Bounded Suboptimal Search: A Direct Approach Using Inadmissible Estimates

Jordan T. Thayer and Wheeler Ruml

University of New Hampshire

jtd7, ruml at cs.unh.edu

With Thanks To NSF-IIS0812141 and DARPA CSSG N10AP20029
sacrificing optimality can speed search

solutions could be arbitrarily bad
given a suboptimality bound w, find a solution with cost within a factor w of optimal as quickly as possible.
Three Useful Ideas

- finding solutions and proving bounds are separate tasks
- inadmissible cost estimates can be more informed
- searching on distance is faster than cost
Three Useful Ideas

- finding solutions and proving bounds are separate tasks
- inadmissible cost estimates can be more informed
- searching on distance is faster than cost

- A^*_ϵ
 Pearl and Kim, 1982
- Optimistic Search
 Thayer and Ruml, 2008
- Skeptical Search
 Thayer and Ruml, 2011
Three Useful Ideas

- finding solutions and proving bounds are separate tasks
- inadmissible cost estimates can be more informed
- searching on distance is faster than cost

Outline
- Greedy Search
- Bounded Search
- Three Ideas

EES

Conclusion
Three Useful Ideas

- finding solutions and proving bounds are separate tasks
- inadmissible cost estimates can be more informed
- searching on distance is faster than cost
Three Useful Ideas

- finding solutions and proving bounds are separate tasks
- inadmissible cost estimates can be more informed
- searching on distance is faster than cost

Explicit Estimation Search (EES) combines these three ideas.
Explicit Estimation Search
minimize solving time subject to suboptimality bound w
minimize solving time subject to suboptimality bound w

weighted A* ($f'(n) = g(n) + w \cdot h(n)$) is simple but ad hoc
(Pohl, AIJ vol 1, 1970)
minimize solving time subject to suboptimality bound \(w \)

weighted A* \(f'(n) = g(n) + w \cdot h(n) \) is simple but ad hoc

(Pohl, AIJ vol 1, 1970)

expand the node closest to a solution within the bound

\(\text{best}_d \): node estimated within bound closest to a goal
1. h: an admissible estimate of cost-to-go

$$f(n) = g(n) + h(n)$$

finding solutions and proving bounds are separate tasks
Three Heuristic Sources Of Information

1. \(h \): an admissible estimate of cost-to-go
\[
f(n) = g(n) + h(n)
\]
finding solutions and proving bounds are separate tasks

2. \(\hat{h} \): a potentially inadmissible estimate of cost-to-go
inadmissible cost estimates can be more informed
\[
\hat{f}(n) = g(n) + \hat{h}(n)
\]
(Thayer and Rumel, ICAPS-11)
Three Heuristic Sources Of Information

Outline

- Direct Approach
- Three Heuristics
- EES

1. \(h \): an admissible estimate of cost-to-go
 \[
 f(n) = g(n) + h(n)
 \]
 finding solutions and proving bounds are separate tasks

2. \(\hat{h} \): a potentially inadmissible estimate of cost-to-go
 inadmissible cost estimates can be more informed
 \[
 \hat{f}(n) = g(n) + \hat{h}(n)
 \]
 (Thayer and Ruml, ICAPS-11)

3. \(\hat{d} \): a potentially inadmissible estimate of distance-to-go
 searching on distance is faster than cost
 (Pearl and Kim, IEEE PAMI 1982, Thayer et al, ICAPS-09)
Finding best_d

Outline

- Direct Approach
- Three Heuristics

EES

- Direct Approach
- Three Heuristics

EES

Conclusion

best_f: open node with minimum f

$$\arg\min_{n \in \text{open}} f(n)$$
Finding best_f

$best_f$: open node with minimum f

$$\arg\min_{n \in \text{open}} f(n)$$

$best_{\hat{f}}$: open node with minimum \hat{f}

$$\arg\min_{n \in \text{open}} \hat{f}(n)$$
Finding $\text{best}_{\hat{d}}$

best_f: open node with minimum f
$$\arg\min_{n\in\text{open}} f(n)$$

$\text{best}_{\hat{f}}$: open node with minimum \hat{f}
$$\arg\min_{n\in\text{open}} \hat{f}(n)$$

pursuing the shortest solution within the bound should be fast

$\text{best}_{\hat{d}}$: estimated w-admissible node with minimum \hat{d}
$$\arg\min_{n\in\text{open} \land \hat{f}(n) \leq w \cdot \hat{f}(\text{best}_{\hat{f}})} \hat{d}(n)$$
best_f: open node with minimum f

best_f: open node with minimum \(\hat{f} \)

best_d: estimated \(w \)-admissible node with minimum \(\hat{d} \)

node to expand next:
1. pursue the shortest solution that is within the bound.
2.
3.

in other words:
1. \(best_d \)
2.
3.
**best}_f$: open node with minimum f

**best}_\hat{f}$: open node with minimum \hat{f}

**best}_\hat{d}$: estimated w-admissible node with minimum \hat{d}

node to expand next:

1. pursue the shortest solution that is within the bound.
2.
3.

in other words:

1. if $\hat{f}(best}_\hat{d} \leq w \cdot f(best}_f$ then $best}_\hat{d}$
2.
3.

note that $f(best}_f \leq f(opt)$ and $f(n) \leq \hat{f}(n)$
best_f: open node with minimum f
best_\hat{f}: open node with minimum \hat{f}
best_\hat{d}: estimated w-admissible node with minimum \hat{d}

node to expand next:
1. pursue the shortest solution that is within the bound.
2. pursue the optimal solution.
3. in other words:
 1. if \hat{f}(best_\hat{d}) \leq w \cdot f(best_f) then best_\hat{d}
 2. else if \hat{f}(best_\hat{f}) \leq w \cdot f(best_f) then best_\hat{f}
 3.
best_f: open node with minimum \(f \)

\(\text{best}_\hat{f}: \) open node with minimum \(\hat{f} \)

\(\text{best}_\hat{d}: \) estimated \(w \)-admissible node with minimum \(\hat{d} \)

node to expand next:

1. pursue the shortest solution that is within the bound.
2. pursue the optimal solution.
3. raise the lower bound on optimal solution cost.

in other words:

1. \textbf{if} \(\hat{f}(\text{best}_\hat{d}) \leq w \cdot f(\text{best}_f) \) \textbf{then} \(\text{best}_\hat{d} \)
2. \textbf{else if} \(\hat{f}(\text{best}_\hat{f}) \leq w \cdot f(\text{best}_f) \) \textbf{then} \(\text{best}_\hat{f} \)
3. \textbf{else} \(\text{best}_f \)

see paper for further justification
EES Results

Outline
- Direct Approach
- Three Heuristics
- EES

Conclusion

Dock Robot

![Graph showing performance metrics for different heuristics and approaches.](Image)

- A* eps
- wA*
- Optimistic
- Skeptical
- EES
- EES Opt.
EES Results

Outline

EES
- Direct Approach
- Three Heuristics
- EES

Conclusion

Heavy Vacuum World

Suboptimality

\log_{10} total raw cpu time

Suboptimality

- wA^*
- Optimistic
- Skeptical
- A^* eps
- EES
- EES Opt.

Jordan T. Thayer (UNH)
Explicit Estimation Search (EES)

- follows directly from the objectives of bounded suboptimal search
- state of the art search bounded suboptimal search
- use inadmissible heuristics without losing bounds
- robust, works best in domains with action costs
tell your students to apply to grad school in cs at UNH!

- friendly faculty
- funding
- individual attention
- beautiful campus
- low cost of living
- easy access to Boston, White Mountains
- strong in AI, infoviz, networking, systems, bioinformatics
\[
\begin{align*}
\text{best}_f & = \arg\min_{n \in \text{open}} \hat{f}(n) \\
\text{best}_{\hat{d}} & = \arg\min_{n \in \text{open} \land \hat{f}(n) \leq w \cdot \hat{f}(\text{best}_f)} \hat{d}(n) \\
\text{best}_f & = \arg\min_{n \in \text{open}} f(n)
\end{align*}
\]
• \(p \) is the deepest node on an optimal path to \(\text{opt} \).

• \(\text{best}_f \) is the node with the smallest \(f \) value.

\[
 f(p) \leq f(\text{opt})
\]

\[
 f(\text{best}_f) \leq f(p)
\]

\(\text{best}_f \) provides a lower bound on solution cost.

determine \(\text{best}_f \) by priority queue sorted on \(f \)
Why Doesn’t A^*_ϵ Work Well?

Outline
- EES
- Conclusion
- Backup Slides
 - EES Nodes
 - Bound
 - Overhead
 - A^*
 - A^*_ϵ Failure
EES Overhead

Life Four-way Grid World

Suboptimality

log10 total raw cpu time

log10 total nodes generated

Skeptical
EES
wA*

EES Nodes
Bound
Overhead
A*
A* Failure

Life Four-way Grid World

Skeptical
wA*
EES
intuition: of all solutions within the bound, the nearest should be the fastest to find.

\[f(n) = g(n) + h(n) \]

\(best_f\): generated but unexpanded node with minimum \(f\)

best-first search on two lists:

- \(open\): all generated but unexpanded nodes, sorted on \(f(n)\)
- \(focal\): all nodes where \(f(n) \leq w \cdot f(best_f)\) sorted on \(\hat{d}(n)\)

expand the best node from \(focal\)
A* Doesn’t Work Very Well

Outline
- EES
- Conclusion
- Backup Slides
 - EES Nodes
 - Bound
 - Overhead
 - A_ϵ^*
 - A_ϵ^* Failure

Life Four-way Grid World

Suboptimality

total raw cpu time relative to A*

A* eps

Suboptimality

Jordan T. Thayer (UNH)
open: all generated but unexpanded nodes, sorted on $f(n)$

focal: all nodes where $f(n) \leq w \cdot f(best_f)$ sorted on $\hat{d}(n)$
Why Doesn’t A*_ε Work Well?

- **open**: all generated but unexpanded nodes, sorted on \(f(n) \)
- **focal**: all nodes where \(f(n) \leq w \cdot f(best_f) \) sorted on \(d(n) \)

Outline

- EES
- Conclusion

Backup Slides

- EES Nodes
- Bound
- Overhead
- A*_ε
- A*_ε Failure
open: all generated but unexpanded nodes, sorted on $f(n)$

focal: all nodes where $f(n) \leq w \cdot f(best_f)$ sorted on $\hat{d}(n)$

f rises as search progresses (h is admissible)

$best_{\hat{d}}$'s children won't remain on focal