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Abstract

Bounded suboptimal search algorithms offer
shorter solving times by sacrificing optimality and
instead guaranteeing solution costs within a de-
sired factor of optimal. Typically these algorithms
use a single admissible heuristic both for guiding
search and bounding solution cost. In this paper,
we present a new approach to bounded subopti-
mal search, Explicit Estimation Search, that sepa-
rates these roles, consulting potentially inadmissi-
ble information to determine search order and us-
ing admissible information to guarantee the cost
bound. Unlike previous proposals, it successfully
combines estimates of solution length and solution
cost to predict which node will lead most quickly
to a solution within the suboptimality bound. An
empirical evaluation across six diverse benchmark
domains shows that Explicit Estimation Search is
competitive with the previous state of the art in do-
mains with unit-cost actions and substantially out-
performs previously proposed techniques for do-
mains in which solution cost and length can differ.

Introduction

When resources are plentiful, algorithms liké Pdart et al.,

1969 or IDA* [Korf, 1985 can be used to solve heuristic
search problems optimally. However, in many practical set
tings, we must accept suboptimal solutions in order to redu
the time or memory required for search. When abandonin
optimality, we can still retain some control over the sauos
returned by bounding their cost. We say a search algorithm i
w-admissible if it is guaranteed to find solutions whose cos

is within a specified factow of optimal.

evaluation function of A, f(n) = g(n)+h(n), whereg(n) is

the cost of getting ta from the root andi(n) is the estimated

cost-to-go fromn to the goal, intof’(n) = g(n) + w - h(n).
Placing additional emphasis @fn) is a common technique are fastest to find, we can make them prefer solutions that are
for reducing the number of expansions needed to find soluestimated to be shorter. Intuitively, shorter solutioresligely
tions. This encourages the search algorithm to prefersstatdo be easier to find. In order for heuristic search to find a so-
where there is little estimated cost remaining to the gaal, alution, it must expand at least the path from the startingenod
they tend to be closer to the goal.

c

In domains where different actions have different costs,
this tendency is less pronounced. Cost estimates do not nec-
essarily tell us anything about the potential length of so-
lutions, as we could incur the same cost by taking many
cheap actions or a single expensive one. A search algorithm
can use an additional heuristic to determine which nodes
are closer to goals. Several authfPearl and Kim, 1982;
Ghallab and Allard, 1983; Pohl, 1973; Thayer and Ruml,
2009 have proposed techniques that rely on such estimates
and have shown how to compute them.

Ay [Pearl and Kim, 198Ris a search algorithm that re-
lies on such estimates of solution length, but it has not seen
wide adoption because it often performs podifjhayeret
al., 2009. As we will explain in more detail later, this poor
performance is a result of using lower bounds both to guide
the search and to enforce suboptimality bounds. While lower
bounds are needed to prove bounded suboptimality, admissi-
bility is not required to guide the search towards solutions
Most previous proposals ignore this potential divisionaf |
bor, but as we will see later in this paper, it can be the differ
ence between solving problems and not.

We begin by showing that most previously proposed al-
gorithms do not directly attempt to optimize solving time.
We then propose a new search algorithm, Explicit Estima-
tion Search, that directly attempts to find solutions witthie
desired suboptimality bound as quickly as possible. It does
by using unbiased estimates of solution cost as well as solu-
tion length estimates to guide search. Lower bounds are only
used for ensuring that every expanded node is within the sub-
optimality bound. In a study across six diverse benchmark
@omains we demonstrate that this difference allows Explici

stimation Search to perform much better than the current
state of the art in domains where action costs can differ.

t2 Previous Work

Weighted A, for example, modifies the standard node The objectives of bounded suboptimal search are, first,do fin

solutions within the user specified cost-bound, and sedond,
find them as quickly as possible. While it is not clear how
to make search algorithms directly prefer those solutibas t

to a goal node that represents that solution. Our fundamen-



tal assumption is that, all else being equal, shorter smiati 3  EXplicit Estimation Search

will require fewer expansions to construct. While previousthe central contribution of this paper is a new bounded sub-
approaches to bounded suboptimal search satisfy the first OBptimaI search algorithm, Explicit Estimation Search (EES

jective by definition, most do not directly address the sécon 5t incorporates the objectives of bounded suboptimathea
weighted A* [Pohl, 1973 returns solutions of bounded directly into its search order. Using and d functions, it
quality, but it cannot prefer the shorter of tweadmissible  explicitly estimates the cost and distance-to-go for dearc
solutions because it has no way of taking advantage of esthuidance, relying on lower bounds solely for providing sub-
mates of solution length when determining search order. Repptimality guarantees. In addition test;, EES refers to

vised dynamically weighted AfThayer and Ruml, 20Q9s best 7, the node with the lowest predicted solution cost, that
an extension of weighted A* that dynamically adjusts the.

weight used based on a nodes estimated distance to go
While this modification gives preferential treatment to nrode

f(n) =g(n) + ﬁ(n) andbest 3, the node, among all those
at appeatv-admissible, that appears closest to a goal.

~

which appear to be close to a goal, it will not always attempt bestf = argmin f(n)
to pursue the shortest solution within the desired bound. né€open
Optimistic Search [Thayer and Ruml, 2009 takes ad- besty; = argmin d(n)
vantage of the fact that weighted Aends to return solutions neopenA f(n)<w-f(best ;)
much better than the bound suggests. It does so by runningqte thatpest is chosen from docal list based orbest -

weighted A with a boundw,,; that is twice as suboptimal as —~ . . Y
the desired boundy,,; = (w — 1) - 2+ 1, and then expand- becausef(bestf) is our current estimate of the cost of an
ing some additional nodes after a solution is found to ensureptimal solution, thus nodes witfi(n) < w - f(best;) are
that the desired bound was met. Specifically, it repeatedly e those nodes that we suspect lead to solutions Witfﬂn the de-
pandshest ¢, the node with the smallegi(n) = g(n) + h(n) sired suboptimality bound. At every expansion, EES chooses
of all nodes on the open list, untib - f(bests) > g(sol),  from among these three nodes using the function:
wheresol is the solution returned by the weighted search.
- h select N ode
Becausef (best ) is a lower bound on the cost of an optimal 1. if F(b £) < w- f(best,) then best
solution, this proves that the incumbent is within the dasir (bestz) < w - f(besty estd
suboptimality bound. Because the underlying search ordef-  €lse if f(best7) < w - f(besty) then best &
ignores the length of solutions, so does optimistic search. 3.  elsebest

Skeptical Search[Thayer and Ruml, 2011 replaces the ~We first considebest ;, as pursuing nearer goals should lead
aggressive weighting of optimistic search with a weightedto a goal fastest, satisfying the second objective of botinde
search on an inadmissible heuristic asfit(m) = g(n) + suboptimal searchbest ; is selected if its expected solution

~ ~ N o . cost can be shown to be within the suboptimality bound. If
w - h(n), whereh is some potentially inadmissible estimate

X > o best;is unsuitablepest > is examined. We suspect that this
of the cost-to-go fromm to a goal. Then, as with optimistic S

; : node lies along a path to an optimal solution. Expanding this
searchpest ¢ is repeatedly expanded to prove that the incum ode can also expand the set of candidateddr by rais-

bent solution is within the desired bound. Because skdpticzi1

search is only relying on cost-to-go estimates for guidaitce !ng the estimated cost (bf%tf " We Qn!y expancbestf i 't,
cannot prefer shorter solutions within the bound. is estimated to lead to a solution within the bound. If neithe

bestf nor best 7 are thought to be within the bound, we re-
turnbest ;. Expanding it can raise our lower boufithest ;),
ﬁllowing us to consideliest ; or bestf in the next iteration.

A [Pearl and Kim, 1987 uses a distance-to-go estimate
to determine search orderd; sorts itsopen list on f(n).
It maintains the subset of all open nodes that it believes ca

lead tow-admissible solutions, called tiecal list. These  Thegrem 1 If ﬁ(n) > h(n) and g(opt) represents the cost
are the nodes wherg(n) < w - f(best;). From focal, it se-  of an optimal solution, then for every nodeexpanded by
lects the node that appears to be as close toa goal as pos&%si it is true thatf (n) < w - g(opt), and thus EES returns
the node with minimumi(n), for expansion.d is a poten-  -admissible solutions.

tially inadmissible estimate of the number of actions alang Proof:
minimum-cost path fromn to a goal. While this algorithm '
does follow the objectives of suboptimal search, it perorm
poorly in practice[Thayeret al, 2009. This is a result of

using f(best) to determine which nodes forfocal. When

select N ode will always return one obest 3, best For
best . No matter which node is selected we will show that
f(n) < w- f(besty). This is trivial whenbest is chosen.
Whenbest ; is selected:

we use a lower bound to determine membership in the focal Flbest;) <w- f(besty) by selectNode
list, it is often the case that the children of an expandednod - N
will not qualify for inclusion in focal becausg(n) tends to g(bests) + h(best;) < w- f(besty) by def. of f
rise along any path. As a resul.tP’B te_ndency t(_) risehest ¢ glbests) + h(best;) <w- fbest;) byh < 0
tends to have low depth and high This results in an unfor- Flbest:) <uw- f(best;) by def. off
tunate and inefficient thrashing behavior at low to moderate /= f y aet. Y
suboptimality bounds, where focal is repeatedly emptiei un flbesty) <w-g(opt)  byadmissible:

best ¢ is finally expanded, raisingj(best ;) and refilling focal.



When best 5 is a solution,h(bestz) = 0 and f(best;) = Next, consider an optimistic approach, analogous to that
g(best ), thus the cost of the solution representedbbyt;  used by optimistic search and skeptical search:
is within a bounded factow of the cost of an optimal solu- selectNode py

tion. Thebest - case is analogous. O 1. ifno incumbenthen best ;
. 2. elseif S <w- h >
31 The Behavior of EES else if f(bestz) < w - f(besty) thenbest

o o _ 3. elseiff(besty) < w- f(besty) thenbest s
Explicit Estimation Search takes both the distance-tog0 € 4 g|sepest P

timate as well as the cost-to-go estimate into consideratio
when deciding which node to expand next. This allows it to
prefer finding solutions within the bound as quickly as possi
ble. It does this by operating in the same spiritHs using

In its initial phase, EE§, finds the shortest solution it be-
lieves to be within the bound. Then, after finding an incum-
bent solution, it behaves exactly like EES. The search ends

both an open and a focal list. However, unlite, EES con-  WNen €itherw - f(besty) is larger than the cost of the in-
sults an unbiased estimate of the cost-to-go for nodes irord CUMPent solution or when a new goal is expanded, because in
~ either case EES3; has produced a-admissible solution. We

to form its focal list. f(n) is less likely to rise along a path ;)| examine both EES and EES in our evaluation below.
than f(n), considering thatf(n) can only rise or stay the )

same by the admissibility df(n). Relying on an unbiased 3.3 Implementation
estimate tempers the tendency for estimated costs to always=s s structured like a classic best-first search: inserirti

rise and avoids the thrashing behaviorAjf tial node intoopen, and at each step, we select the next node
_ Like optimistic and skeptical search, EES uses a cleanugyr expansion usingelectNode. To efficiently acceséest -,
“St'. a “?t of all open nodes sorted_ dfitn), to prove its SUbT best -, andbest s, EES maintains three queues tmaenlisft
optimality bound. Rather than doing all of these expansiong, -t “and élyeanuplist. These lists are used to access

after having found a solution, EES interleaves cleanupmexpa ~ ~ ; ; ;
sions with ?hose directed towards finding a solution. F\)Ne F():aré)e‘gﬁf’ best g, andbest respectively. Th@pfn“St contains
see this in the definition ofelect Node, where EES may ei-  all generated but unexpanded nodes sortefi@n. The node
ther raise the lower bound on optimal solution cost by selectat the front of theopenlist is best . focalis a prefix of the
g!?hgersé{’thoer (')ttma?{ IT)S:weoa(ljdespuIrtsgznan?a-o'gr“?nnb)rqtgxtﬁzngrlgg()penliSt ordered on. focalcontains all of those nodes where
i Wi . Ver run i - n ;
lem of having an incumbent solution that falls outside of thef(n) sw- f@%tf)' The node at the frgnt dbcalis best .
desired suboptimality bound because every node seleated f§l€@nupcontains all nodes frorapen but is ordered orf (n)
expansion is within the bound. instead off(n). The node at the front afleanupis best;.
Much like A* or weighted A, EES will become faster We need to be able to quickly select a node at the front of
as the bound is loosened. Lik&*, EES becomes a greedy one th(_ase queues, remove .it from all relevant daja strugture
search ond. This contrasts with weighted *A skeptical fand reinsert its ch|ldren_ efficiently. To accomplish thig w
search, and optimistic search which focus exclusively @t co IMPlementtleanupas a binary heampenas a red-black tree,
estimates and thus do not minimize search time. andfocal as a heap synchronized with a left prefixagien
This lets us perform most insertions and removals in lokarit
3.2 Alternative Node Selection Strategies mic time except for transferring nodes frazpenontofocal
asbest» changes. This requires us to visit a small range of

Although the formulation ofselect Node is directly moti- the red-black tree in order to put the correct nodefeaal
vated by the stated goals of bounded suboptimal search, it )

is natural to wonder if there are other strategies that mag ha 3.4 Simplified Approaches

better performance. We consider two alternatives, one conyjith three queues to manage, EES has substantial overhead
servative and one optimistic. First, a more conservative apyhen compared to other bounded suboptimal search algo-
proach that prefers to do the bound-proving expansionsetho (ithms. One way to simplify EES would be to remove some

onbesty, as early as possible and so it first considess ;: of the node orderings. It is clear that we can not ignore the

select N ode o, cleanuplist, or we would lose bounded suboptimality. If we

1 if 7 R ) hen were to eliminate thepenlist, and synchronizdocal with
f(b,eitf) > w- f(bests) then best; cleanupinstead, we would obtaiA?. If we were to ignoréo-

2. elseiff(besty) < w- f(besty) then best; cal, and instead only expand eithterst ; or best 7, we would

3. elsebesty be left with a novel interleaved implementation of skeptica

If best; isn't selected for expansion, it then considérst ; search, but this would not be able to prefer the shorter of two
andbest -~ as before. This expansion order produces adso|usoluti0ns within the bound. We can conclude that EES is Only

tion within the desired bound by the same argument as thaS complicated as it needs to be. In the next section, we will

for select Node. While this alternate select node seems quite>€€ that its overhead is worthwhile.

different on the surface, it turns out that it is identicatte .. .

original rules. If we were to strengthen the rules for satect 4 EMpirical Evaluation

each of the three nodes by including the negation of the preFrom the description of the algorithm, we can see that EES
vious rules, we would see that the two functions are idehtica was designed to work well in domains where solution cost



and length can differ and it should do particularly well on sible heuristics and estimates of solution length outparfo
problems with computationally expensive node expansioweighted A* and optimistic searck} performs particularly
functions and heuristics. We do not know how much of anpoorly in this domain, with run times that are hundreds of
advantage using distance estimates will provide, nor do wéimes larger than the other search algorithms, a directtresu
know how much the overhead of EES will degrade perfor-the thrashing behavior described previously. Further vee se
mance in domains where expansion and heuristic computdhat both variants of EES are significantly faster than skep-
tion are cheap. To gain a better understanding of these asical search, with EES, being slightly faster than EES for
pects of the algorithm, we performed an empirical evalumatio most suboptimality bounds. Both variants take about half th
across six benchmark domains. All algorithms were impletime of skeptical search to solve problems at the same bound.
mented in Objective Caml and compiled to native code orNot only are both EES variants consistently faster than-skep
64-bit Intel Linux systems with 3.16 GHz Core2 duo proces-tical search, their performance is more consistent, agrinte
sors and 8 GB of RAM. Algorithms were run until they solved the tighter confidence intervals around their means.
the problem or until ten minutes had passed. Vacuum World In this domain, which follows the first state
We examined the following algorithms: space presented in Russell and Norvig, pagd Z8.d, a
weighted & (wA*) [Pohl, 1979 For domains with many du- robot is charged with cleaning up a grid world. Movement
plicates and consistent heuristics, itignores duplicaties as  is in the cardinal directions, and when the robot is on top of
this has no impact on the suboptimality bound and typicallya pile of dirt, it may clean it up. We consider two variants

improves performanciikhachevet al, 2003. of this problem, a unit-cost implementation and anotheremor
A*(A* eps) [Pearl and Kim, 198Rusing the base distance- realistic variant where the cost of taking an action is onss pl
to-go heuristia to sort its focal list. the number of dirt piles the robot has cleaned up (the weight

Optimistic search as described by Thayer and R[200d. from the dirt drains the battery faster). We used 50 instance
Skeptical search with: andd estimated from the bageand that are 200 by 200, each cell having a 35% probability of
q us?ng the on-line single step heuristic corrections presén being blocked. We place ten piles of dirt and the robot ran-
in Thayer and Rum(2011. The technique calculates the domly in unblocked cells and ensure that the problem can be

mean one step error in bothandd along the current search splved. For the unit cost domain, we use the minimum span-
. ing tree of the dirt piles and the robot farand ford we
Eath_frtqm the r.OOHO the cgr:ent n(()jde. This measuremtentbo stimate the cost of a greedy traversal of the dirt piles.t Tha
pgijennstiglirigg dlrsnisseiBI:?\%urics)ti?:ro uce a more accurate, '1@ we make a freespace assumption on the grid and calculate
i . . ) the number of actions required to send the robot to the neares
EESusing the same estimates/ofindd as skeptical. pile of dirt, then the nearest after that, and so on./Fon the
EES Optis EES usingselect N ode gpt. heavy vacuum problems, we compute the minimum spanning
We evaluated these algorithms on the following domains:  as before, order the edges by greatest length first, and then
Dock Robot We implemented a dock robot domain inspired multiply the edge weights by the current weight of the robot
by Ghallabet al.[2004 and the depots domain from the In- plus the number of edges already considetid.unchanged.
ternational Planning Competition. Here, a robot must move The center panel of Figure 1 shows the relative perfor-
containers to their desired locations. Containers arkesthc mance of the algorithms on the unit-cost vacuum problem.
at a location using a crane, and only the topmost containeée see that there is very little difference between EES and
on a pile may be accessed at any time. The robot may drivEES Opt. which both outperform the other search algo-
between locations and load or unload itself using the craneéthms about an order of magnitude, solving the problems in
at the location. We tested on 150 randomly configured probtenths of seconds instead of requiring several secondsnAga
lems having three locations laid out on a unit square and tewhat these two algorithms have in common that differs from
containers with random start and goal configurations. Driv-other approaches is their ability to rely on inadmissiblsteo
ing between the depots has a cost of the distance betweéno-go estimates and estimates of solution length for search
them, loading and unloading the robot cdsts and the cost guidance. The performance gap between EES and skeptical
of using the crane wa.05 times the height of the stack of search is not as large here as it is in domains with actions of
containers at the depok. was computed as the cost of driv- differing costs. In unit cost domains like this, searches th
ing between all depots with containers that did not belong tdoecome greedy on cost-to-go behave identically to thoge tha
them in the goal configuration plus the cost of moving thebecome greedy on distance-to-go. Removing the distinction
deepest out of place container in the stack to the rabafas  between solution cost and solution length removes one of the
computed similarly, but is used rather than the actual costs. advantages that EES holds over skeptical search.

We show results for this domain in the leftmost plot of Fig-  The right most panel of Figure 1 shows the performance of
ure 1. All plots are laid out similarly, with the x-axis repre the algorithms for the heavy vacuum robot domain. Of the
senting the user-supplied suboptimality bound and theiy-ax domains presented here, this has the best set of propeties f
representing the mean CPU time taken to find a solution (ofuse with EES; the heuristic is relatively expensive to cotapu
ten on alogio scale). We present 95% confidence intervalsand there is a difference between solution cost and solution
on the mean for all plots. In dock robots, we show resultdength. For very tight bounds, the algorithms all perform-si
for suboptimality bounds of 1.2 and above. Below this, noilarly. As the bound is relaxed, both versions of EES clearly
algorithm could reliably solve the instances within memory dominate the other approaches, being between one and two
Here we see that the techniques that rely on both inadmisarders of magnitude faster than other approaches. Both vari
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Figure 1: Mean CPU time required to find solutions within aegisuboptimality bound.

ants solve the problems in fractions of a second instead derms of time to solutions, EES is almost indistinguishable
tens of seconds4; makes a strong showing for high subop- from weighted A and skeptical search and worse, by about
timality bounds in this domain precisely because it can takean order of magnitude, than optimistic search. If we examine
advantage of the difference between solution cost and soluhese results in terms of nodes generated (omitted for ypace
tion length. Of the algorithms that take advantage of distan we see that EES, skeptical, and optimistic search examine a
estimates, it makes the weakest showing, as it begins to fadimilar number of nodes for many suboptimality bounds; the
to find solutions for many problems at suboptimality boundstime difference is due to the differing overheads of the algo
as large as 4, whereas the EES algorithms solve all instanceshms.
down to a suboptimality bound of 1.5. The right panel of Figure 2 shows the performance of the
Dynamic Robot Navigation Following Likhachev et  algorithms on inverse tiles problems, where the cost of mov-
al. [200d, the goal is to find the fastest path from the initial ing a tile is the inverse of its face valu%. This sepa-
state of the robot to some goal location and heading, takingates the cost and length of a solution without altering othe
momentum into account. We use worlds that are 200 by 20@roperties of the domain, such as its connectivity and tranc
cells in size. We scatter 25 lines, up to 70 cells in lengthiiwi ing factor. This simple change to the cost function makes
random orientations across the domain and present results ahese problems remarkably difficult to solve, and reveals a
eraged over 100 instances. We precompute the shortest patfiiherto unappreciated brittleness in previously propase
from the goal to all states, ignoring dynamics. To comgyte gorithms. We use a weighted Manhattan distance:fand
we take the length of the shortest path from a node to a goahe unit Manhattan distance fdr Explicit estimation search
and divide it by the maximum velocity of the robot. khwe  and skeptical search are the only algorithms shown for this
report the number of actions along that path. domain, as all of the other algorithms fail to solve at least
The leftmost panel of Figure 2 shows performance of thehalf of the problems within a 600 second timeout across all
algorithms in a dynamic robot navigation domain. As in suboptimality bounds shown in the plot. This failure can be
heavy vacuums and dock robots, there is a substantial difattributed in part to their inability to correct the admidsi
ference between the number of actions in a plan and the cokeuristic for the problem into a stronger inadmissible Feur
of that plan, however here computing the heuristic is cheaptic during search, as this is the fundamental difference be-
For tight bounds, EES is faster that}, however for more tween skeptical search, which can solve the problem, and op-
generous bound4d? pulls ahead. When we evaluate these al-timistic search, which cannot. The ability to solve insesic
gorithms in terms of nodes expanded (omitted for space), wes not entirely due to reliance of(n), as A} is unable to
would see that their performance is similar. The better sime solve many of the instances in this domain. EES is signifi-
of A¥ in this domain can be attributed to reduced overhead. cantly faster than skeptical search in this domain, aboot 5 t
Sliding Tiles PuzzleswWe examined the 100 instances of the 6 times as fast for moderate suboptimality bounds and a littl
15-puzzle presented by Kdrf984. The center panel of Fig- more than a full order of magnitude for tight bounds, because
ure 2 shows the relative performance of the algorithms orit can incorporate distance-to-go estimates directly fadg
the unit-cost sliding tiles puzzle. We use Manhattan ditan ance. While we show data out to a suboptimality bound of
plus linear conflicts for botth andd. This is exactly the 50, this trend holds out to at least 100,000.
wrong kind of domain for EES. Node generation and heuris- Summary In our benchmark domains, we saw that ex-
tic evaluation are incredibly fast, and there is no diffeen plicit estimation search was consistently faster thanrcpe
between the number of actions in a solution and the cost gfroaches for bounded suboptimal search in domains where
that solution. Such a domain lays bare the overhead of EE&ctions had varying costs. Althouglf was faster for some
and prevents it from taking advantage of its ability to disti bounds in one domain, its behavior is so brittle that it is of
guish between cost and length of solutions. We see that, ilittle practical use. EES’ advantage increased in those do-
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Figure 2: Mean CPU time required to find solutions within aegisuboptimality bound.
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