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Abstract

Robust robot motion planning in dynamic environments re-
quires that actions be selected under real-time constraints.
Existing heuristic search methods that can plan high-speed
motions do not guarantee real-time performance in dynamic
environments. Existing heuristic search methods for real-
time planning in dynamic environments fail in the high-
dimensional state space required to plan high-speed actions.
In this paper, we present extensions to a leading planner for
high-dimensional spaces, R*, that allow it to guarantee real-
time performance, and extensions to a leading real-time plan-
ner, LSS-LRTA*, that allow it to succeed in dynamic motion
planning. In an extensive empirical comparison, we show
that the new methods are superior to the originals, providing
new state-of-the-art search performance on this challenging
problem.

Introduction

As autonomous robots increasingly become incorporated in
everyday human activities, they will need to move reliably
among humans and other dynamic objects. When dynamic
obstacles are present, a robot must plan around their present
and predicted future trajectories, updating its plan in real
time at a high enough frequency to remain reactive to its
surroundings. Current search-based methods do not directly
address this problem. In this paper, we present two new
algorithms for this problem and give an empirical evalu-
ation comparing them to several of the leading real-time
and motion planning algorithms from AI and robotics. Our
first algorithm, Real-time R* (RTR*), is a real-time adap-
tation of the motion planning algorithm R* (Likhachev and
Stentz 2008), which has been shown to work well for high-
dimensional motion planning problems. Our second algo-
rithm, Partitioned Learning Real-time A* (PLRTA*), is an
adaptation of the state-of-the-art real-time search algorithm
LSS-LRTA (Koenig and Sun 2009) that allows it to han-
dle motion planning with dynamic obstacles. Our empiri-
cal evaluation shows that RTR* and PLRTA* are significant
improvements over the original algorithms, performing as
well and often better than current motion planning and real-
time search algorithms, with PLRTA* offering state-of-the-
art performance.

Background
The problem of motion planning can be formulated in sev-
eral different ways. In this paper, we want to find plans
that are fast to execute, so we consider kinodynamic mo-
tion planning in which actions must obey the acceleration
and deceleration constraints of the specific robot being used.
This means that the state representation of the planner must
include the robot’s current direction and speed to ensure
it doesn’t, for example, try to turn sharply at high speed.
In this paper, we model the robot as a non-holonomic dif-
ferential drive vehicle. The presence of moving obstacles
raises additional issues. The easiest approach is to treat
moving obstacles as stationary. This has the advantage that
time need not be part of the state space, but can result in
highly suboptimal plans or even render problems unsolvable
(Kushleyev and Likhachev 2009). Following Kushleyev and
Likhachev (2009), we incorporate time as part of the state
space. This is because the current and future locations of
dynamic obstacles are dependent on time. We assume that
the current locations of dynamic obstacles are known but
that their future locations are unknown and are represented
as a time-parameterized probability distribution.

The Planning Problem
A planning problem P is defined as a tuple
{S, sstart , G,A, α,O,D} where

• S is the set of states, where a state is the tuple〈x, y, θ, v, t〉
corresponding to location, heading, speed, and the current
time.

• sstart is the starting state,sstart ∈ S.

• G is the set of goal states, where each stateg ∈ G is
underspecified as〈x, y, θ, v〉 because it is unknown when
the robot will be able to arrive there.

• A is the set of motion primitives available to the robot.
A primitive action is a functiona : S → S that maps
states to states and has a duration ofta. The function
α : S → Q, Q ⊆ A maps states inS to the subset of
actions inA that can safely be applied from that state.

• O is the set of static obstacles whose locations are known
and do not change.

• D is the set of dynamic obstacles, each represented as a
functiond : t→ N from time to a bivariate Gaussian dis-



tribution representing the object’s location. These func-
tions can change as the robot acquires more observations
of an obstacle.

A real-time planning algorithm must always return an action
a ∈ α(sstart) for a given problemP within the planning
time-boundtp. tp is the maximum amount of time allowed
per planning step. The valuetp must be less than or equal
to the duration of the motion primitives,ta, so that the robot
will always have the next action to execute by the time it
completes its current action.

The planner attempts to minimize the cost of the agent’s
trajectory over a fixed time horizon. The total cost of a path
is simply the sum of the costs of each action taken along the
path. The cost of an action is based on two components, the
cost of time passing,Ctime , and the cost of a collision,Ccol .
Given an action that transitions between two states, the total
cost of the action,C, is defined as:

C ≡ P (col) · Ccol + status · Ctime (1)

where P (col) is the probability of a collision occurring
with any of the dynamic obstacles andstatus is 0 if the
start state of the action is a goal and 1 otherwise. The
probability P (col) is computed assuming that the events
of not colliding are independent, following Kushleyev and
Likhachev (2009). The cost function is made up of both dy-
namic costs(P (col) ·Ccol ) and static costs(status ·Ctime).

Previous Work
Previous approaches to this problem in AI and robotics can
be classified into four major categories:

Potential Fields Potential field approaches treat the robot
as a point charge and the world as a potential field. The
goal attracts the robot while obstacles repel. The robot takes
the action that lowers its potential the most. This approach
works well in environments with few obstacles and is very
fast to compute. It suffers from the fatal flaw that the robot
can become trapped in local minima (Koren and Borenstein
1991).

Random Sampling Randomized sampling techniques at-
tempt to gain speed at the cost of optimality by greatly re-
ducing the number of states that need be explored. Rapidly-
exploring Random Trees (RRT) (Lavalle 1998) are a popular
planning technique that works by growing a tree randomly
outwards from an initial state. The tree is biased towards un-
explored regions of the state space. While RRTs are some-
times able to solve very hard problems quickly, their main
drawback is that no guarantees are made on solution quality
and in practice, their solutions are often poor. Since RRTs
are not real-time, a modified version was used in our ex-
periments where the number of tree expansions is limited
to a constant. The action along the path to the node with the
lowest heuristic value is then chosen (Lee, Pippin, and Balch
2008).

Heuristic Search D* Lite (Koenig and Likhachev 2002) is
an incremental search algorithm developed for path planning
in dynamic environments. It repeatedly plans backwards
from the goal to the current state of the robot, allowing it

to reuse work from previous iterations, greatly speeding up
planning. However, it is not obvious how to apply this algo-
rithm to kinodynamic motion planning where time is part of
the state, as it is unknown what time the robot will actually
arrive at the goal.

The Time-Bounded Lattice algorithm (TBL) (Kushleyev
and Likhachev 2009) was designed for the problem rep-
resentation we consider in this paper. The idea is to do
weighted A* search (Pohl 1970) in the full state space out
to a specific time bound. After that, the search proceeds in
the two dimensional(x, y) space, greatly reducing the num-
ber of states that need to be explored. With this approach,
dynamic obstacles “disappear” after the time bound cutoff is
reached. Because weighted A* is not real-time, TBL is not
real-time either. However, because it takes a search-based
approach similar to our work, we include it in our experi-
mental evaluation. We modified TBL to always plan at least
to the time bound to ensure that it remains reactive to dy-
namic obstacles while on or near the goal. This resulted in a
considerable performance improvement.

Real-time Heuristic Search Real-time algorithms must
use specialized techniques to avoid getting stuck in local
minima, since there is often not enough time available to
plan a complete path from the start to the goal. Real-time
A∗ (RTA∗) (Korf 1990) forms the basis of many other real-
time algorithms. It works by generating the successors of
the agent’s current state and doing some form of limited
lookahead search to determine which of these successors to
move to. The key step is to update the search’s heuristic
function after picking the best successor to move to. The
cachedh value of the current state is set to thef value of
the second-best successor. The intuition here is that if the
algorithm ever returns to that state, itsh value would have
to be at least thef value of the second best successor since
it had already moved to the best successor and returned. In
the limit of search iterations, this guarantees completeness
in domains where there exists a path to the goal from every
state. This means it is able to overcome admissible yet mis-
leading heuristic functions that may lead the agent into local
minima. However, this may take a very long time as only
one state’sh value is updated per search iteration.

A Sampling-based Approach: Real-time R*
In this paper, we investigate two approaches to solving the
real-time robot motion planning problem: modifying a lead-
ing motion planning algorithm to be real-time, and modi-
fying a leading real-time algorithm to be better suited for
motion planning. In the first case, we use the R* algorithm
because it has been shown to work well on hard motion
planning problems involving high-dimensional state spaces
(Likhachev and Stentz 2008).

R* attempts to quickly solve problems in high dimen-
sional state spaces and avoid heuristic local minima by us-
ing random sampling paired with heuristic search. R* per-
forms an interleaved two-level weighted A* search where
the higher level states are generated randomly and sparsely
over the state space and low-level searches are performed in
the original state/action space to connect these higher level



Figure 1: A depiction of an R* search withk = 3.

states. This has the advantage of splitting the problem up
into smaller, easier to solve subproblems, while not for-
feiting the guaranteed feasibility provided at the low-level
search space.

When expanding a nodes at the top level, R* selects a
random set ofk states that are within some distance∆ of s.
These states will form a sparse graphΓ that is searched for a
solution. The edges computed between nodes inΓ represent
actual paths in the underlying state space. To find the cost
between two nodess ands′ in Γ, R* does a weighted A*
search froms to s′ in the underlying state space (see Fig-
ure 1). If the low-level weighted A* search does not find
a solution within a given node expansion limit, it gives up,
labeling the node as AVOID, and allowing R* to focus the
search elsewhere. R* will only return to these hard to solve
subproblems if there are no non-AVOID labeled nodes left.
R* solves the planning problem by carrying out searches
that are much smaller than the original problem, and eas-
ier to solve. Note that R* finds complete paths to the goal
on every search, and the time that this takes is not bounded.

Making R* Real-time
We made five major changes to transform R* into real-time
R* (RTR*). We will discuss each in turn.

Limiting Expansions To meet the real-time constraints,
we begin with the traditional approach of limiting the num-
ber of node expansions to a constant. In R*, there are two
types of node expansions: nodes in the sparse graph are
expanded by generating a set of random successors, while
nodes in the low-level state space undergo regular expansion
usingα from P. The former occur relatively infrequently,
but take more CPU time due to the cost of setting up the
weighted A* search. The latter occur much more frequently,
but each expansion is much faster. In our implementation,
we count each high level expansion as equivalent to thirty
low-level expansions to account for this difference. Once
the expansion limit is reached, the best action to execute is
returned, as explained below. Also different from R*, RTR*
does not terminate when a goal state is found. It only ter-
minates when the expansion limit has been reached. This is
because it isn’t sufficient to just reach the goal state. In do-
mains with moving obstacles, it may be necessary to move
off the goal state at some future time to get out of the way of
an obstacle.

Action Selection After each iteration of RTR*, an action
to perform must be selected. As in other real-time searches

(Korf 1990), RTR* picks the first action along the most
promising path that has been generated. In traditional real-
time searches, this corresponds to the best node on the open
list. This approach cannot be taken directly in RTR*, be-
cause the nodes on the open list in the sparse graph may
not all have low-level paths to them. We prefer nodes with
complete paths to them, and of these, we prefer nodes with
smaller weightedf values. If there are no nodes in the sparse
graph with complete paths to them, then nodes with partial
paths to them are considered. These are nodes for which the
weighted A* search failed to find a complete path due to the
node expansion limit. Again, nodes with smaller weighted
f values are preferred.

Geometrically Increasing Expansion Limits In R*, if
the path to a node is not found due to the node expansion
limit, that node is labeled as AVOID and it is inserted back
onto the open list. If the node is ever popped off of the
open list again, another attempt is made at computing the
path, this time with no node expansion limit. This subprob-
lem could be very hard to solve, violating our real-time con-
straint. In RTR*, each time a search fails due to the expan-
sion limit, the limit is doubled for that node the next time
it is removed from the open list. This way, RTR* will not
focus all of its effort on computing paths to hard subprob-
lems unless completely necessary, and even then, the paths
to the easier of these hard problems will be computed first.
Since the expansion limit for computing the path to a node is
doubled each time, the total amount of extra searching that
may need to be done is bounded by a constant factor in the
worse case. In practice, it should actually cause the search
to expand many fewer nodes.

Theorem 1 The total number of extra node expansions that
must be done by RTR* because of doubling the expansion
limit of a sparse node instead of solving the problem outright
is bounded by a constant factor.

Proof: Analogous to IDA* (Korf 1985) - see Rose (2011)
for proof details. �

Path Reuse Because RTR* plans the robot’s path over
multiple iterations, we cache information after each itera-
tion. The only issue is that the costs of the edges in the
search graph can change between search iterations due to
the unpredictability of the moving obstacles. RTR* only
saves the nodes in the sparse graph that are on the best path
found. This allows the RTR* search to seed the sparse graph
Γ with nodes that appeared promising on the previous iter-
ation. All other nodes inΓ not on the most promising path
are discarded prior to the next planning iteration. The low-
level paths between the saved sparse nodes are recomputed
as necessary during the next planning cycle. If the costs
of the graph have not changed much, then these nodes will
most likely still be favorable and will be used by RTR*. If
costs have changed, then RTR* is free to recompute a better
path, or possibly not even use the cached sparse nodes at all.

Making Easily Solvable Subproblems One of the key in-
sights of the R* algorithm is that dividing the original prob-
lem up into many smaller subproblems makes it generally
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of the number of nodes needed by
weighted A* to solve problems problems with and without a
goal radius allowed. Thex axis is the distance between the
start and goal locations in meters.

easier to solve than solving the original. During node ex-
pansion, R* generates successors by randomly sampling the
state space at some specified distance∆ away from the node
being expanded. Likhachev and Stentz (2008) do not man-
date a certain distance metric, although Euclidean distance
or heuristic difference are often used. In certain domains,
such as robot motion planning, shorter distance does not
necessarily correspond to easier problems. Due to the con-
straints of the vehicle, it could actually be quite difficultto
move to a state that is only a small Euclidean distance away
(consider parallel parking). We found that requiring RTR*
to plan paths to the exact nodes in the sparse graph was pro-
hibiting the search from exploring further into the search
space. The reason is that, although the start and goal nodes
of these subproblems were close, it was often very hard to
maneuver the robot precisely onto a given state. To illus-
trate this, we ran an experiment in a small world without
any static or dynamic obstacles. Despite these ideal condi-
tions, these problems were still quite difficult to solve, with
only minuscule correlation between the distance from the
start to the goal node and how many node expansions were
required to solve the problem. To make these problems eas-
ier, the goal condition used for the low-level weighted A*
searches was relaxed to allow states within 0.5 meters of the
actual goal state and with any heading and any speed to be
considered a goal. Figure 2b shows the log of the number
of nodes taken to solve a collection of small problems with
random start and goal states and no obstacles both with and
without the relaxed goal condition. The relaxed goal condi-
tion reduced the mean number of nodes expanded to solve
the problems by over a factor of 7, allowing RTR* to solve
subproblems much more quickly.

Algorithm 1 Partitioned Learning Real-Time A∗

PLRTA(sstart , lookahead )
1: open ={sstart}
2: closed ={}
3: ASTAR(open, closed,lookahead )
4: g′ ← peek(open)
5: LEARN STATIC(open, closed)
6: LEARN DYNAMIC(open, closed)
7: return first action along path fromsstart to g′

A Real-time Search Approach: PLRTA*
We developed RTR* by altering a leading motion planning
algorithm to be real-time. We also pursued the opposite ap-
proach: adapting a state-of-the-art real-time algorithm,LSS-
LRTA* (Koenig and Sun 2009), to the problem of robot
motion planning with dynamic obstacles. Before present-
ing the resulting algorithm, Partitioned Learning Real-time
A* (PLRTA*), we first describe LSS-LRTA*.

Local Search Space Learning Real Time A∗ (LSS-
LRTA∗) is the leading real-time search algorithm. It works
by first performing a node-limited A∗ search (Hart, Nilsson,
and Raphael 1968) from the current state towards the goal.
Once the node expansion limit is reached, the first action
along the path to the lowestf node on the open list is re-
turned. Next, a variant of Dijkstra’s algorithm is performed
from the nodes on the open list back to all the nodes on the
closed list to update all theirh values. This is in contrast
with RTA*, which only updates oneh value per iteration.

LSS-LRTA* has been tested on simple grid world goal
finding tasks, however, we believe real-time search should
also find applicability in more realistic motion planning.
There are two problems with LSS-LRTA* that prevent it
from being effectively applied to our problem. First, after
an iteration of search, LSS-LRTA* will cause an agent to
move along the path to the best node found, until that node
is reached or until costs along the path rise. Only then will
LSS-LRTA* run another iteration of search. This means that
LSS-LRTA* will be incapable of recognizing when shorter
paths become available, e.g. from a dynamic obstacle mov-
ing out of the way (Bond et al. 2010). Second, theh val-
ues learned for nodes will never decrease (Koenig and Sun
2009). This means that if LSS-LRTA* learns that a node
has a highh value by backing up a highg value due to a
dynamic obstacle, it is unable to later discover that the node
has lowh cost if the dynamic obstacle were to move away.
In this way, theg values in this domain can be seen as in-
admissible, breaking a fundamental assumption of previous
heuristic search algorithms.

Partitioned Learning Real-Time A∗ (PLRTA∗)
As we show in the evaluation below, LSS-LRTA* can strug-
gle in motion planning. Our central modification to the algo-
rithm is to separate components of the cost function to make
learning more effective in this domain. In order to more ef-
fectively learn heuristic costs, PLRTA* partitionsg andh
values intostatic anddynamicportions. The static portion
refers to only those things that are not time dependent. The



Algorithm 2 Dijkstra’s Algorithm for learninghs values
Dijkstra(Closed, Open)
1: Closed, Open← InitDijktra(Closed, Open)
2: while Closed6= ∅ AND Open 6= ∅ do
3: delete a states with the smallesths value from Open
4: if s ∈ Closedthen
5: Closed← Closed\ {s}
6: end if
7: for p ∈ predecessors(s) do
8: if p ∈Closed ANDhs(p) > cs(p, s)+hs(s) then
9: hs(p)← cs(p, s) + hs(s)

10: if p /∈ Openthen
11: Open← Open∪ {p}
12: end if
13: end if
14: end for
15: end while

Algorithm 3 Initialize Static Dijkstra
InitDijkstra(Closed, Open)
1: Closed′ = {}
2: for n ∈ Closeddo
3: if n /∈ Closed′ then
4: hs(n)←∞
5: Closed′ = Closed′ ∪ { n }
6: end if
7: end for
8: ∀n ∈ Open, ifn ∈ Closed′ then Open = Open -{ n }
9: return Closed′, Open

dynamic portion refers to only those things that are depen-
dent on time, such as the locations of the dynamic obstacles.
Because the locations of the static obstacles do not depend
on time, we can cache these statich values and use them
for any search node representing the same pose〈x, y, θ, v〉,
regardless of time. Dynamic values by their definition will
change with time and thus can only be cached for specific
time-stamped states〈x, y, θ, v, t〉.

For each search node encountered, we track the static
costs (gs), dynamic costs (gd), static cost-to-go (hs) and dy-
namic cost-to-go (hd). The evaluation function is now:

f(n) = gs(n) + gd(n) + hs(n) + hd(n)

Tie-breaking prefers highergs values.
Partitioned Learning Real-time A* (PLRTA*) like LSS-

LRTA∗, performs a limited lookahead A∗ search forward
from the agent. It then selects the minimumf node in the
open list and labels itg′. We then perform the heuristic
learning described in the following section. The planning
iteration ends by taking the first action along the path from
s to g′. An overview of PLRTA* is shown in Algorithm 1.

We now described the partitioned learning techniques as
well as a method for keeping our algorithm complete in cer-
tain situations called Heuristic Decay.

Partitioned Learning
For simplicity, we divide heuristic learning into separate
steps forhs andhd. The main difference between the two
learning steps is in the setup phase. We sort the open list by
lowesths for the static learning phase. The pseudocode for
this is shown in Algorithm 2. We set thehs of all nodes in
the closed list to∞. States that are duplicates when ignoring
time will, by definition, share the samehs, and are therefore
reduced to a single representative node by combining their
parent pointers to a single list. We then perform the learning
step of LSS-LRTA∗, using thehs of a state and the static
cost (gs) incurred by moving from one state to its succes-
sors. Unlike in LSS-LRTA*, the Dijkstra procedure can be
terminated when either the open or closed list is exhausted,
not simply when the closed list has been emptied.

Theorem 2 If the static learning step terminates due to an
empty open list, it is because the remaining nodes in the
closed list are those nodes whose successors lead to dead
ends.

Proof:
The proof is by contradiction. Assume there is some node

n in the closed list when the algorithm terminates that has
some successor that does not exclusively lead to a dead-end.
The open list must be empty since the algorithm only termi-
nates due to an empty open or closed list. This means that
n must have had a descendant on the open list at some point
during the search. If there did not exist a descendent ofn
on the open list then we have a contradiction thatn’s de-
scendents do not lead exclusively to dead ends. Let us call
this descendent that was on the open listm. Because of the
termination condition, we know thatm was removed from
the open list as the smallesths value at some point during
the learning step. Once removed from the open list,m is
removed from the closed list if it appears in it, signifying
that we have updated itshsvalue. Then, all ofm’s prede-
cessors are generated, and those which appear on closed list
and havehs values greater than the cost of moving tom plus
hs(m) are inserted into open. The condition:

hs(predecessors(m)) < cs(predecesors(m),m)+hs(m)

will hold for any of thepredecessors(m) on the closed list
at least once, as all nodes on the closed list have theirhs

values set to∞ in Algorithm 3. Therefore,m must have
at least one predecessor in the closed list which gets inserted
into the open list, otherwise,m would not be in the open list.
It then follows that at some point in the future that predeces-
sor ofm would be removed from the open list and removed
from the closed list, its predecessors generated and placed
on the closed list. Ultimately, becausen is an ancestor ofm,
n would have to be inserted onto the open list and sometime
in the future removed from both the open list and the closed
list. But this is a contradiction, because we stated thatn was
on the closed list at termination. Thus, it cannot be true that
n has some descendent who does not lead exclusively to to a
dead-end. Therefore,n must exclusively lead to a dead-end.

�

We also proved that ourhs values will never decrease dur-
ing the successive searches.



Theorem 3 Thehs value of the same pose is monotonically
nondecreasing over time and thus remains constant or be-
comes more informed over time.

Proof: We rely on the proof of Theorem 1 shown by Koenig
and Sun (2009). One simply substitutes their use ofh with
hs and their notion of a state with pose. We have assumed
ourhs values to be consistent and we use the same Dijkstra
style learning rule, which are the necessary assumptions for
their proof. This means that all the preconditions for their
proof have been met and as such, their proof follows triv-
ially. �

This ensures that if using an admissible heuristic, our
heuristic will remain admissible, yet become more informed
as subsequent search iterations are performed.

Dynamic Heuristic Learning Developing accurate
heuristics for predicting the cost-to-go due to dynamic
obstacles is a hard problem that, to our knowledge, has
not been addressed in the literature. We usehd = 0 for
this reason. While this is very weak, we can improve it
drastically during the search using the dynamic learning
step described in the following section. This is another key
advantage of this technique over the competing methods:
because we track dynamic and static costs separately, we
can learnhd values through ourgd costs. This will allow
future searches to to avoid areas of high cost caused by
dynamic obstacles. Thesehd values of a state can frequently
change with respect to time. The learning rule for thehd

values is:

h′

d(n) = [ min
n′∈succ

gd(n
′) + hd(n

′)]− gd(n)

whereh′

d is the new learned dynamich value. The intuition
here is that a noden’s hd value should be the bestgd + hd

of its children, minus the cost to get ton. Thehd values
are computed using a Dijkstra-style traversal of the local
search space as in the static world learning step. We may
only prune duplicates with identical times, as the time of the
state is important in determining itshd value. The termina-
tion condition, however, is the same as in the static learning
step.

Heuristic Decay
As mentioned earlier,gd costs, and hencehd costs, increase
or decrease depending on the movements of dynamic ob-
stacles and their predicted future locations. As in LSS-
LRTA*, the learning step of PLRTA* will always only raise
the heuristic estimate of a state. However, there must be a
way to lower a high cached heuristic value if the dynamic
obstacle that caused the high value moves away. To accom-
plish this, we decay the cached dynamic heuristic values of
all states over time. This allows the algorithm to “unlearn”
dynamic heuristic values that turned out to be overestimates.

Whenever ahd value is learned and cached, we note the
current planning iterationpi. Then at some future planning
iterationpj wherei < j, the value of the cachedhd is de-
cayed linearly so that after some constanttd ≥ 0 number
of iterations, the value is back to zero and it is removed
from the cache. This encourages the search algorithm to

Figure 3: The simulator used showing the dynamic obsta-
cles (circles), predicted trajectories (rings), and the robot
(red).

potentially re-evaluate the node when it is next generated
in some future planning phase instead of using the possibly
stale cached value.

It is important to note that PLRTA* can only guarantee
completeness when there are no dynamic obstacles in the
world. In a static world, PLRTA* inherits the same com-
pleteness guarantees of LSS-LRTA* (which inherited the
completeness guarantee of LRTA* (Korf 1990)).

Theorem 4 In a finite problem space with positive edge
costs and finite heuristic values, in which a goal state is
reachable from every state, PLRTA* will find a solution if
one exists in the discretized space.

Proof: We rely on the proof of Theorem 1 shown by
Korf (1990). One simply substitutes his use ofh with hs and
their notion of a state with pose. When dealing with poses,
time has been removed from the state and so our problem
space becomes finite. We have no negative edge costs. This
means that all the preconditions for his proof have been met
and as such, his proof follows trivially. �

It is impossible for any algorithm that myopically opti-
mizes our cost function using a naive opponent model to be
able to guarantee completeness. For example, consider a sit-
uation in which a robot has two possible paths to reach a
goal. Whenever it begins to take the shorter path, a dynamic
obstacle blocks its path. As the robot reverts to the longer
path, the obstacle moves away, luring the robot back to at-
tempt the shorter path again. This endless cycle is inevitable
whenever a optimizing planner lacks the ability to estimate
future obstacles accurately. In this way, no algorithm can
guarantee completeness in the presence of adversarial ob-
stacles. However, this does not diminish the usefulness of
developing methods that are effective in practical situations.

Experimental Evaluation
Given the many relevant approaches to motion planning,
we evaluate our new algorithms in a simulated environment



against five previous proposals. To our knowledge, this is
the first time that these diverse algorithms have been em-
pirically compared. We used a custom simulator capable of
supporting multiple, physically realistic robots. The simula-
tor had a distributed architecture, allowing planners to run in
parallel on remote machines. By having each planner use its
own machine, we realistically simulated each robot actively
planning while the simulator carried out their previous ac-
tions. In our tests, the planners controlled simulated differ-
ential drive robots from start to goal locations while avoid-
ing static and dynamic obstacles in trials lasting one minute.
Their objective was to minimize the cost function, balancing
both their need to avoid obstacles while attempting to stay
on their goal position as much as possible.

We ran two different kinds of problems. The first used 36
different random pairings of start and goal positions for the
algorithm under test. The number of dynamic obstacles was
varied from zero to ten opponents for each of the different
start and goal combinations. The paths that the opponents
follow are arbitrary paths traced by a human with a pointer
device and then stored for reuse. The heuristic used was the
2D Dijkstra heuristic (Likhachev and Ferguson 2009). The
maps were discretized into 4cm square cells. The size of
the map was 500 by 500 cells, corresponding to a 20 by 20
meter map. The cost of a time step passing was 5 while not
on the goal and 0 while on the goal. The cost of a collision
was 1000. An example run with one planning bot and 10
dynamic obstacles is shown in Figure 3.

We compared RTR* and PLRTA* with LSS-LRTA*
(Koenig and Sun 2009), RTA* (Korf 1990), our modified
version of Time-Bounded Lattice (Kushleyev and Likhachev
2009) described above, and our real-time version of the RRT
algorithm (Lavalle 1998). The parameters for each algo-
rithm were chosen to offer the best performance based on
pilot experiments. The lookaheads used were determined by
empirically testing how many nodes the algorithms could
expand within the given time limit. PLRTA* was run with a
lookahead of 1000 nodes, and a decay steps value of 4. LSS-
LRTA* was run with a lookahead of 1000 nodes. RTA* was
run with a lookahead depth limit of 4. Time-Bounded lattice
was run with a time-bound of 4 seconds and a weight of 1.1.
RRT was run with a sampling limit of 500 samples. RTR*
was run with an expansion limit of 5000 nodes and an avoid
limit of 1000 nodes. The value ofk was set to 10 andw was
set to 3. The∆ parameter was set to 0.4 meters. RTR* and
R* both need a heuristic from any arbitrary node to any other
arbitrary node: the straight line heuristic was used because
of its speed of computation.

Figure 4 shows a box plot for each algorithm tested when
run with 0, 1, 4, 6, 8, and 10 dynamic obstacles. They
axis denotes the actual cost accrued by the agent running the
algorithm as reported by the simulator. These box plots dis-
play the sample minimum, the lower quartile, median, up-
per quartile, sample maximum, and outliers. We see that
PLRTA* is clearly the best across the board with the excep-
tion of instances with no or few opponents where many al-
gorithms perform well. Its partitioned heuristic and learning
scheme seem to offer it a great advantage when compared
to LSS-LRTA*. RTR* performed much better than R* and

goal

backup,

wait,

proceed

slow

object

goal

go around

Figure 5: Left: The robot first backs up away from the
oncoming robot, moving out of its way and allowing it to
pass before travelling towards the goal.Right: Due to the
obstacle moving very slowly, the planner realizes it would
be much quicker to take the longer path around.

comparably to LSS-LRTA* and TBL. RTR* performs rela-
tively poorly on the experiment with no dynamic obstacles.
From our observations, RTR* is able to avoid hitting mov-
ing obstacles fairly well, but it is unable to quickly get to
the goal, even if there are no dynamic obstacles. R* and the
real-time version of RRT perform the worst on all the ex-
periments, not being able to plan low cost paths to the goal
with no dynamic obstacles and having a high collision rate
when dynamic obstacles are present. Time-Bounded Lattice
(TBL) performs well when there are few dynamic obstacles,
and performs the best of all algorithms when there were no
dynamic obstacles. Not being real-time however, it is unable
to reliably avoid collisions in the presence of many obsta-
cles. Likewise, RTA* is able to perform well when there are
no dynamic obstacles, but its learning does not scale and it is
unable to avoid collisions as the number of dynamic obsta-
cles increases, performing about as badly as RRT. We found
that in the 10 dynamic obstacle case, the mean cost accrued
by PLRTA* was 5.5 to 25 times less than the for other algo-
rithms tested.

PLRTA* is the only algorithm to collide with less than
1 obstacles on average. In our challenging benchmarking
suite, 1000 is the cost of a collision and PLRTA* stays
lower than this over all configurations. We tested a vari-
ant in which heuristic decay was not used and found that it
achieved the same cost. We believe this is because the learn-
ing performed during the dynamic learning stage will only
raise the value for specific time stamped states that exclu-
sively lead to states that have high dynamic cost. Because
our hd function is so weak, a node will maintain ahd of 0
unless all the paths through its descendants have high dy-
namic cost. In an infinite state space, this is a very small
number of nodes and has little effect on the search, despite
its theoretical importance in ensuring completeness.

For our second set of experiments we ran the algorithms
on 6 specific handcrafted challenge scenarios. These are de-
tailed in more depth by Cannon (2011): two examples are
shown in Figure 5. Qualitative ratings of good, ok, and bad
were used to describe the performance of the algorithms.
Overall, PLRTA* and Time-Bounded Lattice perform the
best, with only two and three ratings of bad respectively.
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Figure 4: Total trajectory cost over 60 seconds when traveling to a goal with varying numbers of dynamic obstacles.

PLRTA* performs comparably or better than TBL on all but
one scenario. However, Time-Bounded Lattice missed the
real-time deadline by an average of 10.5 times per planning
scenario. This gave it a stuttering behavior, which is not
desirable because missing the deadline can easily result in
collisions. All other algorithms had at least three ratingsof
bad and performed much worse overall.

Conclusion
We have presented the first two real-time heuristic search
algorithms for kinodynamic motion planning with dynamic
obstacles. We investigated two approaches, RTR* and
PLRTA*, based on previous successful motion planning
and real-time search algorithms, respectively. In the first
comprehensive comparison of sampling-based and real-time
heuristic search-based methods, the two new algorithms per-
formed equal to or often better than their original progeni-
tors, and PLRTA* surpassed all other algorithms tested. We
hope this work furthers the applicability of real-time heuris-
tic search-based methods for fully embodied agents working
among humans.
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