
Real-time Heuristic Search in Dynamic Environments

Chao Chi Cheng and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

cc1057 at wildcats.unh.edu, ruml at cs.unh.edu

Introduction
In dynamic environments such as cities, agents often do not
have time to find a complete plan to reach a goal state. Plan-
ning in such environment requires an agent to update its plan
frequently to respond to the changes around it. The setting
of real-time heuristic search models on-line planning by re-
quiring the agent to commit to its next action within a strict
time limit. The time bound for planning is set to the time
at which the actions to which the agent has already com-
mitted will end. In this way, planning and execution unfold
in parallel. In this extended abstract, we summarize recent
work (Cheng 2019) on real-time search algorithms that can
tolerate a fully dynamic environment, in which action costs
are not fully predictable. We present a combination of two
previously-proposed methods and study its behavior experi-
mentally. The results suggest that the new algorithm is sig-
nificantly superior to the originals.

The real-time problem setting has been addressed by
many previous algorithms, such as the paradigmatic LSS-
LRTA* algorithm (Koenig and Sun 2009), but most of these
only tolerate dynamic environments in which changes re-
sult in state transitions that are more expensive than orig-
inally anticipated. One exception is Partitioned Learning
Real-Time A* (PLRTA*) (Cannon, Rose, and Ruml 2014),
which also handles costs that decrease. The state space in
dynamic environments usually includes time as a state vari-
able, as being in the same position at a different time could
have a different cost due to the dynamic obstacles. (As the
time variable is a priori unbounded, this implies that the
state space is infinite.) Since most environments include
static elements that do not change over time, PLRTA* dis-
tinguishes between costs arising from static vs dynamic el-
ements and ignores the time when learning the static cost-
to-go. Therefore, the evaluation function of PLRTA* con-
sists of four components — static cost-so-far gs(n), static
cost-to-go hs(n), dynamic cost-so-far gd(n), and dynamic
cost-to-go hd(n) — that are combined to form the f value:

f(n) = gd(n) + gs(n) + hd(n) + hs(n) (1)

PLRTA* separates the learning process into two steps:
static learning, and dynamic learning. For static learning,
PLRTA* conflates all states that differ only in time into a
single abstract state. Abstract states inherit the union of all
the predecessors of their preimage states, so that backups

can be performed properly. PLRTA* learns a single static
heuristic value for each abstract state. For dynamic learning,
PLRTA* performs the standard Dijkstra-style backup across
the LSS, considering only costs arising from the dynamic el-
ements of the environment. As presented by Cannon, Rose,
and Ruml (2014), the algorithm commits to only one step
along the selected path, and then replans using updated in-
formation. PLRTA* is guaranteed to reach a goal if there are
no dynamic obstacles.

Dynamic-f̂ , proposed by Kiesel, Burns, and Ruml (2015),
is a combination of two general enhancements to LSS-
LRTA*. The first concerns the heuristic. Most heuristics are
admissible, meaning that they are lower bounds on the ac-
tual cost. Kiesel, Burns, and Ruml (2015) suggest that real-
time decision-making is best made on the basis of expected
value, rather than lower bounds. They derive an estimate of
expected cost ĥ by learning online an estimate of how un-
derestimating the provided h function is, and they use this to
get an estimate of the expected cost f̂ :

ĥ(n) = h(n) + herror (2)

f̂(n) = g(n) + ĥ(n) (3)

The second enhancement concerns the treatment of looka-
head. In real-time search, the lookahead size is strictly lim-
ited to ensure that an action can be selected within the real-
time bound. This bound derives from the requirement that
the agent never exhibit uncontrolled behavior: a new action
must be ready by the time the currently executing action has
completed. However, if the agent commits to multiple ac-
tions after a single planning phase, this means a larger real-
time bound can be used for the next iteration. By dynam-
ically adjusting lookahead to fill the available time in this
way, action selection can be more informed, leading to bet-
ter performance.

New Algorithms
In this work, we propose two new algorithms, f̂ -PLRTA*
and Dyn-f̂ -PLRTA*, that enhance PLRTA* with the f̂ and
dynamic lookahead techniques from Dynamic-f̂ .

As in PLRTA*, f̂ -PLRTA* copes with dynamic environ-
ments by learning the static cost-to-go and dynamic cost-
to-go separately. The central difference between f̂ -PLRTA*



and PLRTA* is that f̂ -PLRTA*considers the heuristic error
when sorting the open list:

f̂(n) = gd(n) + gs(n) + hd(n) + hs(n) + herror (n) (4)

f̂ -PLRTA* uses a best-first search on f̂ to generate the lo-
cal search space. Then it selects the node with the lowest f̂
value as the next target state for the agent. Ties are broken
in favor of the state with the highest time. To estimate the
one-step heuristic error ε, we averaged the difference of the
fstatic = gs + hs value of a parent and its best child — see
Cheng (2019) for details. Although there is of course also er-
ror in the dynamic heuristic values, it is very hard to predict
due to the inherent unpredictability of dynamic obstacles.
Therefore, we only account for the static heuristic error.

Dyn-f̂ -PLRTA* adds the dynamic lookahead technique
to f̂ -PLRTA*. After the lookahead phase, the basic version
of Dyn-f̂ -PLRTA* commits to all the actions along the path
from the current state to the target frontier node. To take into
account the changing predictions of the future locations of
dynamic obstacles, Dyn-f̂ -PLRTA* checks the cost of the
remaining committed actions at each time step if the new
cost of the path is now greater than the original cost times a
factor (1.1 in our experiments). If yes, then the previously-
committed actions are abandoned and the real-time search is
restarted with a time bound of one action duration.

In preliminary experiments, we found that dynamic
lookahead actually performed worse than committing to a
single action at a time. Other have also reported this (Luštrek
and Bulitko 2006; Kiesel, Burns, and Ruml 2015). This
makes sense, as committing to only a single step ensures
lookahead from every state the agent visits. In order to al-
low increasing the amount of planning while ensuring some
lookahead, we use a conservative approach that constrains
the number of committed actions to be at most one more
than in the previous iteration.
Theorem 1 In a finite state space with an admissible h and
no dynamic obstacles or dead ends, Dyn-f̂ -PLRTA*is com-
plete.
Proof: With no dynamic obstacles, gd and hd will remain 0.
Even if time is a state variable, hs applies to abstract states,
effecitvely removing it from consideration. Dyn-f̂ -PLRTA*
will therefore be equivalent to Dynamic-f̂ , which is com-
plete. �

Experimental Results
To evaluate the practical performance of these new methods,
we tested them on a grid pathfinding problem with moving
obstacles. The state space is {x, y, t}, where x and y repre-
sent position and the t represents time. The agent has 9 ac-
tions: 8-way movement plus wait. Dynamic obstacles move
randomly with various speed and direction. The movements
of dynamic obstacles are unpredictable to the agent, so the
agent needs to predict the possible future states of a dynamic
obstacle when planning. This is done by linear extrapolation
from the two most recent time steps.

We ran our experiment on a 256 by 256 city map from
(Sturtevant 2012). Each test instance has a different start and

1 3 10 30 100 300 1000
lookahead

50

40

30

20

10

0

10

20

co
st

(%
)

PLRTA*
PLRTA*_FHAT
DYNAMIC_PLRTA*
DYNAMIC_PLRTA*_FHAT
CONSTRAINT_DYNAMIC_PLRTA*
CONSTRAINT_DYNAMIC_PLRTA*_FHAT

Figure 1: Comparison of Different Algorithms on City Map

goal pair that is randomly generated and at least 128 away
from each other in Euclidean distance. For every start and
goal pair we have sub-instances that have different numbers
of randomly generated dynamic obstacles.

Figure 1 presents the experimental results, shown as a
relative percentage of the difference between the algorithm
and PLRTA* (lower is better). One-step f̂ -PLRTA* does not
show any improvement over the original PLRTA*. However,
adding conservative dynamic lookahead strongly improves
performance, with a stronger improvement for shorter looka-
heads. (For large lookaheads, all algorithms will converge to
optimal offline A*.) In the context of dynamic lookahead,
using f̂ does not seem to make much difference. The result
also suggests the new constrained dynamic lookahead is a
clear improvement over the original dynamic lookahead.

We also tested our algorithms on additional instances with
similar results. For complete details, refer to Cheng (2019).

References
Cannon, J.; Rose, K.; and Ruml, W. 2014. Real-time mo-
tion planning with dynamic obstacles. Ai Communications
27:345–362.
Cheng, C. C. 2019. Real-time search in dynamic worlds.
B.S. Thesis, University of New Hampshire.
Kiesel, S.; Burns, E.; and Ruml, W. 2015. Achieving goals
quickly using real-time search: Experimental results in video
games. Journal of Artificial Intelligence Research 54:123–
158.
Koenig, S., and Sun, X. 2009. Comparing real-time and in-
cremental heuristic search for real-time situated agents. Au-
tonomous Agents and Multi-Agent Systems 18(3):313–341.
Luštrek, M., and Bulitko, V. 2006. Lookahead pathology
in real-time path-finding. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), Workshop on
Learning For Search, 108–114.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.


