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Abstract

Tree search is a common technique for solving constraint sat-
isfaction and combinatorial optimization problems. The most
popular strategies are depth-first search and limited discrep-
ancy search. Aside from pruning or ordering the children of
each node, these algorithms do not adapt their search order to
take advantage of information that becomes available during
search, such as heuristic scores or leaf costs. We present a
framework called best-leaf-first search (BLFS) that uses this
additional information to estimate the cost of taking discrep-
ancies in the search tree and then attempts to visit leaves in
a best-first order. In this way, BLFS brings the idea of best-
first search from shortest path problems to the areas of con-
straint satisfaction and combinatorial optimization. Empirical
results demonstrate that this new dynamic approach results in
better search performance than previous static search strate-
gies on two very different domains: structured CSPs and the
traveling salesman problem.

Introduction

Combinatorial search problems in artificial intelligence can
be divided into three classes: constraint satisfaction, combi-
natorial optimization and shortest path. Informally, in a con-
straint satisfaction problem (CSP) we must select values for
each of a set of predefined variables such that a given set of
constraints is not violated. A complete assignment that does
not violate any constraints is called a solution. Combinato-
rial optimization problems (COPs) are like CSPs, however,
there is an additional function that assigns a cost value to
each solution and we wish to find the cheapest possible so-
lution. In a shortest path problem, we must select a sequence
of operations that will reach a desired goal state from a given
initial state and we wish to find the cheapest such sequence.

CSPs and COPs are typically solved by searching over
the bounded-depth tree of partial variable assignments. This
search space is formed by starting with an empty assign-
ment and then assigning values to variables until a solution
is found or a constraint is violated. In COPs, a search typ-
ically does not stop after finding the first solution, but will
continue, pruning subtrees that are more costly than the cur-
rent incumbent solution.
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When solving CSPs, a variable choice heuristic is often
used to select a variable to assign, forming a branching node
in the search tree. A value ordering heuristic is used to order
the values from the variable’s current domain, forming arcs
from the branching node to its children in the tree. Because
traditional tree searches follow a fixed backtracking policy,
these orderings are the main way in which heuristic infor-
mation computed during the search can influence search or-
der. Constraint propagation is used to reduce the size of this
search space by taking into account the constraints as well
as the current partial variable assignment. Domain values
that propagation has determined cannot participate in any
solution under the current node are removed from consider-
ation. Constraint propagation can prune away large portions
of a search tree, and while it can sometimes influence the
heuristics that choose variables and order values, it does not
determine search order directly. In this paper, we are con-
cerned with how best to search the tree that remains after
constraint propagation, dynamic variable choice, and value
ordering have been performed.

Unlike CSPs and COPs, shortest path problems are typi-
cally solved with best-first search. This is because the num-
ber of decisions is usually not bounded in advance. Best-first
search algorithms make use of heuristic lower bound func-
tions on cost-to-go in order to estimate the cost of a solution
beneath a given frontier node. Frontier nodes are stored in
a priority queue and expanded in order of increasing esti-
mated solution cost. Thus, heuristic information computed
at each node directly influences every decision about which
node the search should expand next, and the search has the
freedom to select a node in any part of the tree.

In this work, we present a search framework called best-
leaf-first search (BLFS) that brings the idea of best-first
search from shortest path problems to CSPs and COPs.
BLFS attempts to visit leaves in a best-first order, where
‘best’ is defined by using heuristic information calculated
during the search. BLFS can be viewed as an adaptation
of iterative-deepening A* (IDA*, Korf 1985), a best-first
search algorithm that is commonly used in shortest-path
problems, to fixed-depth search trees. This adaptation re-
quires two novel techniques. First, a node evaluation func-
tion is required to guide the search. Second, iterative deep-
ening must be adapted to handle real-valued costs. In an
empirical evaluation on both CSPs and COPs, we find that



BLFS provides excellent search performance on structured
CSPs, competitive performance on random CSPs, and ex-
cellent performance on the traveling salesman problem, a
type of COP. BLFS establishes a useful connection between
heuristic search in AI and tree search in CSPs and COPs.

Background

We begin with a brief review of depth-first and discrepancy
search. We will follow the convention that values are or-
dered from left to right so that the left-most successor of a
node is the heuristically preferred value for the given vari-
able.

Depth-first search (DFS, also known as chronological
backtracking) visits the successors of each node in a left to
right order. When it backtracks, it returns to the most re-
cently visited node with unvisited successors. Because it
never generates a node twice, depth-first search is a very ef-
ficient algorithm for enumerating a full tree. For large prob-
lems, there is no hope of visiting the entire tree in any rea-
sonable amount of time. Instead, we would like to find a
solution as fast as possible or the best solutions that we can
within the time available. Unfortunately, depth-first search
focuses all of its effort deep in the far left subtree and of-
ten misses better solutions down non-heuristically-preferred
branches. If the heuristic makes a mistake near the top of the
tree, DFS won’t reconsider this choice until it has explored
the entire subtree, which will take an unreasonable amount
of time for large trees.

One might suspect that the value ordering heuristic is just
as likely, or even more likely, to make a mistake at the top
of a search tree as it is at the bottom. In recognition of this,
the limited discrepancy search algorithm (LDS, Harvey and
Ginsberg 1995) and its improved version (ILDS, Korf 1996)
visit leaves in order of the number of deviations from the
heuristic ordering (called discrepancies) along their paths
from the root. ILDS visits all leaves with exactly k discrep-
ancies along their paths during iteration k. Viewed another
way, ILDS is counting each edge taking the heuristically
preferred child as having a cost of zero and each edge taking
a discrepancy as having a cost of one. It then visits leaves in
increasing order of cost. ILDS makes the assumption that all
discrepancies have equal cost. This may not be the case, and
perhaps some discrepancies should be favored well before
others.

Depth-bounded Discrepancy Search (DDS) (Walsh 1997)
is similar to ILDS, however it makes the assumption that the
child ordering heuristic is more accurate at lower levels of
the tree. DDS maintains a depth bound that starts at zero
and is incremented during search. DDS counts all discrep-
ancies above the current depth bound as free and it takes no
discrepancies deeper than the bound. If no solution is found,
the bound is increased by one and the search restarts. Due to
node re-expansion, DDS has significant overhead for each
leaf that it visits and, like ILDS, it makes assumptions in
advance about which discrepancies should be preferred.

Best-leaf First Search

Ideally, rather than assuming discrepancy costs, one would
estimate the cost of a discrepancy by using information that
becomes available during search. The best-leaf-first search
(BLFS) framework does just this. First, we will present the
generic search framework that assumes that an edge cost
model has been provided. Then we will discuss two such
cost models. The indecision cost model estimates the cost
of discrepancy by using the child ordering heuristic and can
be used on both CSPs and COPs. The quadratic cost model
uses on-line regression to learn discrepancy costs from the
costs of leaf nodes. It requires a function to give the cost of
a leaf node, making it well suited for COPs but not directly
applicable to CSPs.

At a high-level, BLFS proceeds as iterative-deepening A*
(Korf 1985): performing a series of cost bounded depth-
first searches. BLFS uses a cost model to define the rel-
ative worth of nodes and a bound estimation procedure to
select cost thresholds to use across the iterations of search.
First, BLFS visits all leaves whose predicted cost is mini-
mal. The main loop of the search estimates a cost threshold
that will result in the desired number of expansions for the
subsequent iteration. A cost bounded depth-first search is
then performed. If the search fails to find a solution, the cost
threshold is increased. Because BLFS is based on depth-first
search, it uses memory that is only linear in the maximum
depth of the tree. Assuming the bound estimation is accu-
rate, it is also possible to geometrically increase the num-
ber of nodes visited across iterations, bounding the overhead
from node re-expansions (Sarkar et al. 1991). This will also
allow BLFS to eventually visit the entire search tree, making
it complete in that it will find a solution if one exists.

Indecision Cost Model

Because edges in a search tree do not necessarily have costs
associated with them, BLFS uses a cost model to estimate
the cost of each edge. One simple model is to use informa-
tion from value ordering. It is often the case in a tree search
that the value ordering heuristic is based on a quantitative
score. While both DFS and ILDS use this score to order
the successors of a node, they ignore the finer distinctions
enabled by the score values. Given two backtracking desti-
nations, it seems preferable to select the location where the
heuristic was less certain about ranking the successors of a
node, i.e., where the heuristic scores were very close to each
other. If expanding a node yields a set of successor nodes,
S, we define the indecision of a node n in S as its heuristic
score minus the score of the best node in S:

indecision(n) = h(n)−min
s∈S

h(s) (1)

where h is the heuristic function being used to order the suc-
cessors of a node. For example, if the scores of two siblings
are 2 and 4, then their indecisions are 0 and 2, respectively.
For siblings with scores 5 and 100, the indecisions are 0 and
95, indicating greater decisiveness on the part of the scor-
ing function. We define the cost of a node as the sum of all
indecision values along its path from the root:

cost(n) = indecision(n) + cost(parent(n)) (2)



Figure 1: Quadratic model training example

Note that the 0-rank sibling will always have an indecision
value of zero. This guarantees that a search using indecision
values as a proxy for edge cost will visit a leaf beneath each
node that it expands because following the 0-ranked children
to a leaf will not incur any additional cost. We call BLFS
using the indecision cost model indecision search. By quan-
tifying the cost of each discrepancy taken along the current
path, indecision search can adaptively select which paths to
explore based on the actual heuristic values seen during the
search. It also generalizes discrepancy search to non-binary
trees in a principled way.

Quadratic Cost Model

In optimization problems, additional information is avail-
able: leaves have an associated cost. These leaf costs pro-
vide information on the accuracy of the heuristic along the
path to the given leaf. The quadratic cost model uses linear
regression to learn the costs of discrepancies. Although var-
ious methods can be used, we present one in which leaf cost
is the sum of edge costs along the path from the root. To
reduce the number of parameters and enforce smoothness,
we model the cost of each edge as a quadratic function of its
depth. The cost of selecting a child of rank i at depth d is

edgecost(d, i) = ai + bi
d

D
+ ci

(

d

D

)2

(3)

where D is the maximum depth of the tree and ai, bi and ci
are the regression coefficients for successor rank i.

Each time a solution is encountered, its cost and path
are used as a training example for on-line LMS regression
(Mitchell 1997). To build a training example from a path
through the tree, we must create data points for each of the
three features for each of the n child ranks. Let E(i) be
the set of edges along the current trajectory that correspond
to rank i successors and d(e) be the depth of a given edge
e ∈ E(i). The quadratic model estimates the leaf cost as the
sum of each edge cost, giving:

leafcost =
∑n−1

i=0 edgecost(d(e), i)

=
∑n−1

i=0 ai|E(i)|+

bi

(

∑

e∈E(i)
d(e)
D

)

+

ci
∑

e∈E(i)

(

d(e)
D

)2

(4)

So, to estimate the coefficients ai, bi and ci, we must
compute |E(i)|,

∑

e∈E(i) d(e)/D and
∑

e∈E(i)(d(e)/D)2

for each rank 0 ≤ i < n. These sums can be easily up-
dated each time the search traverses an edge or backtracks

by adding/subtracting from the current sum for the respec-
tive coefficient. Figure 1 shows an example trajectory in a
search tree with D = 2 and n = 2. Each of the two edges
in the trajectory are labeled with their contribution to the
respective data points and the leaf node is labeled with the
final set of 6 feature values that are passed to the regression
model. Using the learned feature coefficients, Equation 3
may be used to estimate the edge cost for a rank i edge at
depth d when searching.

Because the quadratic model updates the coefficients each
time it encounters a leaf, a copy of the model is made before
each iteration of search. This allows the edge costs to remain
constant during an iteration of search while the coefficients
that will be used in the next iteration are fluctuating. Also,
to ensure that the left-most successor of a node has a cost of
zero, the costs of the model are normalized so that the 0-rank
successor has a cost of zero.

Bound Estimation

When the number of nodes between cost bounds does not
grow geometrically, IDA* may perform O(n2) expansions
where n is the number of nodes expanded in its final iteration
(Sarkar et al. 1991). The cost functions used by BLFS tend
to have many distinct values, giving rise to non-geometric
growth of iterations. In order to prevent this worst-case be-
havior, a model of the search space can be learned on pre-
vious iterations of search to estimate a threshold that will
cause geometric growth. In our implementation, we try to
double the number of nodes visited across iterations. If this
is achieved then the total overhead due to node re-expansion
is bounded by a constant factor of three in the worst case.1

If we were given a distribution over the cost of the nodes
in the search tree, it would be a simple matter to select a
bound that allows the desired number of expansions: choose
a bound such that the weight to the left in the distribution is
the desired number. Since we are not given this distribution,
we estimate it using the distribution of cost values seen dur-
ing the previous iteration and simulating the growth of the
tree using a recurrence relation. The recurrence estimates,
for each depth, the cost of the nodes that will be generated,
based on the estimated distribution of costs at the previous
depth and the distribution of edge-costs at the current depth:

Ĉ(d+ 1) = Ĉ(d) ∗∆(d) (5)

where Ĉ(d) is an estimation of the distribution of costs at
depth d, ∆(d) is a distribution of the cost of the edges from
depth d to d + 1 and ∗ is the convolution operator (defined
in detail below) which adds the ∆(·) distribution to each

of the Ĉ(·) values forming the new distribution of the costs

over the newly generated nodes. Equation 5 builds the Ĉ
distribution recursively starting with the root node that has
a distribution of 1 node with 0 cost and the ∆ distributions

1If n is the number of nodes visited during the last iteration
of search, then in the worse case, the previous iteration will have
visited n − 1 nodes. In the case of doubling, the combined total
of all the nodes visited on iterations prior to the last two is (n −
1)/2 + (n− 1)/4 + ... < n. So the total number of nodes visited
by BLFS in the worse case is approximately 3n.



GET-BOUND (desired )
1. total ← an empty histogram

2. Ĉ ← an empty histogram

3. add {cost = 0, weight = 1} to Ĉ and total
4. for i = 1 to dmax do
5. ∆← edge-cost histogram for depth i

6. Ĉ ← Ĉ ∗∆

7. total ← total + Ĉ
8. return cost for weight (total , desired )

Figure 2: Pseudo-code sketch of bound selection.

for each depth that are either recorded during the previous
iteration of search (in the case of indecision cost model) or
are extracted directly from the cost model (for the quadratic
cost model). As the computation of the recurrence proceeds,
we also accumulate a total distribution containing all of the
costs for each depth d. When the recurrence reaches the final
depth, the accumulated distribution can be used to find the
desired cost threshold.

Figure 2 shows high-level pseudo code for this estima-
tion technique. Distributions are represented using fixed-
size histogram data structures. The total histogram contains
the distribution of the costs of all nodes at all depths that

have been computed thus far. The Ĉ histogram contains the
distribution of the cost of all of the nodes at the current depth
in the recurrence. When the maximum depth is reached, the
bound for the desired number of nodes can be found in the
total histogram (line 8).

The convolution operation (line 6) used to combine cost
distribution from one depth with the edge cost distribution
works by adding all values in the input histograms and
multiplying the weights. So, the convolution of two his-
tograms ωa ∗ ωb = ωc, where ωa and ωb are functions
from values to weights, and their convolution is ωc(k) =
∑

i∈Domain(ωa)
ωa(i) ·ωb(k− i). The resulting histogram is

a distribution of costs after summing the costs of the nodes
at one depth with the cost of the edges that generate the suc-
cessors at the next depth.

One technique for increasing accuracy and speed of the
simulation is pruning. While simulating the number of
nodes at each depth of the tree, if the total histogram ever
contains more than the number of desired nodes, the excess
nodes can be pruned away from the right-hand side of the
histogram.

Experimental Results

To evaluate the performance of indecision search we com-
pare it to DFS, ILDS, DDS and the following state-of-the-art
tree search algorithms:
Weighted Discrepancy Search: (WDS, Bedrax-
Weiss 1999) is similar to indecision search, however it
weights the value of each heuristic discrepancy with a
score between 0 (less preferred) and 1 (most preferred).
Discrepancies where the score of the best child and the
next-best child are similar will be closer to 1 and discrep-
ancies where the scores are very dissimilar will have values
closer to zero. Beginning with a threshold of 1, WDS
performs a depth-first search of all nodes for which the

product of the weights along the path from the root to the
given node are within the threshold. When all nodes in
an iteration are exhausted, the threshold is decreased to
allow more nodes to be explored and the search is repeated.
Bedrax-Weiss (1999) used offline analysis to find optimal
bound schedules and presented results (without CPU times)
showing that WDS was surpassed by DFS or ILDS on 3 of
the 4 versions of number partitioning that she considered.
We propose a novel implementation using the technique of
IDACR (Sarkar et al. 1991) to estimate an appropriate bound
on-line, which we call on-line WDS (OWDS). We also tried
the estimation approach of IDACRwith BLFS, however it
performed worse than the technique described previously.
YIELDS: (YIELDS, Karoui et al. 2007) was introduced for
solving CSPs. The algorithm extends LDS by adding a vari-
able choice learning scheme and an early stopping condi-
tion. YIELDS weights the variables of a CSP, incrementing
a variable’s weight whenever the discrepancy limit prevents
the search from exploring all domain values for that vari-
able. This weight is used to break ties when the normal vari-
able choice heuristic is used. A higher weight is preferred
so that variables that cannot be completely explored despite
their domain being non-empty will be visited higher in the
tree on subsequent iterations. For problems with non-binary
branching, visiting a child of rank k is counted as k discrep-
ancies.

The variable learning scheme of YIELDS can be incor-
porated into any cost-bounded search for CSPs. We added
the YIELDS variable learning method to indecision search,
OWDS, DDS, and ILDS for our CSP results. Indecision
search, OWDS and DDS benefited from this change on all
CSP problem classes. ILDS benefited on all but the latin
square domain. In the results presented below, we only show
the version of the algorithm which performed the best for the
specific domain. We also give results for the plain YIELDS
algorithm as it was originally presented.
Indecision RBFS: Recursive best-first search (RBFS,
Korf 1993) is an alternative formulation of linear-memory
best-first search. An RBFS-based variant of indecision
search has the advantage that it is not iterative and there-
fore does not need to perform bound estimation. RBFS may
re-expand nodes many times, however, as it rebuilds previ-
ously explored paths. We implemented this RBFS variant,
however, we do not present results for it because it was not
competitive with the iterative-deepening version.
ILDS variants: In a given iteration of either ILDS or BLFS,
the discrepancies may be taken starting at the bottom of the
tree first or the top of the tree first. In the following exper-
iments the variant that gave the best performance was cho-
sen. For CSPs, ILDS performed better with discrepancies
taken from the top first. On the TSP, the variant of ILDS
that prefers discrepancies at the bottom was used. For BLFS,
bottom-first always gave better performance. Also for ILDS,
all non-preferred child nodes were counted as a single dis-
crepancy in problems with non-binary branching.

Constraint Satisfaction Problems

We ran on three sets of CSP benchmarks. For all problems,
the constraints were encoded as binary nogoods and repre-



sented in extension. The variable choice heuristic used was
the popular dom/wdeg (Boussemart et al. 2004) for the
random binary and geometric problems and min domain

(Haralick and Elliott 1980) for the latin squares2. The value
choice heuristic was the promise heuristic (Geelen 1992).
Forward checking (Haralick and Elliott 1980) was used for
constraint propagation after each variable assignment. It is
a popular method because propagation is quick for prob-
lems with large numbers of constraints and it is simple to
implement efficiently. All experiments used a time limit of
5 minutes per instance. For CSPs, we only consider the in-
decision cost model for use with BLFS. Since the quadratic
cost model requires a cost for each leaf to learn on, we only
consider it for the COP results. Likewise, since YIELDS is
designed for solving CSPs, we only include it in the CSP re-
sults. We include plots for both CPU time and nodes visited.

Latin Square Completion The latin square completion
problem is a popular puzzle that can be encoded easily into
a CSP. It has been suggested as a realistic benchmark be-
cause instances can be generated randomly but the problem
still contains structure. The goal is to fill in a square n by
n grid with numbers ranging from 1 to n such that a num-
ber appears exactly once in each row and in each column.
These problems are easily solved when starting from a blank
grid, but become more difficult depending on the percentage
of cells pre-filled in (Gomes and Shmoys 2002). Figure 3
shows results on 100 latin squares of order 30 with 42% of
the cells already assigned. As the plot shows, indecision
search performs the best with OWDS also performing well.
ILDS is a distant third. Depth-first search performed ex-
tremely poor, solving fewer than 10% of the problems in the
time allowed.

Figure 4 shows results on the same problem instances but
in terms of logical nodes visited by each algorithm. The
same overall ordering of the algorithms is observed in the
nodes plot as in the CPU time plot. We define a logical node
as a either a branching point in the tree where the search al-
gorithm must make a choice, or a leaf. Note that in CSPs, a
logical node could represent several actual variable assign-
ments due to unit propagation. If constraint propagation
reduces the domain of a variable to a single value, it will
automatically be assigned that value and more constraint
propagation and heuristic computation will be triggered. In
the plot, it seems that DFS is extremely slow at expanding
nodes, which is counter-intuitive since DFS has virtually no
overhead. The reason is that unit propagation is happen-
ing with higher frequency than the other algorithms. This is
likely because DFS is spending more time deep in the tree
where domains have been pruned excessively due to con-
straint propagation. This increases the chances that pruning
a value from a variable’s domain will cause unit propagation
to occur. So while it is true that some algorithms are expand-
ing fewer logical nodes per second, they are all performing
approximately equal assignments per second.

2We found min domain performed better with respect to CPU
time because dom/wdeg took much longer to compute due to the
large numbers of constraints present.
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Figure 5: Logical nodes visited per instance to prove random
binary CSPs unsatisfiable. Instances ordered such that nodes
is increasing for DFS.

Random Binary CSPs In this type of problem, all con-
straints are between two randomly chosen variables. A par-
ticular class of random binary problems can be described
by the tuple 〈n,m, p1, p2〉 where there are n variables, each
having a uniform domain of size m. Exactly p1 ·n(n− 1)/2
of the possible variable pairs are constrained and exactly
p2 · m

2 of the possible value combinations are disallowed.
The center plot in Figure 3 shows results on 100 instances
with the parameters 〈35, 25, 0.3, 0.5〉. In these problems,
ILDS using the YIELDS variable learning performs the best.
Indecision search is competitive with the other algorithms,
ultimately solving the second largest number of instances in
the allotted time. DFS, while performing poorly on latin
squares, is more competitive on these random problems.
The center plot of Figure 4 shows results for nodes visited
by each algorithm for these problems. The ordering is ap-
proximately the same except that DFS, while not solving as
many problems, visits fewer logical nodes than the other al-
gorithms for the problems that it does solve.

Geometric Quasi-Random CSPs The geometric quasi-
random problems are binary CSPs similar to the ones de-
scribed by Wallace (1996). These instances are generated by
randomly assigning (x, y) coordinates inside a unit square to
each variable. Constraints are added between all variables
that are within a specified radius of each other. These prob-
lems are slightly more structured than pure random binary
CSPs because the constraints are clustered according to the
coordinates. The problems we tested had 50 variables, each
with a domain size of 20. As seen in Figure 3, OWDS and
indecision search performed better than all other algorithms.
OWDS appears to perform slightly better than indecision
search, however they both are able to solve the same number
of instances. Figure 4 shows results in terms of nodes in the
rightmost plot. This plot closely mirrors the CPU time plot
as the algorithms have the same relative performance.

Unsatisfiable Random Binary CSPs In this experiment
we ran on only unsatisfiable problems. In order to prove
a problem unsatisfiable, the search algorithm must visit the
entire search tree. This puts all of the discrepancy based al-
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Figure 3: CSPs: The fraction of problems solved as a function of CPU time when using each search strategy.

latin squares

logical nodes
4000002000000

fr
a
ct
io
n
 s
o
lv
e
d

0.6

0.3

0

random binary

logical nodes
40000200000

fr
a
ct
io
n
 s
o
lv
e
d

0.8

0.4

0

geometric

logical nodes
80000400000

fr
a
ct
io
n
 s
o
lv
e
d

0.9

0.84

0.78

DFS DDS ILDS OWDS Indecision YIELDS

Figure 4: CSPs: The fraction of problems solved as a function of logical nodes visited when using each search strategy.

gorithms, indecision search included, at a disadvantage be-
cause they re-expand nodes across search iterations. DFS
is optimal in this respect because it only visits each node
once. To test the amount of overhead incurred from re-
visiting nodes, we compare the performance of all algo-
rithms to that of DFS in terms of nodes visited. Figure 5
shows the number of nodes visited by each algorithm on an
instance by instance basis. The problems ran on were 47 un-
satisfiable random binary CSPs generated with the param-
eters 〈40, 11, 0.96, 0.1〉. The instance numbers in the plot
are assigned such that the number of nodes visited by DFS
is increasing. As expected, DFS visits the fewest nodes to
prove each instance unsatisfiable. Indecision search clearly
visits the second fewest nodes, and OWDS the third fewest
nodes. As mentioned in the section describing the bound es-
timation technique, as long as the number of nodes that in-
decision search visits on each iteration is double the number
visited on the previous iteration, the amount of overhead due
to node re-expansions is bounded. This experiment shows
that the bound estimation procedure of BLFS works well in
practice. Coupled with the previous experiments, indecision

search has been shown to provide robust performance across
different types of CSPs as well as on satisfiable and unsatis-
fiable instances.

Traveling Salesman Problem

The traveling salesman problem (TSP) is a combinatorial
optimization problem that asks for the shortest tour of a set
of cities, given the distance between each pair of cities. We
use a straightforward tree search where each node represents
a partial tour of the cities. To break symmetries, we select an
initial city as the start city and another city that must appear
in the second half of the tour (Pearl and Kim 1982). Our
value ordering heuristic sorts successors on the cost of the
partial tour represented by the node plus the minimal span-
ning tree of the remaining cities. This value gives a lower
bound on cheapest tour that may extend from the partial tour.

We used three different instance sets for this domain. The
first two sets, “usquare” with 50 and 100 cities, were gen-
erated by placing the respective number of cities in random
locations on the unit square and using Euclidean distance.
The final set, “pkhard,” is a set of instances with random
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Figure 6: Traveling salesman problem: tour cost as a function of CPU time when using each search strategy.
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Figure 7: Traveling salesman problem: tour cost as a function of nodes visited when using each search strategy.

distances as recommended by Pearl and Kim (1982). Each
set contained 40 instances.

Figure 6 gives the results of these experiments. The x axis
in each plot is the CPU time in seconds and the y axis is the
cost of the best tour found so far. The error bars indicate
the 95% confidence intervals. The figure shows that DFS
saw little improvement in solution quality, most likely be-
cause it was stuck in the left-most portion of the search tree.
While DDS and ILDS tended to find better and better so-
lutions as time passed, the quality of the solutions were not
very competitive. OWDS appears to have given the next best
performance. Finally, BLFS with the quadratic and indeci-
sion cost models gave the best performance on all three sets
of instances. The quadratic model tended to perform bet-
ter on the unit square instance set, showing more advantage
over indecision as the problem difficulty increased.

Figure 7 shows the results of the same problems but in
terms of nodes visited. The algorithms appear in the same
ordering in terms nodes as they do in terms of CPU time.
Note that DFS actually expands tens of millions of nodes
in every problem but the x-axis has been clamped to bet-

ter show the performance of the other algorithms. There is
no noticeable change in the solution cost that DFS achieves
for node values greater than what the plots are clamped at.
BLFS using quadratic or indecision cost models and OWDS
consistently found better solutions per nodes expanded, with
the quadratic model performing the best across all three
problem sets. The additional information that these algo-
rithms use in order to guide search seems to give them an
advantage over the other search algorithms evaluated.

Discussion

While improving search order is one way to avoid the pit-
falls of DFS, there are several other methods that have been
developed to achieve similar results. For CSPs, Hulubei and
OSullivan (2006) show that the dom/wdeg heuristic cou-
pled with maintaining arc consistency (MAC) for constraint
propagation is able to reduce the heavy tails experienced by
DFS when solving certain problems BLFS can be seen as
a complementary technique that avoids heavy-tail behavior
by intelligent backtracking. Grimes and Wallace (2006) also
achieve good performance by adding probing and random-



ized restarting to DFS to avoid becoming stuck in one por-
tion of the search tree for too long and to improve the ef-
fectiveness of variable choice heuristics which learn from
experience (e.g. wdeg).

For many tree search problems, CSPs especially, differ-
ent techniques such as the variable choice heuristic and the
level of constraint propagation used can greatly influence
the structure of the resulting search tree. BLFS is purely
a search algorithm and is independent of how the search tree
is generated. Irregardless of those techniques, the tree that is
generated needs be searched for a solution and BLFS aims to
do this in the most intelligent way possible. To be effective
however, BLFS requires useful heuristic features for its cost
model. Some of the modern CSP solving techniques ren-
dered useless the promise heuristic that we employ. To be
able to take advantage of the most cutting edge techniques
for solving CSPs, we modified a state-of-the-art CSP solver3

to use indecision search. After evaluating a wide variety
of benchmarks, we found that the promise value ordering
heuristic provided no more useful guidance than just order-
ing the values lexicographically (and was much slower to
compute). With no useful heuristic, indecision search per-
formed poorly. Perhaps better results could be achieved if a
better value choice heuristic were used.

BLFS is motivated by best-first search techniques used for
shortest path problems. We have shown how to solve CSPs
and COPs by adapting best-first search to work on bounded-
depth trees and have provided two possible cost models to
use during search: the indecision model and the quadratic
model. While it was shown how these cost models could be
use to improve search order in CSPs and COPs, it remains
a topic of future work to see if they can also be used to im-
prove shortest path algorithms.

Conclusion

BLFS is a complete tree search method that visits nodes in
approximately best-first order while still retaining the linear
memory complexity of depth-first search. We presented two
types of cost models to use with this framework: indecision
and the quadratic model. Indecision search takes advantage
of the quantitative heuristic information available at a node
to visit leaves in an approximately best-first ordering. Pri-
ority is given to places in the search tree where the heuris-
tic is less decisive in its ranking. In the quadratic model,
node costs are represented as quadratic functions learned
from leaf costs encountered during search using on-line re-
gression. We also presented a technique that uses an on-
line model of the search tree to provide bound estimations
to guide cost-bounded search.

An empirical evaluation showed that indecision search
can outperform other algorithms in both CSPs and COPs.
We also found that even when indecision search wasn’t the
best, it was more consistent across domains than other algo-
rithms, leading to more robust performance. In COPs, BLFS
using the quadratic model was consistently one of best per-

3We used Mistral, winner of the 2009 CSP competi-
tion. It is written by Emmanuel Hebrard and available from
http://4c.ucc.ie/˜ehebrard/Software.html

forming algorithms. The ideas introduced in BLFS bring
together shortest path heuristic search from artificial intel-
ligence and heuristic tree search from constraint program-
ming and operations research, helping to unify the field of
combinatorial search.
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