
Abstraction-guided Sampling for
Motion Planning

University of New Hampshire
Department of Computer Science

Technical Report 12-01

Scott Kiesel, Ethan Burns and Wheeler Ruml
May 1, 2012



Abstraction-guided Sampling for
Motion Planning

Scott Kiesel and Ethan Burns and Wheeler Ruml

Abstract Motion planning in continuous space is a fundamental robotics problem
that has been approached from many perspectives. Rapidly-exploring Random Trees
(RRTs) use sampling to efficiently traverse the continuous and high-dimensional
state space. Heuristic graph search methods use lower bounds on solution cost to
focus effort on portions of the space that are likely to be traversed by low-cost solu-
tions. In this paper, we bring these two ideas together in a technique calledf -biasing:
we use estimates of solution cost, computed as in heuristic search, to guide sparse
sampling, as in RRTs. Estimates of solution cost are quicklycomputed using an ab-
stract version of the problem, then an RRT is constructed by biasing the sampling
toward areas of the space traversed by low cost solutions under the abstraction. We
show thatf -biasing maintains all of the desirable theoretical properties of RRT and
RRT*, such as completeness and asymptotic convergence to optimality. We also
present experimental results showing thatf -biasing finds cheaper paths faster than
previous techniques. We see this new technique as strengthening the connections
between motion planning in robotics and combinatorial search in artificial intelli-
gence.

Key words: motion planning, heuristic search, rapidly-exploring random trees, ab-
straction

1 Introduction

We begin by recalling Dijkstra’s algorithm [4], the well-known search technique for
finding paths in a discrete state space graph. Dijkstra’s algorithm explores a graph
by visiting its nodes in ascending order according to the cost necessary to reach
them and it is guaranteed to find a cheapest path from an initial node to any node

Scott Kiesel and Ethan Burns and Wheeler Ruml
University of New Hampshire, e-mail:{skiesel,eaburns,ruml} atcs.unh.edu

1



2 Scott Kiesel and Ethan Burns and Wheeler Ruml

in the graph. Unfortunately, the search is unfocused and will explore portions of the
graph that lead away from the goal as well as those that lead toward it. To allevi-
ate this problem, the A* algorithm [6] uses a cost-to-go estimate called a heuristic.
When a heuristic estimate is available, A* always visits fewer nodes than Dijkstra’s
algorithm, as it avoids portions of the graph that only participate in high cost solu-
tions.

Rapidly-exploring random trees (RRTs) [11] are a popular technique for motion
planning in continuous spaces. The RRT algorithm builds a tree of paths by sam-
pling configurations. The point in the tree nearest to each new sample is steered
toward the sample, creating a new path segment and a new node in the tree. RRTs
are complete in the limit of infinite samples, however they donot optimize for low
cost solutions. Karaman and Frazzoli’s RRT* algorithm [7] re-wires the tree when
lower cost paths can be found to existing nodes near each sample point. RRT* is both
complete and asymptotically optimal. However, much like Dijkstra’s algorithm for
discrete graph search, RRT* will expend effort exploring portions of configuration
space that lead exactly away from the goal as well as towards it.

The main contribution of this paper is a new technique calledf -biasing, named
after the valuef used by A* to order its search effort. Just as A* improves over
Dijkstra’s algorithm,f -biasing focuses exploration of RRT-based algorithms toward
areas that are more likely to lead to the goal configuration, and to do so via low cost
trajectories. To usef -biasing, we first solve a discretized and abstracted version of
the motion planning problem. Then, using the cost estimatesfound in the abstracted
problem, we bias the location of samples in the RRT so that they are more likely to
be drawn from portions of configuration space that contain low cost solutions to the
abstracted problem.

After discussing the method in detail, we prove thatf -biasing maintains the com-
pleteness and convergence properties of RRT and RRT*. We then comparef -biased
RRT and RRT* to their unbiased and goal-biased versions using three vehicles of
increasing complexity: a simple straight-line vehicle, the Dubins car, and a hover-
craft. f -biasing finds its first solutions more quickly in all domainsexcept Dubins
car with RRT*, where our currentf -biasing implementation has more re-wiring
overhead and this is only as fast as the other methods. We alsoshow anytime pro-
files that demonstrate thatf -biasing both solves more problems and is able to im-
prove its solution quality more quickly than other techniques. Finally, we show how
f -biased RRT can provide a larger improvement over unbiased RRT than the RRT*
algorithm. Broadly, we see this work as strengthening the connections between mo-
tion planning in robotics and combinatorial search in artificial intelligence that were
pioneered by algorithms like RRT* and R* [16].

2 Previous Work

We begin with a discussion of related work in both heuristic search and robotics.



Abstraction-guided Sampling for Motion Planning 3

2.1 Heuristic Search

A* [6] is an optimal search algorithm for discrete graphs [3]. A* visits nodes in
increasing order of estimated solution costf (n) = g(n)+ h(n), whereg(n) is the
cost of the path from the initial node to noden andh(n) is the heuristic value ofn,
estimating the cost fromn to a goal node. In this paper, we are bringing the use of
heuristics to the area of continuous motion planning. This raises the question: where
do heuristics come from?

One technique for creating heuristics is by relaxing the constraints of the prob-
lem. Essentially, this technique adds extra edges between states that do not exist in
the original problem. Likhachev and Ferguson [15] provide two examples of relax-
ation as applied to motion planning problem. The first example is their removal of
obstacles from a motion planning problem to create a simplerrelaxed problem that
can be solved quickly. The second example is the ignoring of vehicle dynamics in
order to relax motion constraints. Solutions to these relaxations are lower bounds on
the cost-to-go in the original problem and are used to guide search.

Currently, some of the most powerful heuristics used by the search and AI plan-
ning communities are created using abstraction. An abstraction is a many-to-one
mapping from the search space to a smaller abstract representation of the search
space. For example, Remolina and Kuipers’s [18] topological maps are a form of
abstraction created by mapping regions of space to single nodes in a map. Sturtevant
and Geisberger [20] also present an overview and a comparison of recent advances
in the area of abstraction-based heuristics for grid pathfinding.

Pattern databases (PDBs) [2] are one of the most popular abstraction-based meth-
ods and are closest in spirit tof -biasing. A PDB contains the cost-to-goal for ev-
ery state in an abstract representation of the search space,computed by performing
Dijkstra’s single-source shortest path algorithm in reverse from the abstract repre-
sentation of the goal to every node in the abstract state space. During search, the
abstract costs from the PDB are used as admissible heuristicestimates for search
states: when a heuristic estimate is needed for a node, the solution cost for the ab-
stract representation of the node is used as the estimate.

2.2 Rapidly-exploring Random Trees

Rapidly-exploring random trees (RRTs) [11] grow a tree fromthe initial configu-
ration toward random samples in configuration space. Each iteration of the RRT
algorithm samples a random configuration, finds the node in the tree that is nearest
to the sample, and then adds a new node to the tree by steering the nearest node
toward the sample. In the limit of infinite samples, an RRT will densely cover the
configuration space.

The RRT* algorithm [7] is a simple modification to the standard RRT algorithm
that allows it to find cheaper motion plans faster. Whenever anew node is added
to the tree, nearby nodes are updated if they can be reached bya cheaper path via



4 Scott Kiesel and Ethan Burns and Wheeler Ruml

the new node. The re-wiring performed by RRT* is closely analogous to a common
technique used in heuristic search algorithms, such as A*, in which, whenever a
cheaper path with a lowerg value is found to a node, the cheaper path is used
and the more expensive path is discarded. This can be seen as aform of dynamic
programming. Unlike A*, however, RRT* makes no use of a heuristic estimator.

Other variants of the basic RRT algorithm have been proposed, such as bidirec-
tional RRT [10]. In this paper, we only evaluatef -biasing on the basic RRT algo-
rithm and RRT*, however any sampling technique, such asf -biasing, could easily
be applied to bidirectional RRTs.

2.2.1 RRT Sampling Schemes

Previous authors have also recognized that uniform exploration is not the most ef-
ficient choice for a single query motion planning algorithm.There are a variety of
previous proposals for biasing sample selection in an attempt to decrease the time
required to find the first solution, improve the handling of navigation near obsta-
cles, and increase the exploration of the configuration space. Most of the techniques
summarized here are discussed in greater detail by LaValle [12].

Unbiased Random Sampling: Unbiased random sampling, the method that was
originally proposed for generating an RRT, has the benefit ofcovering the configu-
ration space without prejudice and is appropriate for domains where no prior knowl-
edge or only inaccurate knowledge is available. The following biasing techniques
attempt to exploit additional information to find better solutions faster.

Goal-biased Sampling: Goal-biased sampling [13] selects the goal configura-
tion, or configurations near the goal, more often than uniform sampling in an at-
tempt to grow the RRT more quickly toward the goal. There are two major flavors
of goal biasing. First, the goal configuration itself can be selected as a sample with
some fixed probabilityp, otherwise an unbiased sample is used. The second version
of goal biasing selects configurations near the goal insteadof only the goal itself.
One common method for this is to use a Gaussian distribution [13, 19] around the
goal configuration. These both can overcome minor local obstacles, however, if a
configuration lies in a heavily obstructed part of the space far from the goal, it will
be difficult for the tree to escape the obstructions.

Heuristic-biased Sampling: Urmson and Simmons [21] introduced heuristic-
biased sampling, which biases samples to be nearer to those nodes that the RRT
reached via lower cost paths. This method has been shown to find cheaper motion
plans, however, its biasing is based on the cost of paths found by the RRT regard-
less of whether or not these paths lead toward the goal. Like Dijkstra’s algorithm,
heuristic-biased sampling will explore portions of the space that lead away from the
goal if it has reached them via cheaper paths than those leading toward the goal.
Instead, we would like to sample from areas that we expect to be traversed by cheap
trajectories that actually reach the goal.

Path-biased Sampling: The previous method that is most similar to ours is path-
biased sampling [22, 9]. While it was developed independently, path-biasing is sim-



Abstraction-guided Sampling for Motion Planning 5

ilar because it can be seen as using the solution to an abstract or simplified repre-
sentation of the motion planning problem such as a discrete grid or visibility graph
[17]. An RRT is then constructed by choosing samples along the solution path of
the abstract problem with a probabilityp and uniformly otherwise. Using this tech-
nique, samples tend to occur along a possible low cost trajectory from the initial
configuration to the goal.

Basic path-biasing fails if the path found in the simple problem doesn’t take
into account constraints of the complex motion planning problem. To hedge against
this possibility, Krammer et al. [9] propose a modified variant that draws samples
from a Gaussian distribution around the abstract solution path. As we discuss next,
f -biasing uses a more principled approach by selecting samples from areas of the
configuration space with a probability based on the solutioncost in the abstract
space. Effectively,f -biasing takes into account all low-cost paths in the abstract
space simultaneously instead of focusing on a single path. Furthermore, we will
demonstrate that this is effective even for vehicles with complex dynamics, such as
a hovercraft.

3 f -biased Sampling

We have discussed heuristic search and the benefits that it gains by using a heuristic
to focus its effort on areas of a search space that reside on low cost solutions. Next,
we saw that many of the most powerful state-of-the-art heuristics are created by us-
ing abstraction, and lastly, we described RRTs, which use sparse, uniform random
sampling to explore the continuous and high-dimensional nature of motion planning
problems.f -biased sampling combines these three ideas: heuristic search, abstrac-
tion, and sample-based motion planning. The first step in using an f -biased RRT is
to create an abstract representation of the motion planningdomain. Next, Dijkstra’s
algorithm is used to pre-compute the cost of the shortest path through each abstract
node from the initial configuration to the goal in the abstract space, as in PDBs. Like
a heuristic, these abstract solution costs give the abilityto focus the RRT’s growth
toward configurations that map to abstract states with low costs. We now explain
each of these steps in greater detail.

3.1 Abstraction

The abstraction is represented by a weighted directed graphthat is small enough to
be searched exhaustively with Dijkstra’s algorithm. Thereare many possible tech-
niques for generating an abstract representation of a problem. In our implemen-
tation, we use a simple uniform discretization of configuration space to create an
n-dimensional grid, wheren is less than or equal to the dimensionality of the con-
figuration space. Each vertex in the abstract graph is a discrete configuration that



6 Scott Kiesel and Ethan Burns and Wheeler Ruml

(a) (b)

(c) (d)
Fig. 1 An example map showing abstraction (a),f values (b), anf -biased RRT (c) and regular
RRT (d).

represents all configurations in the continuous space that fall within its Voronoi
hyper-rectangle. Adjacent vertices in the abstract graph are connected via an edge
if neither vertex is obstructed by an obstacle. In our implementation, a vertex is ob-
structed if its discrete configuration is contained within an obstacle. The weight of
each edge reflects an estimate of the cost of the navigating between the two discrete
configurations that it connects.

Figure 1(a) shows a polygonal map of the second floor of our building along
with a possible abstraction, represented as a coarse grid overlaid on the continuous
domain. Each cell of the coarse grid is a vertex in the abstract graph and the graph
has eight-connectivity. This is an extreme simplification,but as our experiments will
show, it suffices to guide motion planning.

For each motion planning query, we map the initial and goal configurations to
their abstract nodes in the abstract representation of the state space. We then com-
pute the cost of the path from the initial node through each abstract node to the goal
node. Because we use a discrete abstraction, this can be donein linear time in the
size of the abstract space by using two calls to Dijkstra’s single-source shortest path
algorithm: one that computes the shortest path from the initial node to each node,
g(n) in A* terminology, and another that computes the shortest path from each node
to the goal node,h(n). The sum of these values gives the cheapest cost of a solution
path passing through the given node,f (n) = g(n)+h(n).

Figure 1(b) shows thef values for a motion planning problem using the abstrac-
tion from Fig. 1(a). The initial configuration is shown as a light blue square in the
lower-left corner and the goal is shown as a green square in the upper-right corner.



Abstraction-guided Sampling for Motion Planning 7

Each abstract node is shaded, with black representing highf cost. As we can see,
even this simple abstraction suffices to uncover that it would be more desirable to
focus RRT growth into the lighter areas of the map while spending less time con-
sidering the dark portions.

3.2 Growing an f -biased Tree

To create anf -biased RRT, we proceed as in the standard RRT or RRT* algorithm,
however, more samples are taken from configurations that correspond to low cost
abstract nodes. To accomplish this, each node is assigned a score so that nodes
with low f values have high scores and nodes with highf values have low scores.
These scores are then normalized to sum to 1 and the normalized scores give the
probability with which an abstract node is selected for sampling. Once an abstract
node is selected, a sample from the concrete configuration space is drawn uniformly
from its preimage—the set of concrete configurations that map to the selected node
in the abstract space.

The score for each abstract node is given bys= f ω
min/ f ω , where fmin is the min-

imum f value of all abstract nodes andω is a configurable parameter representing
the strength of thef -bias. Increasingω increases the influence of the abstract nodes
that are closer tofmin, narrowing the corridor from which most of the samples are
drawn. Decreasingω decreases the influence of the abstract nodes that are closerto
fmin and increases the amount of exploration. In our experiments, we usedω = 4 as
it was found to give good performance in a small set of preliminary experiments.

In some cases, an abstract node has anf value of infinity, for example, if it resides
within an obstacle. We would still like to generate samples from these areas, so when
f is infinite, we define the score to besmin/2 wheresmin is the minimum score of all
nodes with finitef . Thenth abstract node is selected for sampling with probability
pn = sn/∑N−1

i=0 si . Finally, a sample is generated uniformly from among all possible
configurations in the preimage of the selected node. Figure 1(c) shows a completed
f -biased RRT, along with its solution path. For comparison, Fig. 1(d) shows the first
solution found by an unbiased RRT. Notice that, in thef -biased RRT, most of the
exploration is focused in the lighter cells that reside along the diagonal between the
initial configuration and the goal. The unbiased RRT required many more samples
and explored the entire map.

4 Theoretical Analysis

Previous results on RRT and RRT* are robust enough to survivethe bias introduced
by our technique.

Lemma 1. Under f -biasing, there exists a positive constant that bounds from below
the probability of selecting each configuration.



8 Scott Kiesel and Ethan Burns and Wheeler Ruml

Proof: Under f -biasing, every abstract node has a positive probability ofbeing se-
lected to sample within. Every configuration in the preimageof an abstract node has
positive probability of being sampled.⊓⊔

Theorem 1. Using f -biased sampling does not disrupt the probabilisticcomplete-
ness of the RRT or RRT* algorithms.

Proof: Lemma 1 is exactly the condition required by the completeness proof for
RRT given by LaValle and Kuffner [14], thus completeness is maintained. The com-
pleteness proof of Karaman and Frazzoli for RRT* [7] is inherited directly from
RRT, thus RRT*’s completeness is also preserved.⊓⊔

Theorem 2. Using f -biased sampling does not disrupt the asymptotic optimality of
the RRT* algorithm.

Proof: The proof of RRT*’s asymptotic optimality [7] relies on the rewiring step to
monotonically decrease path costs, which requires positive probability of adding any
configuration to the vertex set. This property is ensured by Lemma 1. Said another
way, RRT* merely rewires the same vertex set as constructed by RRT. Using f -
biasing preserves non-zero probability of generating every possible RRT vertex set,
hence it preserves asymptotic optimality.⊓⊔

5 Experimental Results

Next, we evaluate the performance off -biased RRTs experimentally on three dif-
ferent path planning domains.

5.1 Implementation Details

We attempted to obtain a copy of the RRT* implementation by Karaman and Fraz-
zoli [7] for comparison, however, the source code was not available at the time of
our request. Instead, we wrote our own implementation of RRTand RRT* in C++
using the same K-D tree implementation that was used by Karaman and Frazzoli
(available fromhttp://code.google.com/p/kdtree/). Our RRT* imple-
mentation also used their technique for reducing the size ofthe ball from which
nodes are considered for re-wiring as more samples are generated. All techniques in
our comparison used the same implementation and data structures; the only differ-
ence between the techniques was the decision of where in the configuration space
the samples were generated. All experiments were performedon a 3.16 GHz Core2
duo PC with 8GB RAM running Linux.

For f -biasing, the abstract node from which to sample was selected in constant
time by inserting a reference to each abstract node multipletimes into a large array

http://code.google.com/p/kdtree/


Abstraction-guided Sampling for Motion Planning 9

(a) (b) (c) (d)

Fig. 2 The example of Karaman and Frazzoli after 235 iterations with unbiased RRT* (a) and
f -biased RRT* (b) and after 2000 iterations (c) and (d).

to approximate its probability relative to the least probable node. An index into this
array was then chosen uniformly at random. An alternative, less memory hungry,
approach is to use binary search to select the node. To reducethe time spent by
binary search, clustering can be used to group the abstract nodes into a small fixed
number of equiprobable bins that can be searched very quickly.

In timing results withf -biasing, we do not include the time required to build the
abstraction since it can be computed once for a given map and stored. Typically, the
time required to build the abstraction was only a few seconds, most of which was
spent testing if abstract nodes are blocked by obstacles in the configuration space.
These tests can easily be performed in parallel, allowing the abstraction creation
time to be greatly decreased with modern multicore hardware. Our timing results do
include the time required to perform the Dijkstra shortest-path pre-computation step
for each instance, because this must be performed for each individual motion query.
Our implementation runs both Dijkstra searches in parallelas they are completely
independent of one another. Regardless, this time was foundto be quite insignificant.

5.2 Straight-line Vehicle

Our first set of experiments uses a very simple vehicle motionmodel from Karaman
and Frazzoli [7] that we call the ‘straight-line vehicle.’ The straight-line vehicle
moves straight and can instantly turn to any angle. The objective to minimize is the
path length.

We begin by comparing unbiased RRT* withf -biased RRT* on a reproduction
of the map used in Karaman and Frazzoli’s Fig. 1 [7]. They usedthis simple map
to show the benefits of RRT* over basic RRTs. Likewise, Fig. 2 uses this map to
show the benefit off -biasing. Figures 2(a) and 2(b) show unbiased RRT* andf -
biased RRT* respectively after 235 samples, whenf -biasing finds its first solution.
Figures 2(c) and 2(d) show the state of both algorithms after2000 samples. We
can see that combining the sampling of RRTs with guidance from heuristic search



10 Scott Kiesel and Ethan Burns and Wheeler Ruml

First Solution RRT and RRT*

time (seconds)
63

c
o
s
t

600

500
unbiased RRT

unbiased RRT*

f-biased RRT

f-biased RRT*

Anytime Profiles RRT and RRT*

time (seconds)
40200

0.9

0.6

0.3

f-biased RRT

f-biased RRT*

unbiased RRT

unbiased RRT*

Fig. 3 Straight-line vehicle:f -biasing and RRT* improvement over unbiased RRT.

causedf -biasing to find its first solution more quickly and enabled itto decrease the
solution cost more quickly too.

The map in Fig. 2 is very simple, so our next results are on a setof 100 path
planning problems given by uniformly selected initial and goal locations on the
more realistic map of Fig. 1. The abstraction used forf -biasing was a uniform eight-
connected grid of resolution 12x10.

First, we look at the improvement off -biasing over standard RRT compared to
the improvement of RRT* over RRT. The left plot in Fig. 3 showsthe first solution
time and cost for RRT and RRT* with and withoutf -biasing. The x axis shows
the first solution time in seconds and the y axis shows the firstsolution cost. Each
glyph represents the mean over the 99 instances that were solved by all techniques
with RRT and the 100 instances solved by all techniques with RRT* within a 90
second time limit. Error bars show the 95% confidence intervals on the mean. We
can see from this plot thatf -biased RRT actually found its first solution significantly
more quickly than all alternatives and in addition, its firstsolution costs tended to be
slightly cheaper than that of unbiased RRT*.f -biased RRT* gave the best solution
cost and took only slightly longer than unbiased RRT.

RRT and RRT* are naturally anytime algorithms; they providea stream of solu-
tions of decreasing cost as they are given more time. One common way to compare
anytime algorithms is by comparing theiranytime profile, i.e., solution cost over
time. We ran each biasing technique twice with the same random seed for 90 sec-
onds with RRT and RRT* on each of our 100 instances. The first run computed the
solution cost achieved at each sample. Because there are many iterations, this cost
computation required a non-negligible amount of CPU time, so the second run mea-
sured the time at which each sample was taken without the costcomputation. This
data was used to build anytime profiles.

The right plot in Fig. 3 shows the anytime profiles for RRT and RRT* with and
without f -biasing. The data points were computed in a paired manner byfinding the



Abstraction-guided Sampling for Motion Planning 11

First Solution RRT

time (seconds)
1.60.8

co
st 600

500

goal 10%

goal 1%

goal 25%

unbiased

f-biased

First Solution RRT*

time (seconds)
642

c
o
s
t

600

500

Anytime Profiles RRT

time (seconds)
40200

b
e
st
 c
o
st
 /
 c
o
st

0.9

0.8

0.7

f-biased

unbiased

goal 1%

goal 10%

goal 25%

Anytime Profiles RRT*

time (seconds)
80400

0.9

0.6

0.3

Fig. 4 Straight-line vehicle: first solution times and anytime profiles for RRT (left) and RRT*
(right).

best solution found on each instance by the algorithms in thegiven plot and dividing
this by the incumbent cost at each time value on the same instance. By initializing
incumbent scores to infinity, this technique allows for comparison at times before
all instances are solved. The lines show the mean over the instance set and the error
bars show the 95% confidence interval on the mean. The plot shows that f -biased
RRT and RRT* both find cheaper solutions faster than their unbiased counterparts.

Next, we comparef -biasing to both goal-biased and unbiased RRT and RRT*.
The top row of Fig. 4 shows the time and cost of the first solution for f -biasing,
goal-biasing with 1%, 10% and 25% of the samples being the goal configuration
and unbiased RRT and RRT*.f -biasing found its first solutions significantly more
quickly than the other techniques and the cost of its first solutions tended to be
lower. The bottom row of Fig. 4 shows anytime profiles. From the left plot, we can
see that when used in the RRT algorithm,f -biasing dominated the other techniques.



12 Scott Kiesel and Ethan Burns and Wheeler Ruml

First Solution RRT

time (seconds)
2010

c
o
s
t

560

480

First Solution RRT*

time (seconds)
403020

co
st

500

400

goal 1%

unbiased

goal 10%

goal 25%

f-biased

Anytime Profiles RRT

time (seconds)
80400

b
e
st
 c
o
st
 /
 c
o
st

0.8

0.4

0

f-biased

goal 10%

goal 25%

goal 1%

unbiased

Anytime Profiles RRT*

time (seconds)
160800

0.8

0.6

0.4

Fig. 5 Dubins car first solution times and anytime profiles for RRT (left) and RRT* (right).

In the right plot, we can see the same behavior for RRT* exceptthat more time was
required to approach the best cost solution. This is likely because of RRT*’s con-
vergence to optimality: the best solution found by RRT* was much cheaper than the
best found by RRT and more time was used to find it. Also, each iteration requires
re-wiring.

5.3 Dubins Car

In this section, we evaluate the performance off -biasing with the Dubins car [5],
which has anx andy location and headingθ that is constrained by a fixed turning
radius. The abstraction used byf -biasing on this domain used a uniform grid of dis-
cretex, y andθ combinations with dimensions 75x65x4. In this set of experiments,



Abstraction-guided Sampling for Motion Planning 13

First Solution RRT

time (seconds)
906030

co
st

1600

1400

goal 1%

goal 10%

goal 25%

f-biased

unbiased

Anytime Profiles RRT

time (seconds)
160800

b
e
st
 c
o
st
 /
 c
o
st

0.8

0.4

0

f-biased

unbiased

goal 1%

goal 25%

goal 10%

Fig. 6 Hovercraft first solution times and anytime profile for RRT.

we used the same instances that were used for the straight-line vehicle with a time
limit of 90 seconds for RRT and 180 seconds for RRT*.

The top two plots in Fig. 5 show the time and cost of first solutions. For RRT,f -
biasing found its first solutions significantly more quicklythan the other techniques.
For RRT*, however, none of the techniques found their first solution significantly
faster than the others.f -biasing did not find its first solution faster in this settingbe-
cause its biased samples created a very dense tree and so RRT*performed a lot more
expensive re-wiring. The bottom two plots show anytime profiles. f -biasing had a
better profile than all other techniques on both algorithms even though it performed
fewer samples within the time limit for RRT*. This is becausef -biasing both solved
more instances and was able to find cheaper solutions with fewer samples than the
other methods.

5.4 Hovercraft

The final domain that we present is path planning for a simple hovercraft. Each
configuration consists of〈x,y,θ ,δx,δy,δθ 〉. x, y andθ represent the craft’s position
and orientation.δx andδy represent the current translational rate in each respective
direction andδθ represents the rotational velocity. This models a simple hovercraft
with two fans: one propels the craft in the directionθ and the other applies rotational
force in either direction. This domain has the largest dimensionality and presents the
most difficult motion model of all domains considered in thispaper.

For the experiments in this domain, we used 100 random start and goal configura-
tions on the map from LaValle and Kuffner [14]. The abstraction used forf -biasing
was the same as used for the Dubins car with dimensions 26x26x4. f -biased RRT
solved 90% of all instances within a 180 second time limit whereas goal-biased RRT



14 Scott Kiesel and Ethan Burns and Wheeler Ruml

with its best setting (1%) only solved 74% of the instances and unbiased RRT only
solved 75%. The left plot in Fig. 6 shows the first solution costs and times for the
43 instances solved by all algorithms within the time limit.The first solution costs
from f -biasing were not significantly different from that of the other techniques,
however, it found these solutions significantly faster. Theright plot shows the any-
time profile, where we can see thatf -biasing gave the best performance. Achieving
good performance with such a basic abstraction for this complex domain suggests
that f -biasing is robust to the choice of abstraction.

6 Discussion

As we point out in Section 5.3,f -biased RRT* is not able to generate samples
as quickly as unbiased and goal-biased RRT* because it builds a denser tree and
therefore requires more re-wiring at every sample. The sample speed off -biasing
can be increased in a couple of ways. First, Karaman and Frazzoli’s [7] k-nearest
technique can be used to fix the number of nodes tested for re-wiring at k, instead
of checking all nodes within the ball. A second possibility is to chose the ball size
used to test for re-wiring dynamically based on the sample density of the selected
abstract node and its neighbors. Even without these optimizations, our results show
that f -biasing performs favorably as it is able to find cheap solutions with fewer
samples than alternative methods.

While the results presented in Fig. 6 show thatf -biasing can give good perfor-
mance even with a simplistic abstraction, it is worth notingthat the choice of ab-
straction can be important. If the abstraction is too coarse, then it may not account
for important obstacles in the planning problem. If this occurs, then the sampling
can be biased toward regions of space that contain only infeasible plans due to the
unaccounted obstacles. Given this, one might assume that a finer discretization of
the abstract space will always perform better, as it is more informative, however,
we have found that coarser discretizations actually tendedto perform better in our
experiments.

We have shown thatf -biasing works well for constructing RRTs. We are also in-
terested in trying to combine these ideas with other types ofmotion planning tech-
niques. Probabilistic roadmaps (PRMs) [8] are a popular alternative to RRTs that
work by constructing a roadmap of feasible paths between points that are sampled
randomly from the configuration space. Once the roadmap has been constructed,
motion planning queries can be performed by connecting the initial and goal con-
figurations to any points on the roadmap and performing a fastdiscrete graph search.

As with RRTs, it is possible to bias the selection of locations used to create a
PRM. One possibility for using the ideas presented in this paper in conjunction with
PRM construction would be to compute thebetweenness centrality[1] of nodes in
an abstract graph. Betweenness centrality is a measure of the number of shortest
paths upon which a node in a graph resides. Sampling from locations in the abstract
graph with higher betweenness centrality may lead to more effective RPMs as the



Abstraction-guided Sampling for Motion Planning 15

nodes in the roadmap may reside in areas of the space that are used in many shortest
paths.

7 Conclusion

We have presentedf -biasing for RRTs, a new technique that combines guidance
from heuristic search with sparse sampling techniques fromrobotics. f -biasing ef-
fectively focuses the growth of an RRT on areas of configuration space that are tra-
versed by low-cost paths in an abstract representation of the problem. This allows
f -biased RRTs to find cheaper motion plans more quickly than other sampling tech-
niques. Our experimental results demonstrate that this newtechnique outperforms
unbiased and goal-biased RRT and RRT* on three different vehicle motion mod-
els: a straight-line vehicle, a Dubins car, and a hovercraft. This work strengthens
the connections between motion planning in the robotics community and heuristic
search in artificial intelligence. We feel that there are many additional analogies that
can be drawn between these two areas and we plan to explore them in future work.

Acknowledgments

We gratefully acknowledge support from NSF (grant IIS-0812141) and the DARPA
CSSG program (grant HR0011-09-1-0021). We would also like to thank Jordan
Thayer for his useful insight and help on an early draft of this paper.

References

[1] Brandes U (2001) A faster algorithm for betweenness centrality. The Journal
of Mathematical Sociology 25(2):163–177

[2] Culberson JC, Schaeffer J (1998) Pattern databases. Computational Intelli-
gence 14(3):318–334

[3] Dechter R, Pearl J (1988) The optimality of A*. In: Kanal L, Kumar V (eds)
Search in Artificial Intelligence, Springer-Verlag, pp 166–199

[4] Dijkstra EW (1959) A note on two problems in connexion with graphs. Nu-
merische Mathematik 1:269–271

[5] Dubins LE (1957) On curves of minimal length with a constraint on aver-
age curvature, and with prescribed initial and terminal positions and tangents.
American journal of mathematics 79:497–516

[6] Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics SSC-4(2):100–107



16 Scott Kiesel and Ethan Burns and Wheeler Ruml

[7] Karaman S, Frazzoli E (2011) Sampling-based algorithmsfor optimal motion
planning. International Journal of Robotics Research 30:846–894

[8] Kavraki L, Svestka P, Latombe JC, Overmars M (1996) Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions
on Robotics and Automation 12(4):566–580

[9] Krammer L, Granzer W, Kastner W (2011) A new approach for robot mo-
tion planning using rapidly-exploring randomized trees. In: Proceedings of the
Ninth IEEE International Conference on Industrial Informatics, pp 263 –268

[10] Kuffner JJ Jr, LaValle S (2000) RRT-connect: An efficient approach to single-
query path planning. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA-00), vol 2, pp 995 –1001

[11] LaValle SM (1998) Rapidly-exploring random trees: A new tool for path plan-
ning. Tech. rep.

[12] LaValle SM (2006) Planning Algorithms. Cambridge University Press, Cam-
bridge, U.K., URLhttp://planning.cs.uiuc.edu/

[13] Lavalle SM, Kuffner JJ Jr (2000) Rapidly-exploring random trees: Progress
and prospects. In: Proceedings of the Fourth InternationalWorkshop on Algo-
rithmic Foundations of Robotics (WAFR-00), pp 293–308

[14] LaValle SM, Kuffner JJ Jr (2001) Randomized kinodynamic planning. Inter-
national Journal of Robotics Research 20:378–400

[15] Likhachev M, Ferguson D (2009) Planning long dynamically feasible maneu-
vers for autonomous vehicles. The International Journal ofRobotics Research
28(8):933–945

[16] Likhachev M, Stentz A (2008) R* search. In: Proceedingsof the Twenty-third
National Conference on Artificial Intelligence (AAAI-08)

[17] Nilsson NJ (1969) A mobile automaton: An application ofartificial intelli-
gence techniques. In: Proceedings of the First International Joint Conference
on Artificial Intelligence (IJCAI-69)

[18] Remolina E, Kuipers B (2004) Towards a general theory oftopological maps.
Artificial Intelligence 152(1):47–104

[19] Song G, Amato NM (2001) Using motion planning to study protein folding
pathways. In: Proceedings of the Fifth Annual International Conference on
Computational Biology, pp 287–296

[20] Sturtevant N, Geisberger R (2010) A comparison of high-level approaches for
speeding up pathfinding. Proceedings of the Fourth Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE-10) pp 76–82

[21] Urmson C, Simmons R (2003) Approaches for heuristically biasing RRT
growth. In: Proceedings of the IEEE/RSJ International Conference on
Robotics and Systems (IROS-03)

[22] Vonásek V, Faigl J, Krajnı́k T, Pr̆euc̆il L (2009) RRT-path a guided rapidly ex-
ploring random tree. In: Robot Motion and Control, Lecture Notes in Control
and Information Sciences, vol 396, pp 307–316

http://planning.cs.uiuc.edu/

	Abstraction-guided Sampling for Motion Planning
	Scott Kiesel and Ethan Burns and Wheeler Ruml
	Introduction
	Previous Work
	Heuristic Search
	Rapidly-exploring Random Trees

	f-biased Sampling
	Abstraction
	Growing an f-biased Tree

	Theoretical Analysis
	Experimental Results
	Implementation Details
	Straight-line Vehicle
	Dubins Car
	Hovercraft

	Discussion
	Conclusion
	References



