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Abstract

Bounded suboptimal search algorithms attempt to find a solu-
tion quickly while guaranteeing that the cost does not exceed
optimal by more than a desired factor. These algorithms gen-
erally use a single admissible heuristic both for guidance and
guaranteeing solution quality. We present a new approach to
bounded suboptimal search that separates these roles, con-
sulting multiple sources of potentially inadmissible informa-
tion to determine search order and using admissible informa-
tion to guarantee quality. An empirical evaluation across six
benchmark domains shows the new approach has better over-
all performance.

Explicit Estimation Search (EES)
The objective of bounded suboptimal search, finding a so-
lution within the bound as quickly as possible, suggests the
following search order: for all nodes that appear to be on
a path to a solution within the bound, expand the node that
seems closest to a goal. EES follows this principle as di-
rectly as possible while strictly guaranteeing the bound. To
accomplish this EES useŝh, an unbiased estimate of the
cost-to-go, as opposed toh, a lower bound, and̂d, an esti-
mate of the number of actions to go. EES relies on two node
evaluation functions,f and f̂ . f(n) = g(n) + h(n) is the
traditional cost function of A* (Hart, Nilsson, and Raphael
1968) and provides a lower bound on the cost of an optimal
solution throughn. f̂(n) = g(n) + ĥ(n) is an unbiased es-
timate of the cost of the best solution throughn. ĥ and d̂
can be supplied by the user, they may be constructed by cor-
rectingh andd during the search (Thayer, Ruml, and Bitton
2008), or they may be constructed using offline techniques
before search begins (Samadi, Felner, and Schaeffer 2008).

EES expands one of the following nodes:

fmin = argmin
n∈open

f(n)

best
f̂

= argmin
n∈open

f̂(n)

best
d̂

= argmin
n∈open∧f̂(n)≤w·f̂(best

f̂
)

d̂(n)
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fmin is the node with the lowestf value among all unex-
panded nodes.best

f̂
is the node with the lowest predicted

solution cost.best
d̂

is selected from a restricted set of nodes,

those whosêf value is within a factorw of f̂(best
f̂
), or

more plainly, from those nodes we suspect lead to a solution
within the desired bound. Of these,best

d̂
is the node nearest

to a goal. EES chooses the next node to expand using the
rules:

selectNode =





best
d̂

if f̂(best
d̂
) ≤ w · f(fmin)

best
f̂

if f̂(best
f̂
) ≤ w · f(fmin)

fmin otherwise

We first considerbest
d̂
, the node which appears to be clos-

est to a goal, as dictated by the objective of bounded sub-
optimal search. We only returnbest

d̂
if the estimated cost

of a solution through it is within a factorw of the lower
bound on the cost of an optimal solution. Ifbest

d̂
is unsuit-

able,best
f̂

is examined. Expanding it may produce a high
quality solution, and expanding it instead offmin avoids the
thrashing behavior ofA∗

ǫ first described in Thayer, Ruml,
and Kreis (2009). If neitherbest

f̂
nor best

d̂
were within the

bound, we returnfmin, potentially raising our lower bound,
allowing us to considerbest

d̂
or best

f̂
next. This expan-

sion order strictly enforces suboptimality bounds (Thayer
and Ruml 2010).

Performance
To evaluate EES, we implemented and compared against all
other bounded suboptimal searches we found in the litera-
ture: Aǫ (Ghallab and Allard 1983), AlphA* (Reese 1999),
revised dynamically weighted A* (Thayer and Ruml 2009),
A∗

ǫ (Pearl and Kim 1982), optimistic search (Thayer and
Ruml 2008), and skeptical search (Thayer and Ruml 2010).
We test on vacuum world, dynamic robot navigation, the
sliding tile puzzle, the traveling salesman problem, the pan-
cake puzzle, and grid navigation problems.

Table 1 shows the relative performance of the algorithms
at different suboptimality bounds across all of the domains
in our evaluation. We present the CPU time consumed rela-
tive to that used by EES, averaged over all domains. These
figures give us a quantitative sense of the relative perfor-
mance of the algorithms. We see that, with a single excep-



Cost Bound 1.5 1.75 2. 3. 5.
optimistic 1.6 1.5 1.6 2.1 2.1
skeptical 2.6 4.7 4.9 5.1 13.9
A∗

ǫ 50.4 44.8 28.5 1.8 0.6
wA* 4.1 3.4 2.8 3.7 2.4
Aǫ 911.4 857.7 683.2 624.9 614.3
AlphA* 126.6 140.1 181.6 282.2 315.0
Clamped 8.3 10.1 11.6 67.0 85.8
rdwA* 374.1 316.9 245.1 101.0 128.1

Table 1: CPU time relative to EES

CPU 1st 2nd 3rd 4th > 4th

EES 0 3 3 0 0
Optimistic 0 2 1 3 0
Skeptical 3 0 0 1 2
A∗

ǫ 2 1 1 0 3
wA* 1 0 0 2 3
Aǫ 0 0 0 0 6
AlphA* 0 0 0 0 6
Clamped 0 0 1 0 5
rdwA* 0 0 0 0 6
Generated 1st 2nd 3rd 4th > 4th

EES 2 3 1 0 0
Optimistic 0 1 2 3 0
Skeptical 3 0 0 1 2
A∗

ǫ 1 1 1 0 3
wA* 1 0 0 2 3
Aǫ 0 0 0 0 6
AlphA* 0 0 0 0 6
Clamped 0 0 1 0 5
rdwA* 0 0 0 0 6

Table 2: Rank across all benchmarks

tion of A∗
ǫ run with a bound of 5, EES consumes less time

than any other approach, despite its considerable overhead.
Table 2 summarizes performance of the algorithms on a

per domain basis, showing the number of times each algo-
rithm achieved each ranking across all benchmarks when
ranked by the number of nodes generated and the amount
of CPU time consumed. When evaluating the relative per-
formance of algorithms on a single domain, EES frequently
comes in second place; however, the difference in perfor-
mance between it and the best algorithm for a domain is
typically very small. In contrast, the other algorithms fail
spectacularly in some domains, having performance many
times worse than the best algorithm. This makes their ag-
gregate performance poor, as seen in Table 1. While EES
is rarely the best algorithm on a single domain, it is the su-
perior algorithm when running on a set of problems with
diverse properties or when running on a novel domain.

Discussion
There are two important ideas that lead to the creation of
EES. The first is that a lower bound is inappropriate for
search guidance except when optimal solutions are abso-
lutely required. This is well recognized for greedy search,
where more informed inadmissible heuristics are commonly

employed, but has not yet seen wide use in bounded subop-
timal search, largely because until now there were no tech-
niques designed to make use of these inadmissible estimates.
Some techniques, such as optimistic search, decouple find-
ing solutions and proving bounds, but they were designed to
use lower bounds for guidance and bounding, and generally
they fail to take advantage of distance to go information.
EES does both, and outperforms previous techniques as a
direct result.

Conclusions
EES exploits additional information in bounded suboptimal
search, resulting in better search orders and shorter solving
times across a wide variety of benchmark domains. Unlike
previous approaches, explicit estimation search (EES) con-
verts the stated goal of bounded subpotimal search rather
directly into an expansion order by taking advantage of in-
admissible cost to go and search distance estimators that at-
tempt to be unbiased rather than lower bounds. It is exactly
this decoupling of guidance and bounding that allows for the
improved performance of EES.
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