited node. DFS-Intervention takes the min-

imum over observer interventions, and DFS-Action takes the expectation over subject

actions. The termination condition of the DFS tree is when |H| ≤ 1 [Line 12], corresponding

to when the subject’s goal is uniquely distinct. If not a leaf, additional child nodes are gen-

erated by simulating all possible actions and descending down the tree depicted in Figure 4.1

[Lines 16-17, 25-26]. Section 4.5 introduced belief states b = 〈ω, P i
Hω
〉 encompassing both the

system state and the goal posteriors. Accordingly, DFS-Intervention and DFS-Action

track these posteriors through the tree and update them after each simulated subject action

[Line 27].

DFS-Intervention simulates the observer interventions by trialing them all and keep-

ing the minimum. Note that the interventions returned by Aobs(ssim) are restricted to only

those that do not change the value of C∗(g) for all goals in the goal hypothesis H, therefore

we do not update the goal hypothesis after simulating an intervention.

Proposition 2 DFS-Intervention implements Equation 4.1 (Page 19) and returns both

the optimal score and intervention for the given state and posteriors.

Proof: If the state being evaluated is a leaf, DFS-Intervention returns immediately with

that state’s score and the Identity intervention [Line 13], which is the optimal intervention
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Algorithm 2: DFS-Intervention:
Depth First Search for Intervention iteration

Input : D - Domain,
ρ - value function,
H - current goal Hypothesis,
PH - goal priors for Hypothesis,
ssim - simulated subject state

Output: score, intervention - R score value and the intervention that produced it

12 if |H| ≤ 1 then
13 return ρ(ssim), Identity

// Simulate Observer interventions

14 score ←∞
15 intervention ← Identity
16 foreach ai ∈ D.Aobs(ssim) do
17 s′ ← ai(ssim)
18 score ← min(score, DFS-Action(D, ρ,H, PH , s

′))

19 if score changed then
20 intervention ← ai

21 return score, intervention

at a leaf node, i.e. no action. Otherwise, DFS-Intervention returns the intervention and

score corresponding to the minimum score of its successors, which is optimal if the scores

returned by DFS-Action are optimal (Proposition 3). �

DFS-Action simulates the subject’s action. Until we have reached a leaf, we are un-

certain of the subject’s goal. Additionally, if multiple actions could lead to the same goal,

we are uncertain of which the subject would take. Therefore, we must take the expectation

of the score over all possible actions the subject might take in a given state. DFS-Action

obtains a list of actions applicable in the simulated state and then computes the probability

of each action [Lines 22-23]. We discuss the ActionProb function in more detail in Algo-

rithm 4, but for now observe that the output is a probability distribution over the available

actions passed to the function. We take the expected score of the available actions over this

distribution [Line 29]. Note that it is possible the probability of an action is 0. In this case,

the action score will not change, and in practical implementations this action can be pruned

from the search.
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Algorithm 3: DFS-Action:
Depth First Search for Action iteration

Input : D - Domain,
ρ - value function,
H - current goal Hypothesis,
PH - goal priors for Hypothesis,
ssim - simulated subject state

Output: score - R score value

22 subjectActions ← D.Asubj (ssim)
23 PA ← ActionProb(actions, H,PH , ssim)
24 score ← 0
25 for ai ∈ subjectActions do
26 s′ ← ai(ssim)
27 H ′, P ′H ← UpdateHypothesis(H,PH , ssim , s

′)

28 trial , ← DFS-Intervention(D, ρ,H ′, P ′H , s
′)

29 score ← score + (PA[i] ∗ trial)

30 return score

Proposition 3 DFS-Action implements Equation 4.2 (Page 19) and returns the optimal

score for the given state.

Proof: DFS-Action simulates every action and computes the updated hypothesis given

that successor. It accumulates [Line 29] and eventually returns the expected score [Line 30] of

its successors as computed by DFS-Intervention and weighted by PA. As long as Action-

Prob returns the correct action probabilities (Proposition 5), DFS-Intervention is passed

the accurate goal posteriors and goal hypothesis (Proposition 7), and DFS-Intervention

returns the optimal score (Proposition 2), ActionProb returns the optimal score.

We note that the proofs of Proposition 2 and Proposition 3 depend on each other. How-

ever, this recursive proof has a “terminating condition” since DFS-Intervention will even-

tually return optimal scores without invoking DFS-Action. As long as this terminating

condition holds (Proposition 4), the mutually dependent proofs hold. �

Proposition 4 The recursion between DFS-Intervention and DFS-Action will even-

tually terminate with DFS-Intervention returning without invoking DFS-Action.

35



Proof: Theorem 3 (Page 24) proves a finite limit on κ, the depth bound of Teρ (the tree

induced by eρ). Since DFS-Intervention and DFS-Action implement Equations 4.1

and 4.2 respectively, they explore the same tree. DFS-Intervention checks for the leaf

node condition, i.e. |Hs| ≤ 1, on Line 12 and returns if it is met. Therefore, since the

tree has a finite depth bound and the leaf condition stops recursion, the recursion between

DFS-Intervention and DFS-Action is guaranteed to terminate. �

Algorithm 4: ActionProb:
Computing Probability of Actions in a state

Input : actions ,
G - goal set,
PG - goal priors,
ssim - simulated state

Output: Sequence of probabilities for actions

31 init PA as array of length |actions| to 0

32 foreach ai ∈ actions do
33 s′ ← ai(ssim)
34 P ′ ← ConditionedPriors(G, PG, ssim , s′)
35 PA[i]←

∑
p∈P ′ p

36 return PA

DFS-Action requires a probability distribution for the actions available in a state. This

distribution must reflect that actions leading to goals that are more likely (as expressed by

our priors PH) have a higher probability and our assumption that all plans to a given goal

are equally likely. Algorithm 4 defines ActionProb, which computes this distribution.

It does this by considering which goals the subject could be pursuing and how likely it is

that a subject pursuing any of those goals would take each of the actions in our action list.

From an action, we obtain the successor state s′ and compute the probability of all goals

conditioned on the subject transitioning from ssim to s′. These conditioned probabilities are

not normalized, and thus do not sum to 1. Instead, the sum of these priors for an action over

all goals comes to the probability that a subject would take the action [Lines 32-35]. Note

that if s′ is not on the optimal path to some goal gj, the conditioned probability of that goal
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will be 0 since an optimal subject pursuing that goal would not take that action. The sum

of probabilities in PA will be 1 because in summing all conditioned goal probabilities for all

actions, we account for all possibilities.

Proposition 5 ActionProb implements the sum operation of Equation 4.5 (Page 20) and

returns the marginal likelihood of every action passed to it.

Proof: For every action, ActionProb sums the goal priors conditioned on the likelihood

of the action given each goal. As long as ConditionedPriors returns the prior times likeli-

hood for the given transition (Proposition 6), ActionProb returns the marginal likelihood

of all actions. �

Algorithm 5: ConditionedPriors:
Get probabilities for goals conditioned on the subject’s action

Input : G - goal set,
PG - goal priors,
s - simulated or current state,
s′ - successor state

Output: Sequence of goal priors conditioned on the subject transitioning to s′

37 init P ′ of size |PG| with all elements equal to 0
38 foreach gj ∈ G do

// Probability of goal j

39 let pj ∈ PG
40 P ′[j]← pj

PlansToGoal(gj , s
′)

PlansToGoal(gj , s)

41 return P ′

Algorithm 5 defines ConditionedPriors. This function returns a set of goal probabili-

ties from priors conditioned on the likelihood of the subject transitioning from s to successor

s′. For each goal, we multiply the existing goal prior by the fraction of optimal plans to that

goal that pass from s to s′ [Lines 38-40]. This fraction captures the fact that we do not know

which plan the subject is pursuing, so we assume that all plans are equally likely.

Proposition 6 ConditionedPriors implements Equation 4.4 (Page 20) and the likeli-

hood times prior portion of Equation 4.5. It returns the unnormalized posteriors over the

goal set given the transition to successor s′.
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Proof: This trivially follows from the algorithm’s definition. �

One could imagine various ways of ranking plans to make some more likely than others,

e.g. in an adversarial setting, though the exploration of more complex methods is beyond

the scope of this thesis.

Algorithm 6: UpdateHypothesis:
Updates Goal Hypothesis and Posterior given a transition

Input : G - goal set,
PG - goal priors,
s - simulated or current state,
s′ - successor state

Output: New Goal Hypothesis and Posterior conditioned on the given transition

42 H ← GoalHyp(G, s, s′)
43 P ′H ← ConditionedPriors(H,PG, s, s

′)

44 PH ← Normalize(P ′H)

45 return H,PH

Algorithm 6 defines the function UpdateHypothesis. It takes a set of goals and their

priors as well as a transition from s to s′ and outputs a new hypothesis and set of posterior

probabilities. UpdateHypothesis is invoked both to update the hypothesis after we receive

an observation [Line 9] and in exploring the state space when simulating subject actions

[Line 27]. Note that when a transition diverges from all optimal paths to some goal, that

goal is pruned from H.

Proposition 7 UpdateHypothesis implements Equation 4.6 (Page 20) and returns the

correct goal posteriors given a transition along with the updated goal hypothesis.

Proof: GoalHyp merely prunes goals from the hypothesis that cannot be optimally

reached via the transition. Normalize takes an input array and normalizes its values.

Therefore, as long as ConditionedPriors returns an array of the goal priors times the

likelihood of the transition (Proposition 6), UpdateHypothesis returns the correct poste-

riors and goal hypothesis for the transition. �
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Algorithm 7: GoalHyp:
Get an optimal subject’s Goal Hypothesis at a state

Input : G - possible goal set,
s - simulated or current state,
s′ - successor state

Output: Set G ′ ⊆ G an optimal subject could be pursuing

46 let Φ∗ = {all possible φ∗s,g ∀g ∈ G}
47 let Φ ⊆ Φ∗ be all optimal subject plans through s′

48 init G ′ = ∅
49 add g to G ′ for all φs,g ∈ Φ

50 return G ′

Algorithm 8: PlansToGoal:
Enumerate all optimal plans from a state to a goal

Input : g, s
Output: Z≥ - number of plans

51 let Φ∗ = {all possible φ∗s,g}
52 return |Φ∗|

Algorithm 7, GoalHyp, reports all goals from the given set G for which there exists any

optimal subject plan from s that passes through the state s′. Algorithm 8, PlansToGoal,

takes a goal g and a state s and returns the number of optimal subject plans that exist

between s and g.

Theorem 5 Opt-AGRD always executes the optimal intervention.

Proof: This theorem differs from Proposition 1 in that it is a stronger statement. Proposi-

tions 1-7 prove that the algorithms faithfully implement the equations defining an optimal

solution in Section 4.3. For this theorem to hold true, the goal posteriors must be correctly

updated after receiving every observation. This occurs in Line 9, so the theorem holds. �

5.1.1 Computing the Count of Plans to Goals

Opt-AGRD requires us to be able to query the number of optimal subject plans to each goal

from any state. In practice, this is accomplished by performing a Dijkstra-like search of the
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Figure 5.1: Walking back the number of plans to goal g from each state via parent pointers

state space rooted in the current state where successors are defined exclusively by subject

actions. The minimum cost path to reach each goal is recorded, and the search terminates

once all paths to all goals of cost equal to that goal’s minimum cost have been discovered. For

domains with a heuristic function available, our implementation utilizes a simple heuristic

for a multi-goal search: given a state, use the minimum heuristic value out of all goals.

Once the forward search finishes, we cache the number of plans to each goal from every

state by walking back from the goals. We seed the open list with the discovered goals, then

visit ancestor nodes breadth-first via parent-pointers. For a given goal and a given state, the

number of plans from that state to the goal is the sum of the number of plans to that goal

cached on all successors. See Figure 5.1 for an illustration. Let node A be a node expanded

in this back-walk. A has successors B, C, and D, each of which have cached counts of 1, 2,

and 0 plans to goal g respectively. To determine how many plans are available to g from

node A, we sum the counts cached with all successors: 1 + 2 + 0 = 3. When goals are seeded

into the open list, they are initialized with a plan count of 1.

This information must be recomputed frequently as the algorithm descends down the
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search tree depth-first. Conceptually, every intervention executed on a state s (besides

Identity) transitions to a new state s′, thus invalidating all previous subject plans φ∗s,g.

It is conceivable to design a domain where the subject’s state can be isolated within the

system state so that subject plans before and after an intervention stay mostly the same. In

the domains we evaluate on, there is significant overlap between plans available from s and

s′. In other words, the states are slightly modified, but the actions available to the subject

in those states are mostly identical. Even so, in the general case, plan counts cached with

state variables common to both s and s′ cannot be trusted after an intervention is executed

since arbitrary actions could be invalidated. Even if we have a domain where we are able to

immediately identify an action that has been invalidated and the shared state whose cache is

directly affected, we would still have to propagate back the updated plan count discounting

that action to all ancestors of the state. Additionally, the observer is permitted to add

actions to the domain as long as they don’t change the costs to any goal. This requires us

to re-search for subject plans from the current state to ensure we accurately count all new

plans enabled for the subject.

5.2 Evaluation

To characterize the behavior of Opt-AGRD, we implemented it in C++ and ran experiments

on Intel E8500 3.16 GHz CPUs. Our primary concern for this evaluation is how our imple-

mentation scales, i.e., which domain characteristics affect runtime the most. As a testbed for

our experiments, we use grid pathfinding with 4-way movement and a hand-coded version

of the Logistics domain.

For our grids, we used two patterns of obstacles. In uniform grids, each cell had a

0.2 probability of being blocked. Room grids contain walls with randomly placed openings,

scaled down from those in the Moving AI repository [Sturtevant, 2012]. In both domains, the

subject and observer’s start locations and possible goals were chosen uniformly at random

from among unblocked cells. The remaining unblocked cells had a 0.3 chance of being
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Figure 5.2: Examples of Uniform (left) and Rooms (right) Gridworld domains. Black cells are
obstacles, green are goals, red is the subject, and blue is the observer.

Figure 5.3: Example of network topology used for Logistics domain.

blockable by observer interventions. The observer follows the same movement rules as the

subject and both can occupy the same cell. To block a cell, the observer must be adjacent

to it and it must be marked as blockable. This is nearly identical to the terrorist domain

used in previous work [Pozanco et al., 2018; Shvo and McIlraith, 2020]. See Figure 5.2 for

examples.

In Logistics, the object is to move packages to specific locations matching a goal specifi-

cation. Packages must be moved by trucks that can drive between locations. Locations and

the network connecting them are defined by sampling points in a unit square using a con-

nection distance of 0.4. The observer follows the same movement rules as the subject trucks

and can remove connections to other locations from the location they currently occupy. All

goals generated for our experiments specify a location for 1 package. The goal package and

location were chosen uniformly at random. See Figure 5.3 for an example of the network of

locations.
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Instances for all domain types were generated with 2, 3, or 4 goals. We only report on

instances where observer interventions can affect eρ(sroot), which filtered out many instances.

Results are reported on 531 Uniform Grids, 44 Rooms Grids, and 1120 Logistics instances.

Several factors clearly will not affect the running time of the algorithm:

1. The length of the plan the subject executes to achieve its goal: Once the subject diverges

from all plans to other goals, we have achieved goal recognition. Therefore, the actual

length of the subject’s plan to its goal is irrelevant.

2. The prior distribution over goals: Opt-AGRD must examine all possible branches of

Teρ to ensure optimality, no matter how unlikely a goal may be.

3. The size of the state space: Assuming the optimal plan lengths to goals are held

constant, the explored states are limited to those required to find plans to goals.

We did examine runtime as a function of the number of goals, which affects the branching

factor of Teρ due to the actions a subject could take to additional goals. This did appear to

play a minor role in runtime, but was easily dominated by the depth of the tree. We did not

examine runtime as a function of the number of interventions, as this should have a similar

effect as the number of goals, namely an increased branching factor.

The dominating factor in runtime was the length of the optimal plan to the second-

furthest goal. This follows from Theorem 3, which establishes the depth bound of Teρ

based on the second-furthest goal. Figure 5.4 plots the geometric mean of the runtime to

exhaustively explore Teρ with 95% confidence intervals as a function of this upper bound.

(No room maps with an upper bound of 2 survived filtering.) To obtain this runtime, we

only report on the algorithm’s time to return the first intervention, which necessarily requires

it to expand the entire tree exactly one time. The plot shows that, as one might expect,

Opt-AGRD scales exponentially in the depth of the tree. The domain instances used in our

experiments had varying numbers of cells / locations, but the overwhelming factor was the

depth of the tree.
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Figure 5.4: Avg runtime to explore the tree as a function of search tree depth.

5.3 Enhancements

In domains where the observer is required to move in some physical space or network (e.g.

GridWorld and Logistics), many of the interventions are simply movement, and thus are

guaranteed to affect no subject plans. In all domains, the Identity intervention is explicitly

defined as one that affects no state, so by definition does not affect subject plans. In our

implementation, we detect these interventions and avoid recomputing subject plan counts

when simulating them in our tree search.

The remaining enhancements discussed were not implemented for our experiments. We
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present them here as possible directions for future work.

Dynamic Programming We proved in Theorem 4 that Teρ exhibits optimal substructure,

which is a key requirement for using dynamic programming to speed up computation by

caching optimal solutions to sub-problems. We then argued that this optimal substructure

did not overlap as much as it first appeared, undercutting the case for dynamic program-

ming. Nevertheless, we point to a domain like GridWorld where many of the observer’s

interventions are simply movement. Consider these two sequences of observer interven-

tions (ignoring the subject actions that would be interleaved): 〈LEFT,RIGHT,LEFT 〉

and 〈RIGHT,LEFT,RIGHT 〉. Assuming the subject takes the same actions for either

sequence of interventions, it is clear that the system state and goal posteriors will be iden-

tical. We therefore propose that dynamic programming solutions could provide speedups in

some domains, specifically those where much of the time the observer is likely to execute

interventions that do not change state relevant to the subject (or subject plans).

Tree Pruning The algorithm we have presented exhaustively explores every branch of

the tree, but this is not required to achieve optimality. We can adapt the famous Alpha-

Beta Pruning algorithm [Knuth and Moore, 1975] to our expectimin tree. Consider the root

node of the tree. We wish to determine the intervention that leads to the minimal score.

To find the score for an intervention, we compute the expected score over all children of

that intervention, i.e. subject actions. This expected value is a sum accumulated incre-

mentally by evaluating each subject action sequentially and adding the result, weighted by

the probability of the action. Consider a case where the algorithm has computed a score

for one intervention at the root. As the only score computed, it is by default the minimal

score so far. Let us call this intervention the incumbent. The algorithm then computes the

score for the next intervention by accumulating the expected score of its children. If the

accumulated score over some subset of all actions exceeds the incumbent’s score, we need
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not evaluate the remaining actions since we know the incumbent still has the minimal score.

This optimization also works at any subtree rooted in the successor of a subject action, so

can be employed recursively.

While tree pruning is not guaranteed to provide any speedup, it has the potential to

prune a lot of branches depending on the variance between branch scores and the order they

are evaluated. One could employ domain-specific heuristics informing the search on which

subject actions should be explored first to maximize branch pruning.

5.3.1 Algorithmic Framework

The algorithmic framework presented as Algorithms 1, 2, and 3 can be parameterized to

facilitate a differing set of assumptions. The functions ConditionedPriors and GoalHyp

(Algorithms 5 and 7 respectively) compute their values based on optimal subject plans, but

modeling different assumptions could be accomplished through refinement or redefinition

of these methods. For instance, adversarial subjects could be modeled by changing the

calculation of the likelihood of an action in a simulated state to make ambiguous actions

more likely and discriminating actions less likely. Sub-optimal subjects could be modeled

by redefining the likelihood using all plans bounded by some sub-optimality measure rather

than all optimal plans.

We believe the flexibility of this framework can support a wide range of assumptions

beyond those stated thus far. In Chapter 6, we will use this framework to formulate a

suboptimal algorithm that differs primarily in how the action likelihoods are computed (Al-

gorithm 4). A much richer exploration of differing assumptions within this framework is a

promising research direction, and we leave these extensions to future work.

46



CHAPTER 6

Suboptimal Algorithm

In the previous chapter we presented an algorithm that solves an AGRD problem instance

optimally. We also noted in our evaluation that the runtime of the algorithm scales expo-

nentially in the depth of the tree explored. However, the AGRD problem setting is designed

for online applications where exponential runtime is likely infeasible. We therefore explore a

simple anytime algorithm based on Opt-AGRD that finds sub-optimal solutions quickly and

is able to improve solutions over time.

6.1 Iterative Widening: IW-AGRD

We retain the same assumptions and restrictions, namely that the subject acts optimally, all

subject plans to a given goal are equally likely, and the observer cannot change the optimal

cost to any subject goal that has not been pruned yet.

The key idea is to reduce the number of branches the algorithm explores by aggressively

pruning subject actions from consideration. The algorithm is given a time bound for how

long each search episode is allowed to take to find the best intervention for the current state.

At the start of each episode, we set our pruning parameter to eliminate all but the most

likely actions and exhaustively explore this significantly reduced tree. At the end of each

of these iterations, we cache the chosen intervention. We then relax our pruning parameter

slightly and perform another iteration exploring the widened tree, reminiscent of Ginsberg

and Harvey’s Iterative Broadening [1992]. Once the episode’s time bound is reached, we

return the cached intervention, which corresponds to the intervention selected by the most
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recently finished search iteration.

To implement this idea, we use the structure of Opt-AGRD, but we replace Algorithm 4

with a modified calculation of action likelihood.

Algorithm 9: Iterative Widening ActionProb:
Action Probability with pruning

Input : actions ,
G - goal set,
PG - goal priors,
ssim - simulated state,
w - Integer that controls “width” of the tree

Output: Sequence of probabilities for actions

// Compute likelihoods as before

53 init PA as array of length |actions| to 0

54 foreach ai ∈ actions do
55 s′ ← ai(ssim)
56 P ′ ← ConditionedPriors(G, PG, ssim , s′)
57 PA[i]←

∑
p∈P ′ p

// Keep only the most likely actions

58 topWLikelihoods ← TopNUnique(w,PA)
59 threshold ← min(topWLikelihoods)
60 foreach pi ∈ PA do
61 if pi < threshold then
62 pi ← 0

63 PA ← Normalize(PA)

64 return PA

Lines 53-57 are identical to Algorithm 4, and changes are colored blue. Starting at

Line 58, we prune actions by setting an action’s probability to 0 if it does not meet a

threshold. This threshold is determined by getting the top N unique likelihood values from

PA where N = w, our integer widening parameter. The minimum value of this group of top

N likelihoods is set as the threshold. Finally, we normalize the pruned action probabilities

[Line 63] so that our action probabilities still sum to 1. In effect, we discard any actions that

do not meet the threshold by returning a distribution that excludes them.

This altered version of ActionProb is invoked within DFS-Action (Alg. 3) in place

of Alg. 4. DFS-Action therefore must accept the widening parameter w, but is otherwise
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unchanged.

To execute the tree search iteratively, we must also alter the top-level process of Opt-

AGRD.

Algorithm 10: IW-AGRD : Iterative Widening AGRD

Input : I - problem instance,
timeBound - time bound for each search episode

Output: Achieved ρ once the goal is known.

65 let D, sroot ,G, PG, ρ refer to the components of I
// Initialize Goal Hypothesis

66 H ← GoalHyp(G, sroot , sroot)
67 PH ← PG
68 s← sroot
69 while |H| > 1 do
70 w ← 1
71 amin ← Identity
72 while timeBound not reached do
73 , amin ← DFS-Intervention(D, ρ,H, PH , s, w)
74 w ← w + 1

75 s← amin(s)
76 s′ ← ObserveSubjectTransition(s)
77 H,PH ← UpdateHypothesis(H,PH , s, s

′)

78 s← s′

79 return ρ(s)

There are two main differences between Algorithm 10 and Algorithm 1. First, we take

timeBound as an additional parameter. We use this bound to control the loop executing

the iterations [Line 72]. Once time has run out, we break from the loop and apply the most

recently returned intervention. For simplicity, the pseudocode does not depict an “interrupt”

mechanism, but note that it is possible for time to run out before an iteration has completed.

If no iterations have completed before time runs out, the algorithm applies the Identity

intervention initialized on Line 71.

The second alteration is the use and maintenance of the width parameter w. At the start

of each search episode, we initialize w to 1 [Line 70], meaning only the most likely actions

will be explored. DFS-Intervention is trivially modified to accept w as a parameter. It
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passes w along to DFS-Action, and vice versa, when control is traded between them. w

is passed unaltered through the tree and is used in every invocation of Algorithm 9. Once

a search iteration ends, w is incremented [Line 74] so that the next iteration, the likelihood

threshold will be lower, so more actions will be considered.

We specifically note that the UpdateHypothesis function (Algorithm 6) is unaltered

in IW-AGRD. Despite pruning many actions from our search, we still incorporate those

actions in our Bayesian update (Equation 4.6). The intention with IW-AGRD is to reduce

the exploration of the tree, not introduce error into the posteriors.

Since actions with probability 0 do not have to be expanded, the effect of the changes

made to ActionProb in Algorithm 9 is that DFS-Action explores fewer branches of the

tree. The savings in exploration of course come at the cost of optimality since we can no

longer claim to have exhaustively explored the tree, but a focus on the most likely actions

the subject could take should produce a good approximation of the value of an intervention.

6.2 Analysis

We now analyze IW-AGRD as compared to Opt-AGRD. Recall that Teρ is the tree induced by

eρ, and that Opt-AGRD exhaustively explores this tree to produce the optimal intervention.

Theorem 2 proves that the size of Teρ is finite under the reasonable assumption that there is

an upper bound on the number of actions available to the observer and the subject in any

given state. We will maintain that assumption for this analysis.

Let the specific branching factor for subject actions be defined as follows:

bsubj = max
s∈S
|Asubj (s)| . (6.1)

Let us also define T iIW as the tree explored by IW-AGRD on iteration i of a search episode.

The main difference between TIW and Teρ is that not every branch representing a subject

action is necessarily included in TIW .
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Theorem 6 Given a large enough time bound, IW-AGRD will eventually converge to the

optimal intervention.

Proof: We first note that for T iIW , i = w since w is incremented after every iteration. Note

also that T iIW = Teρ when w is large enough that every branch of the tree will be explored.

Let us characterize when this happens. w is a lower bound on the number of actions that

can be explored at every subject decision node of T iIW . This follows from the fact that we

keep every action whose likelihood is equal to or greater than the wth-highest likelihood.

When w ≥ bsubj , we are therefore guaranteed that all subject actions will be explored, i.e.

T
i≥bsubj
IW = Teρ .

Theorem 2 states that Teρ is finite. Since IW-AGRD only prunes actions, TIW ⊆ Teρ ,

and therefore T iIW is finite for all values of i. Let x refer to the time it takes Opt-AGRD

to explore Teρ exhaustively. We can upper-bound the time it will take for IW-AGRD to

converge to the optimal solution as O(bsubjx). In other words, the time IW-AGRD will take

to converge can be at most the time it takes to explore Teρ a total of bsubj times in the

situation where all subject actions have different probabilities. �

Although our suboptimal strategy reduces the branching factor of the tree by pruning

actions, all trees TIW inherit the same depth bound κ from Teρ via Theorem 3.

Lemma 3 For all i, the depth of T iIW is bounded by the second most expensive goal g̈ ∈ G.

Proof: This follows directly from Theorem 3 which holds because of two properties that

TIW shares with Teρ :

1. Leaves are defined as nodes where the subject’s goal is distinct.

2. The observer is not allowed to change the optimal cost to any goal.

Property 1 means that the proof from Theorem 3 holds assuming goal costs remain static

and Property 2 guarantees this fact. �
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6.3 Evaluation

We evaluated the performance of IW-AGRD against Opt-AGRD using the same experimen-

tal domains as our runtime evaluation in Section 5.2.

Since every domain instance has multiple goals the subject could choose, we ran each

domain instance with every possible actual subject goal. To match our assumptions, the

subject’s plan is chosen uniformly at random from among all possible optimal plans to its

goal. When an intervention alters any state variables that affect the subject, the subject

replans and again chooses randomly among all remaining plans to its goal. In our domains,

a state variable that “affects the subject” is any state variable besides the observer’s physical

location in the system. To reduce variance in our results, we tested each instance and goal

combination with 10 different random seeds. All experiment configurations were tested with

IW-AGRD using time bounds of 1ms, 10ms, 100ms, and 1000ms.

The primary quality metric used for our experiments is ψ, the fraction of the subject’s

actual path that was non-distinct. To compare with the optimal solution, we establish an

optimal baseline. This baseline was computed by averaging the ψ value achieved by Opt-

AGRD over all seeds for each unique combination of domain instance and actual subject goal.

For each experiment with IW-AGRD, we take the signed difference between this baseline

and the actual achieved ψ, then divide it by the baseline. The result is the amount that the

suboptimal solution deviated from the optimal solution, expressed as a signed percentage of

the optimal solution’s quality. For instance, 5% indicates that IW-AGRD was 5% worse than

optimal, whereas -5% would indicate better performance than optimal. Note that due to the

stochasticity of the domain, it is possible for a suboptimal algorithm to perform better than

optimal in specific instances, though the optimal algorithm should do better on average.

We excluded from our results any experiments where both the baseline and the achieved

ψ was 1.0, which corresponds to experiments where the subject’s goal was not distinguished

until it was achieved both by Opt-AGRD and IW-AGRD. In these experiments, there were
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Figure 6.1: Quality of suboptimal solution relative to optimal baseline on Uniform Grid instances.
Top: All experiments average results. Bottom: Results broken out by the depth bound of the
instance.

no interventions that could possibly have improved detection of the subject’s actual goal

in that domain instance, so the observer was inactive. These experiment configurations
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Figure 6.2: Quality of suboptimal solution relative to optimal baseline on Room Grid instances.
All experiments average results.

passed through our filter because we only filtered out domain instances where there was

no intervention that could affect the detection of any goal. We decided to retain instances

where detection could be improved for at least one goal, even if no improvements are possible

for other goals. In the context of our suboptimal comparison, configurations with inactive

observers are not informative and only serve to make the suboptimal algorithm appear to

perform better, since its deviation from the optimal baseline is 0 for those instances. Note

that we only exclude configurations where detection could not be improved for every seed in

both optimal and suboptimal experiments. Other configurations of the same instance with

different subject goals are reported if ψ < 1.0 for either the baseline or achieved ψ. We also

excluded from this analysis any domain instances where IW-AGRD could not even compute

the Bayesian update for subject actions resulting from the Identity intervention within the

time bound. Though the timeouts may have occurred in only the smallest time bounds on

the most difficult instances, we do not report on those instances here to keep our comparisons

across domains and time bounds fair.
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Figure 6.3: Quality of suboptimal solution relative to optimal baseline on Logistics instances.
Results broken out by the depth bound of the instance.

Figures 6.1, 6.2, and 6.3 plot percent deviation from the baseline as a function of the

time bound for each search episode of IW-AGRD. We plot both overall performance for

all domains and performance broken out by depth bound in Uniform Grids and Logistics

domains. Recall that the depth bound is identified as the cost of the second most expensive

goal (Theorem 3, Page 24). Figure 6.1 plots results in Uniform Grid World instances.

The confidence intervals for the results broken out by depth bound are very wide, so for

clarity we plot the overall performance across all instances and the performance by depth

bound separately in Figure 6.1-top and Figure 6.1-bottom respectively. Figure 6.2 plots only

the overall performance for Rooms Grid instances. Due to the limited number of domain

instances that passed filtering, the confidence intervals for results broken out by depth bound

made that analysis uninformative. Figure 6.3 plots the results in Logistics instances. We

plot the overall results alongside the results by depth bound to provide context for the overall

quality of the algorithm. Note that we obtained many fewer instances with smaller depth

bounds (an order of magnitude fewer Depth 3 vs Depth 6), which resulted in some wider
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confidence bounds.

The results empirically demonstrate that IW-AGRD exhibits the desirable property of

anytime algorithms: the more time that is allocated to each search episode, the better the

solution quality. The gains seen in the Logistics domain are less dramatic than in either

of the Grid domains, though this is expected since the Logistics instances we experimented

with are more difficult, taking up to 10 seconds to compute an optimal solution.

In the plots that break out performance by depth bound, we see a surprising difference

between Gridworld (Figure 6.1-bottom) and Logistics (Figure 6.3). In Gridworld, instances

with a higher depth bound lead to higher deviation from the optimal baseline, i.e. lower qual-

ity solutions, especially when the time bound is very small. In Logistics, we see the opposite

result: lower depth bounds lead to lower quality solutions at low time bounds. We suspect

that this discrepancy results from differences in the domain dynamics. The interconnected

nature of grids means that it is easy for the observer to change course if the subject takes an

action that makes blocking some cell irrelevant. The logistics location network has a different

structure that may require more “route planning” through the network to reach locations

the observer wishes to block access to. Committing toward one location could therefore be

difficult to recover from if the subject takes actions that require the observer to pursue a

different intervention. At lower depth bounds, the observer has less time to recover from

moving in an ultimately fruitless direction, so the solution quality degrades when compared

with higher depth bound instances.

Due to this discrepancy, we decided to examine solution quality against another metric:

the fraction of the time bound divided by the total time it took the optimal solution to

exhaustively explore the tree. Depth bound is correlated to runtime as discussed in Sec-

tion 5.2, but a more precise comparison between the times available to make decisions will

better demonstrate how practical IW-AGRD is for larger domains by determining if it can

maintain high quality solutions when allocated only a small fraction of the time granted to

the optimal algorithm.
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Figure 6.4: Solution quality for Uniform Grids as a function of the fraction of time in a search
episode compared with Opt-AGRD. Top: evenly-sized buckets. Bottom: quantile buckets.

Figures 6.4 and 6.5 plot solution quality against the relative time given to IW-AGRD

compared with Opt-AGRD in the Uniform Gridworld and Logistics domains respectively.
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Logistics: Quantile Buckets

Figure 6.5: Solution quality for Logistics as a function of the fraction of time in a search episode
compared with Opt-AGRD. Top: evenly-sized buckets. Bottom: quantile buckets.

The Rooms Gridworld experiments were uninformative because there were not enough in-

stances to bucket the data in any meaningful way, so they have been excluded. The x-axis
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is computed by first taking the runtime for Opt-AGRD to exhaustively explore the tree as

presented in Figure 5.4, grouped by domain instance. Note that we do not need to group by

actual subject goal or random seed since the first search episode will be identical because the

subject has taken no actions yet. For each IW-AGRD experiment, we divide the time bound

by the optimal runtime for the corresponding domain instance, producing the fraction of

time allotted to IW-AGRD compared with Opt-AGRD. For the plots, we place this fraction

into buckets so that we can average the quality within a bucket. Each bucket represents a

range of fractions.

We include 2 plots per domain type. In both figures, the top plot uses buckets that are

evenly spaced out within a critical zone of interest: between .1 and 1.3, which corresponds

to setting the time bound for IW-AGRD at 10%-130% of the time it takes to exhaustively

explore the tree optimally. We also add buckets to capture values at the edges of our zone

of interest. This produced a somewhat erratic graph with wide confidence intervals, so the

bottom plot of both figures is the same data split into 15 even-width quantile buckets where

each bucket has approximately the same number of data points. We’ll first note that in the

quantile buckets, the majority of instances are well outside our zone of interest. This is more

prevalent in Figure 6.5 because the Logistics experiments were given the same set of time

bounds even though the Logistics instances were orders of magnitude more difficult than

Gridworld. Nevertheless, the quantile buckets provide us a clearer view of the trends in our

data.

In both domains, the smallest ranges correspond to domains where IW-AGRD was allo-

cated so little time relative to the size of the problem that it could do nothing but return

the identity intervention. The quantile plots only start to improve solution quality as IW-

AGRD is allocated a little less than 20% of the time that the optimal solution took. It is

curious that the first bucket of Figure 6.4-bottom displays better solution quality than the

next 3 despite representing the smallest fraction of time. We suspect this is an artifact of

some property of the grid domains we experimented with, but we were unable to identify
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a root cause for this behavior. Despite the wide variance, the even buckets in the Uniform

Gridworld experiements plotted in Figure 6.4-top suggest a linear relationship between the

fraction of time granted to IW-AGRD and solution quality. It would be difficult to make the

same claim with the Logistics even bucket plot because of the even wider variance present in

Figure 6.5-top. What is clear is that it requires greater than 130% of the time to compute the

optimal solution for the Logistics experiments to reliably recover more than 50% of solution

quality that was lost at lower fractions of time.

It is unsurprising that the suboptimal algorithm would require more time to converge

since it must iteratively explore smaller subsets of the full tree several times before arriving

at the optimal solution. However the results suggest that the degredation in solution quality

produced by IW-AGRD has a linear relationship with the time allotted to it as a fraction of

the total time it takes to solve the problem. This makes sense, since IW-AGRD only prunes

actions, which affects the branching factor of the tree, but not necessarily the depth. The

results also support Lemma 3, which states that the depth of the tree TIW has the same

upper bound as Teρ . This implies that Corollary 1 holds for TIW , and so exploring it should

be asymptotically very similar to Teρ , i.e. exponential in the depth.

6.4 Discussion

IW-AGRD is a straightforward relaxation of the optimality guarantee made by Opt-AGRD.

It provides a useful basis for analysis of a suboptimal algorithm that maintains the same

restrictions as Opt-AGRD, namely that the observer cannot change the cost to any goal. The

fact that it is an anytime algorithm makes it more widely applicable in online interactive

settings than its optimal counterpart, and opens the door to applications in larger-scale

domains.

However, our experiments have also exposed the weakness of this simple method. Solution

quality is very low until the time bound IW-AGRD is given reaches a significant percentage,

approximately 20%, of the time it takes to compute the optimal intervention. Ultimately,

60



our technique is still beholden to the exponential nature of exhaustive tree exploration that

it inherits from Opt-AGRD. As such, it can also benefit from the enhancements described

in Section 5.3, but we believe there is a limit to the amount this kind of enhancement can

accomplish.

6.4.1 Iterative Deepening AGRD

We have established with 2 algorithms that the depth of the search tree is the dominating

factor in determining the runtime of an exhaustive tree search. We therefore lay out our

vision for a suboptimal variant of Opt-AGRD that bounds the depth of the tree explored,

though the implementation and detailed analysis is left for future work.

For the simplicity of this overview, let us continue to maintain the same assumptions

about neutral observers and subject behavior that have guided the design of Opt-AGRD

and IW-AGRD. Let us consider a new algorithm, Iterative Deepening AGRD (ID-AGRD),

that is allowed to produce suboptimal interventions as long as it completes within a given

time bound. We will borrow the basic structure of iterative exploration described for IW-

AGRD, but instead of a widening parameter w, we use a deepening parameter κ. (We

continue to use κ in place of d when referring to depth to avoid confusion with notation used

for distinctiveness.)

The key problem to solve in coming up with an iterative deepening algorithm is how to

evaluate the score of a non-terminal leaf node, i.e. a node that is at the depth limit, but

whose goal hypothesis still has multiple goals. Let us define a generic objective function

ζ : S → R that maps a state to a real number. ζ behaves exactly as ρ, except that it

can operate on non-terminal leaf nodes. We will only describe ζψ, an analogous function to

ρψ (Definition 11, Page 21), to illustrate the algorithm, but we note that other ρ functions

can also be adapted into analogous ζ functions. Discussion of the requirements for such

adaptation is left for future work exploring this algorithm in depth.

Our idea is to use the entropy of the goal hypothesis to help us approximate how long it

61



will take to disambiguate each goal if we were to continue exploring the tree.

Definition 13 ζψ : S → [0, 1] returns an approximation of the expected fraction of the

subject’s plan that will have been executed when their goal is distinct. For a state s, let:

entropy(s) = −
∑

pi∈PHs

pilog(pi) Entropy of goal posteriors

ri = |φ∗s,gi | Remaining steps to reach goal gi ∈ PHs

Define:

ζψ(s) = E
pi∼PHs

[
lengthsubj (s) + entropy(s) ri

lengthsubj (s) + |φ∗s,g|

]
(6.2)

ζψ differs from ρψ in 2 key ways. First, it is able to return a non-zero value for states whose

goal hypothesis is greater than one. Second, we change the calculation of the fraction to be

able to handle additional goals. We colored differences with Equation 4.7 in blue to highlight

where ζψ deviates from it, namely adding the entropy times remaining steps and taking an

expectation distributed by goal posteriors. For each remaining goal in the hypothesis, take

the remaining steps to achieve that goal and multiply it by the entropy of the goal posteriors

in that state. This term is added to the length of the subject’s plan to reach s, giving us

an approximation of when we would expect to distinguish that particular goal. Dividing

this by the total steps to achieve the goal optimally yields an approximation of the fraction

of the subject’s plan that will be executed prior to distinguishing that goal. Intuitively, if

the entropy is higher, we are less certain of which goal the subject is pursuing, so we will

estimate that it will take longer to distinguish their goal. The final score of the non-terminal

node is the weighted average over all goals using the goal posteriors.

To determine the best intervention of a state given, we define eζ , an analogous function

to eρ (Definition 10, Page 19).

Definition 14 eζ : S × Z≥0 → R is a function that computes the expectation of the best
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achievable ζ of a given state for a given scoring function ζ and a given depth bound κ:

eζ(s, k) =


ζ(s) if k = κ or |Hs| ≤ 1

min
aobs∈Aobs(s)

score
(
aobs(s), k

)
otherwise

(6.3)

score(s, k) = E
asubj∼Ps

[
eρ
(
asubj (s), k + 1

)]
. (6.4)

eζ(s, k) and the altered score function are then used to expand the state space tree, approx-

imating all exploration that would descend below depth 2κ. Once the algorithm completes

its exploration of the tree with bound κ, we increment κ so that trees of increasing depth

can be explored until time runs out.

Using the entropy of the posteriors in this way exhibits some helpful qualities. High-

entropy posteriors, i.e. those with many goals that are equally likely, will be estimated to

take longer to disambiguate. Conversely, low-entropy posteriors will be estimated to take

little time to disambiguate. This rewards states where one goal is much more likely than the

rest, which are indeed states that we intuitively want to drive the subject toward. However

it is unclear whether this algorithm would prefer non-terminal leaf nodes with low entropy

over terminal leaf nodes representing states where the goal has been fully disambiguated. We

may require a mechanism (reminiscent of UCT [Kocsis and Szepesvári, 2006]) that tracks

our confidence in the score of a branch based on the proportion of non-terminal leaf nodes

vs terminal leaves. This question and others about the behavior of this proposed algorithm

are promising research directions.
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CHAPTER 7

Conclusion

As AI-driven systems become widespread, it is crucial to extend our models of multiagent

interaction. In this thesis, we have presented Active Goal Recognition Design, a new problem

setting that models observers with agency to aid goal recognition online. AGRD adapts the

conventional Goal Recognition Design problem to online settings where the observer and

subject interleave actions, extending GRD to handle entirely new classes of problems that

require reasoning about the passage of time in an evolving system.

The thesis we pursued in this research is:

Active Goal Recognition Design is a useful new problem setting that sits between

passive Goal Recognition and two-player games.

• In Chapter 1, we motivated our research and introduced our approach.

• In Chapter 2, we described prior work, highlighting the growing research on active

observers influencing subject agents online.

• In Chapter 3, we discussed the conventional objective functions for GRD based on

distinctiveness. We provided counter-examples to illustrate their limitations, and pro-

posed ψ, an objective that incorporates reaction time and balances resource allocation

between recognition efforts for different goals. We also discussed challenges with GRD

systems in online settings.

• In Chapter 4, we defined the formal problem setting for Active Goal Recognition Design

and provided theoretical proofs on important characteristics of this problem.
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• In Chapter 5, we proposed Opt-AGRD, an algorithm to optimally solve an AGRD

problem instance that exhaustively explores the state space tree induced by simulating

subject and observer actions as the system evolves. We proved and demonstrated

empirically that the cost of this exploration is exponential.

• In Chapter 6, we proposed IW-AGRD, an anytime suboptimal variant of Opt-AGRD,

that aggressively prunes subject actions from the tree to reduce the number of branches

explored. We evaluated this variant and discussed enhancements and research direc-

tions to carry this work forward beyond its current limitations.

We conclude, given the limitations of previous work and the breadth of applicability of

AGRD, that AGRD is a useful new problem setting.

7.1 Related Work

The AGRD problem setting captures a level of interaction between subjects and observers

not previously modeled in the context of Goal Recognition or GRD. We now discuss closely

related approaches and how our formulation improves on prior work.

7.1.1 Active Observers and GRD

In Active Goal Recognition (AGR) [Shvo and McIlraith, 2020], the observer is granted agency

to take sensing actions that facilitate observations of the subject to aid goal recognition.

Though their evaluation uses ψ as we’ve defined it to report on the quality of their solution,

they do not directly minimize this objective. They instead plan their actions to maximally

prune the goal hypothesis with the heuristic guidance that pruning more goals at a time is

better. However, this planning procedure does not consider how the system may evolve in two

key ways. Firstly, if there is a choice between an intervention that distinguishes goal A and

another that distinguishes goals B and C, AGR will always select the one that distinguishes

2 goals, even if the first intervention is the observer’s only opportunity to distinguish goal
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A before it is achieved. Secondly, as we discussed in Section 3.2, the assumption that

the observer will have time to execute their plan without modeling the evolving system is

problematic in domains with time pressure.

The formulation of Goal Elicitation Planning [Amos-Binks and Cardona-Rivera, 2020] is

more closely related to our own in that their model interleaves subject and observer actions.

However they do not explicitly model the relationship between subject and observer actions,

but rather choose from a precomputed set of static observer plans based on whether the

plan can possibly be achieved in time to affect the subject. Their myopic focus on this plan

selection precludes them from planning for sequences of interventions that incrementally

reduce wcd. Additionally, by focusing on wcd, their observer plans can only reduce the

worst case. Once the subject transitions to a branch of the state space that is not worst

case, their observer will be inactive, even if an intervention exists that could further reduce

the length of the most non-distinct path remaining to the subject.

In contrast to these approaches, we have presented a problem formulation closer to online

planning. By continuously minimizing the expectation of the objective, we allow our observer

to react to an evolving world. The AGRD formulation is applicable to a broader class of

problems than prior work, and we hope the algorithms and analysis we have presented can

provide a baseline for further research.

7.1.2 Inverse Reinforcement Learning

Goal Recognition bears similarity to Inverse Reinforcement Learning. IRL is a problem

setting where a system attempts to recover the reward function of a subject (often referred

to as an “expert”) acting within an MDP. The reward function can be analogous to the

goal of an agent, especially in the MDP we introduced in Section 4.5 where the observer

only receives reward when the subject’s goal is known. In particular, Ramachandran and

Amir [2007] introduce a method of learning reward functions as a sequence of Bayesian

updates from observations and priors over a finite set of possible reward functions. But
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while there are similarities, IRL focuses on generalizing knowledge gained through learning a

reward function. Our work in goal recognition focuses on isolated inference of a subject’s goal

that is not intended to generalize to the next problem instance. An interesting direction could

be to explore using IRL to help learn the “preferences” of subjects within specific domains.

These preferences could translate to weighting certain actions as more likely than others,

thus allowing the observer to strategize better with additional information. We leave this

exploration for future work.

7.2 Limitations

Our approach is not without drawbacks. As our evaluation demonstrates, our simple opti-

mal algorithm, Opt-AGRD, is impractical for large domains since simulating every possible

branch of the search tree is exponential in the depth of the tree. The suboptimal algorithm we

presented, IW-AGRD, provides anytime behavior to mitigate this scaling issue at the cost

of solution quality. However, its exploration of the reduced search tree inherits the same

fundamental flaw of exhaustively evaluating the tree, meaning solution quality degrades to

inactivity unless each search episode of IW-AGRD is allowed to run for a significant fraction

of the time it takes to compute an optimal solution. We discussed some possible variations

and enhancements to improve performance in Section 5.3.

7.3 Possible Extensions

As discussed in the evaluations in Sections 5.2 and 6.3, Opt-AGRD and IW-AGRD have

scaling issues due to the exponential nature of the trees they explore. In Section 6.4.1,

we proposed another variant, ID-AGRD, that would directly address the scaling issue by

exploring trees of reduced depth. Implementing and evaluating this method is a compelling

direction for future work. We also note that adapting approximate MDP methods, such as

MCTS, may be beneficial in computing quality solutions in a scalable way.

This work makes several restrictive assumptions, chief among them that the subject acts
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optimally and that the observer cannot change the optimal cost to any goal that has not

been pruned yet. Our formulation can be extended to suboptimal subjects, for instance by

adapting the work on bounded suboptimality in GRD [Keren et al., 2015]. In addition, we

could allow the observer to change optimal plan costs from their original values within a

constant bound. These modifications would unfortunately only increase the size of the tree

explored by Opt-AGRD, so would have to be examined in tandem with other work (e.g. as

described above) to address the scalability of AGRD algorithms.

Lastly, a central (and costly) assumption made by this work is that all possible subject

plans are equally likely. This assumption requires us to compute all plans to active goals at

every node in Teρ that represents a successor of an intervention. It would be interesting to

explore algorithms that can repair our representation of all plans rather than recomputing the

whole set. But more importantly, it would be useful to explore other probability distributions

for subject actions. For instance, we could use a Boltzman-like distribution to model “noisy

rationality” as in [Fisac et al., 2019; Ramachandran and Amir, 2007]. However, without

re-computing plans to goals after executing an intervention, we do not know if or by how

much the cost to any goal has changed. Employing different distributions would require us

to more efficiently compute this information or otherwise relax that restriction.
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