
Heuristic Search in Bounded-depth Trees: Best-Leaf-First Search

Wheeler Ruml
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

ruml@eecs.harvard.edu

Abstract

Many combinatorial optimization and constraint satisfaction
problems can be formulated as a search for the best leaf in a
tree of bounded depth. When exhaustive enumeration is in-
feasible, a rational strategy visits leaves in increasing order of
predicted cost. Previous systematic algorithms for this setting
follow predetermined search orders, making strong implicit
assumptions about predicted cost and using problem-specific
information inefficiently. We introduce a framework, best-
leaf-first search (BLFS), that employs an explicit model of
leaf cost. BLFS is complete and visits leaves in an order that
efficiently approximates increasing predicted cost. Different
algorithms can be derived by incorporating different sources
of information into the cost model. We show how previous al-
gorithms are special cases of BLFS. We also demonstrate how
BLFS can derive a problem-specific model during the search
itself. Empirical results on latin square completion, binary
CSPs, and number partitioning problems suggest that, even
with simple cost models, BLFS yields competitive or supe-
rior performance and is more robust than previous methods.
BLFS can be seen as a model-based extension of iterative-
deepening A*, and thus it unifies search for combinatorial
optimization and constraint satisfaction with traditional AI
heuristic search for shortest-path problems.

Introduction
Both combinatorial optimization and constraint satisfaction
problems are often formulated as trees in which one selects
a variable at each node and branches on its possible val-
ues. The goal is to find the leaf with the lowest cost or, for
satisfaction problems, with the fewest violated constraints.
Because these trees grow exponentially with problem size,
complete enumeration of the leaves is often infeasible, and
one attempts to visit the best leaves one can in the time
available. Much previous work has focused on pruning tech-
niques which reduce the size of the tree. In this paper, we
will discuss strategies for exploring the tree that remains.

Most existing techniques are based on depth-first search
(DFS). DFS has the advantage of minimal overhead, gener-
ating each internal node in the tree no more than once. But
its strategy of always backtracking to the most recent deci-
sion is not necessarily optimal. A heuristic scoring function
is usually used to rank the children of a node in decreasing
order of desirability. If this scoring function is quite accu-
rate at the bottom of the tree but essentially random at the

top, then DFS is a poor strategy. A decision at which the
top-ranked child node is not selected is called a discrepancy
(Harvey & Ginsberg 1995). Another way of viewing DFS
is that it assumes that the cost of every leaf whose path in-
cludes a discrepancy at the root is greater than the cost of
every leaf that does not. Any algorithm that visits leaves in
a pre-determined order is implicitly making strong assump-
tions about the costs of different leaves.

In this paper, we introduce a search framework, best-leaf-
first search (BLFS), in which such assumptions are explic-
itly represented in the form of a predictive model of leaf
costs. Because the search uses an explicit model, it can
even depend on model parameters which are estimated on-
line from the search tree itself, rather than assumed before-
hand. It is also easy to arrange for the model to incorporate
heuristic child scores. The central idea of BLFS is to visit
leaves in an order that approximates increasing predicted
cost. This is achieved by visiting all leaves whose predicted
cost falls within a fixed bound and then iteratively raising
the bound. BLFS is analogous to the iterative-deepening A*
(IDA*) algorithm for shortest-path problems (Korf 1985).
Their common framework of single-agent rationality pro-
vides a clean unification of search for combinatorial op-
timization and constraint satisfaction with the tradition of
heuristic search in AI for shortest-path problems.

After outlining BLFS, we will discuss two instantiations
of the framework. The first, indecision search, uses a cost
model that depends on the heuristic scores of the nodes
along the path to a leaf. We evaluate the algorithm’s perfor-
mance on both latin square completion and random binary
CSPs. The second instantiation uses a cost model whose pa-
rameters are learned from the leaf costs observed during the
search. We evaluate this algorithm on two different formula-
tions of the combinatorial optimization problem of number
partitioning. The results from both algorithms suggest that
BLFS provides competitive or superior performance and is
more robust than existing algorithms.

Best-Leaf-First Search
The basic structure of BLFS is a simple loop in which we
carry out successive depth-first searches. Pseudo-code is
shown in Figure 1. Each search visits all leaves whose costs
are predicted to fall within a cost bound. In these respects,
BLFS is similar to the iterative-deepening A* (IDA*) algo-



BLFS(root)
1. Visit a few leaves
2. Nodes-desired← number of nodes visited so far
3. Loop until time runs out:
4. Double nodes-desired
5. Estimate cost bound that visits nodes-desired nodes
6. Call BLFS-expand(root, bound)

BLFS-expand(node, bound)
7. If leaf(node), visit(node)
8. else, for each child of node:
9. If best-completion(child)≤ bound
10. BLFS-expand(child, bound)

Figure 1: Simplified pseudo-code for best-leaf-first search.

rithm for shortest-path problems. IDA* controls expansion
of a node n using a prediction of the cost of the best path
to the nearest goal that goes through n. Analogously, BLFS
uses the predicted cost of the best leaf below n. This allows
the algorithm to avoid descending into any subtree that does
not contain a leaf we wish to visit on this iteration (step 9).
However, BLFS uses an explicit representation of its pre-
dictive model, rather than a black-box function suppled by
the user, as in IDA*. Being able to choose a simple model
leads to two important advantages over IDA*. First, we can
choose a model that will give consistent predictions. That is
to say, we can ensure that the minimum-cost child of every
branching node has the same evaluation as its parent. This
enforces the semantics tying the value of a node to its best
descendant leaf. Having a consistent prediction function
means that BLFS is certain to reach leaves on every iteration,
never expanding a node unnecessarily and never overlooking
a node that has a descendant within the cost bound. (In prac-
tice, one could also achieve the first behavior by forcing the
search to expand the best child.) The second advantage that
BLFS enjoys over IDA* is that the cost bound can be up-
dated optimally. Because the predicted costs are generated
by a known model, we can choose cost bounds that can be
expected to cause twice as many nodes to be visited as on
the previous iteration (step 5). By approximately doubling
the number of nodes visited on each iteration, BLFS limits
its overhead to a factor of less than three in the worst-case
situation in which the entire tree must be searched.

IDA* itself performs poorly on optimization problems for
two reasons. As a shortest-path algorithm, it is typically
used with an underestimating node evaluation function. This
causes the algorithm to visit an enormous number of inter-
nal nodes before reaching its first leaf. Because the node
evaluations depend on operator costs defined by the problem
domain, rather than by a known model, it is also difficult to
update the cost bound correctly. IDA* either has enormous
overhead, visiting few new nodes per iteration, or simulates
DFS, visiting all leaves in one giant iteration.

To summarize, the BLFS leaf model must support two
operations. The first is to predict, given a search node, the
lowest cost of any leaf below it. The second is to estimate
the cost bound that will cause the algorithm to visit a desired

number of nodes. In the implementation tested below, this
was accomplished by instead predicting, given a cost bound,
the number of nodes that would be visited if that bound were
used. A bisection-style search was then performed over pos-
sible cost bounds, searching for one that would yield, ac-
cording to the model, approximately the desired number of
nodes.

The basic BLFS framework is remarkably simple. In the
remainder of this paper, we will demonstrate its power and
flexibility by instantiating the framework using two different
cost models. The first model we will consider is a static one
that is specified before the search begins.

BLFS with a Fixed Model: Indecision Search
As mentioned in the introduction, heuristic child ranking is
often used to guide tree search. Most such ranking functions
return a numerical score for each child, although the precise
semantics of this score varies. The first cost model we will
consider is based on these scores. We will assign each child
a cost based on how much worse its score is than the score
of the best child. If the child scores are s0, . . . , sb, child
i has a cost of si − s0. Furthermore, we will assume that
the cost of a leaf is simply the maximum of the costs of the
nodes along its path from the root. This is a generalization
of iterative broadening (Ginsberg & Harvey 1992), which
assumes that the cost of a leaf reflects the maximum rank
of any child along its path. Another way to think about this
cost model is that the cost of a node reflects how decisively
the heuristic score separated it from the best child. Paths
involving nodes for which the heuristic was only mildly in-
decisive in its ranking will be explored earlier in the search
than those involving nodes whose scores were much worse.
For this reason, we can call this instantiation of BLFS inde-
cision search.

It is easy to support the operations needed for BLFS us-
ing this cost model. Because the preferred child is always
free, the predicted cost of the best leaf below any node is
just the maximum cost of any node encountered enroute to
the node itself. To predict the number of nodes visited for
a given cost bound, we assume independence and estimate
the average expected branching factor at each level of the
tree. The branching factor depends on the number of chil-
dren at each level whose costs we expect to fall below the
cost bound. Although we probably do not know all of the
costs we will see, we will have seen many of them during
the previous iteration of indecision search. Recall that each
iteration explores a superset of the previous one, and that all
of the child scores at each node of the previous search will
have been computed in order to guide that search (step 9).
We will use these scores as samples to estimate the prob-
ability distribution over possible costs for each child rank
at each level of the tree. In the experiments reported here,
these estimated distributions were represented as histograms
(see Ruml (2002) for more details on this estimation). Note
that, although we estimate on-line the node costs we expect
to observe in the tree, the underlying leaf cost model itself is
fixed as exactly the maximum node cost in the path, and is
not adjusted during search. The initial iteration of the algo-
rithm (step 1) visits all leaves of predicted cost zero. There



Fr
ac

ti
on

 o
f P

ro
bl

em
s 

So
lv

ed

0.8

0.6

0.4

0.2

Log10(Nodes Generated)
3.93.63.33.02.7

Indecision
ILDS (bottom)

ILDS (top)
DDS
DFS

Figure 2: Distribution of search times when completing 21×
21 latin squares with 30% of the cells preassigned.

may be multiple such leaves, depending on how many ties
there are for minimum child score.

Other schemes in addition to iterative broadening can be
viewed as approximations to indecision search. The ran-
domized restarting technique of Gomes, Selman, & Kautz
(1998) and the GRASP methodology of Feo & Resende
(1995) both randomly permute, between iterations of search,
all children whose scores are within a specified distance
from the preferred child. These techniques depend on an
equivalence parameter that must be tuned using pilot experi-
ments, and restarting also depends on a time limit parameter.
Also, because they regard closely-scoring children as equiv-
alent, these techniques throw away information that can be
systematically exploited by indecision search.

Evaluation

We can use constraint satisfaction problems to evaluate inde-
cision search, as they are commonly solved using a heuristic
scoring function to rank children in increasing order of ‘con-
strainingness.’ We will examine two domains: latin square
completion and random binary CSPs.

Latin Squares A latin square is an n by n array in
which each cell has one of n colors. Each row and col-
umn must contain each color exactly once. Gomes & Sel-
man (1997) proposed the completion of partially-filled latin
squares as a challenging benchmark problem. We used
forward-checking, choosing variables to assign according to
the most-constrained variable heuristic of Brélaz (1979) and
ranking values according to the logarithm of the promise
heuristic of Geelen (1992). Following Meseguer & Walsh
(1998), we used 1,000 latin squares, each with 30% of the
cells assigned, filtering out any unsatisfiable problems. We
tested depth-first search (DFS), two version of Korf’s im-
proved limited discrepancy search (ILDS, Korf, 1996), one
taking discrepancies at the top first and the other taking them
at the bottom first, depth-bounded discrepancy search (DDS,
Walsh, 1997), and indecision search.

The performance of the algorithms is shown in Figure 2
in terms of the fraction of problems solved within a given

n DFS Indec. ILDS DDS Indec / ILDS
11 7,225 188 183 206 1.03
13 888,909 298 303 357 .983
15 ∞ 402 621 642 .647
17 ∞ 648 1,047 1,176 .619
19 ∞ 908 1,609 1,852 .564
21 ∞ 1,242 2,812 3,077 .442

Table 1: The number of nodes generated to solve latin square
completion problems, represented by the 95th percentile of
the distribution across random instances.

number of node generations. Small horizontal error bars
mark 95% confidence intervals around the means. Depth-
first search was limited to 10,000 nodes per problem, hence
its mean is a lower bound. From the figure, we see that
25% of the problems were solved by visiting a single leaf
(the greedy solution). Depth-first search is notoriously brit-
tle and becomes hopeless lost on many problems (Gomes et
al. 2000). The discrepancy search algorithms immediately
retreat to the root. Indecision search first explores all ties,
which may occur at intermediate levels of the tree, and it
solves all the problems within 4,000 nodes (note the loga-
rithmic scale). Similar behavior was observed on smaller in-
stances, although the advantage of indecision search over the
discrepancy methods seemed to increase as problems grew
larger (Table 1).
Binary CSPs Binary CSPs have received much attention
in the literature and were used by Meseguer & Walsh (1998)
to evaluate DDS and interleaved depth-first search (IDFS).
They tested on satisfiable problems of the 〈n, m, p1, p2〉
type. These problems have n variables, each with m pos-
sible values. Exactly p1n(n − 1)/2 of the possible pairs of
variables are constrained and exactly p2m

2 of the possible
value combinations are disallowed for each of those pairs.
As p2 increases from .3 toward 0.36, the constraints become
tighter and the problems become more difficult to solve, ex-
posing differences in performance between the algorithms.
Following Meseguer & Walsh, we used the three classes
〈30, 15, .4, p2〉, 〈50, 12, .2, p2〉, and 〈100, 6, .06, p2〉, gener-
ating 100 instances at various tightness values. We will use
the same heuristics as employed above with latin squares.

As with latin squares, there is enormous variance in the
number of nodes generated by each algorithm within each
set of 100 similar instances. We focus on the upper tail of
the distribution because it essentially controls the expected
value. We avoid the maximum, as it is subject to sampling
error. Table 2 shows the 95th percentile of each distribution.
Problem classes are identified by number of variables and
tightness value. At very low tightness (not shown), prob-
lems are easy and DFS is sufficient. DFS always exhibited
the best median performance, but as tightness increases the
tail of its distribution grew rapidly. Indecision search is ei-
ther the best or within 25% of the best in every instance class
except 〈30, .360〉. This isolated case of poor performance
seems to be due to inaccurate cost bound estimation, caus-
ing indecision search to visit only a constant number of new



〈n, p2〉 DFS Indec. ILDS DDS
30, .307 241 391 456 424
30, .320 1,119 884 1,122 1,115
30, .333 4,881 4,501 5,862 8,014
30, .347 42,025 28,294 30,996 100,387
30, .360 103,878 536,716 309,848 1,642,806
50, .306 164 320 358 408
50, .319 1,450 984 1,271 1,301
50, .333 3,156 3,410 6,389 12,790
50, .347 22,852 28,630 52,491 187,856
50, .361 352,788 387,432 554,036 3,546,588

100, .306 110 676 646 826
100, .333 31,910 3,344 4,012 11,845
100, .361 208,112 70,664 127,712 2,048,320

Table 2: The number of nodes needed to solve binary CSPs
from various classes. Each number is the 95th percentile of
the distribution over instances of that class.

nodes per iteration. Supplying feedback to the estimation
process should allow automated detection and correction of
such errors.

Experiments were also performed using a cost model that
predicted the cost of a leaf to be the sum of the child costs
along its path, rather than just the maximum. This model
seemed to perform similarly, and is more cumbersome to
manipulate, so we omit further discussion of it (see Ruml
(2002) for details).

BLFS with a Learned Model
In some domains, the child ranking function does not return
a quantitative score and the only information that is readily
available to guide search is the costs of the leaves that have
been visited. Following Ruml (2001a), we will use these
observed costs to estimate the cost of taking a discrepancy
at each level of the tree. More precisely, we will use a cost
model that assumes that the cost of a leaf is the sum of the
costs of the edges taken to reach it, and we will assume that
the cost of an edge depends only on its depth and its rank
in the sorted list of children. A tree of depth d and branch-
ing factor b requires db parameters, one for each child rank
at each level. This generalizes DFS, ILDS, DDS, and inter-
leaved DFS(Meseguer 1997), as their search orders can be
simulated by the appropriate parameter settings.

Because these edge costs will vary depending on the prob-
lem, we will estimate them during the search. In step 1 of
BLFS, we will visit 10 random leaves. Each path forms a lin-
ear equation in the parameters of the model. After visiting
each leaf (in either step 1 or 7), we can update the param-
eters using on-line linear regression (Murata et al. 1997).
To help ensure that the current cost bound yields the pre-
dicted number of nodes, a static copy of the model is made
at the start of each iteration to guide the search. To further
aid learning, the costs estimated in the experiments below
were further constrained at the start of each iteration to be
increasing with child rank at each depth. (In other words, it
was assumed that the underlying ranking function was help-
ful rather than deceptive.)

L
og

10
(D

if
fe

re
nc

e)

-4

-5

-6

-7

Nodes Generated
1,000,000800,000600,000400,000200,000

DDS
ILDS
BLFS

DFS

Figure 3: Greedy partitioning of 128 numbers

This cost model also easily supports the operations re-
quired for BLFS. The cost of the best leaf in any subtree
is just the sum of the edges traversed so far plus the sum of
the costs of the cheapest options at each of the remaining
levels. These optimal completions can be precomputed at
the start of each iteration. To estimate the number of nodes
that will be visited for a given bound, we just estimate the
branching factor at each level, as for indecision search. We
can consider the cost bound to be an allowance that is spent
as we descend the tree. By estimating the distribution of
allowance values expected at each level of the tree, we can
estimate how many children whose best completion will be
affordable at that level. (As in indecision search, these dis-
tributions are manipulated as histograms, as described in the
appendix.) At the root, the allowance distribution is a spike
at the given cost bound. The distribution of allowance at the
next level is just the sum, over the possible children, of the
portion of the current distribution that falls above the best
completion cost for that child, translated toward zero by that
cost. Each distribution in the sum is weighted by the pro-
portion of the probability that survived the truncation. (See
Ruml (2002) for more details.)

Evaluation
We evaluated the algorithm on two different formulations
of the combinatorial optimization problem of number par-
titioning. The objective is to divide a given set of num-
bers into two disjoint groups such that the difference be-
tween the sums of the two groups is as small as possible.
It has been used by many authors as a challenging bench-
mark for search algorithms (Johnson et al. 1991; Korf 1996;
Walsh 1997; Ruml 2001a). Following Ruml, we encouraged
difficult search trees by using instances with many digits of
precision (44 digits for 128-number problems and 82 dig-
its for 256-number problems). Arbitrary precision integer
arithmetic was used in the implementation, and results were
normalized as if the original numbers had been between 0
and 1. The logarithm of the partition difference was used as
the leaf cost.

The first formulation of partitioning as a search is a



L
og

10
(D

if
fe

re
nc

e)
-2

-4

-6

-8

Nodes Generated
2,000,0001,600,0001,200,000800,000400,000

DDS
ILDS
BLFS

DFS

Figure 4: Greedy partitioning of 256 numbers

L
og

10
(D

if
fe

re
nc

e)

-10.4

-10.8

-11.2

-11.6

-12.0

Nodes Generated
1,000,000800,000600,000400,000200,000

DDS
DFS

BLFS
ILDS

Figure 5: CKK representation for partitioning 128 numbers

straightforward greedy encoding in which the numbers are
sorted in descending order and then each decision places the
largest remaining number in a partition, preferring the par-
tition with the currently smaller sum. Figures 3 and 4 com-
pare the performance of BLFS with DFS, ILDS, and DDS.
Error bars in the figures indicate 95% confidence intervals
around the mean. Although BLFS does not surpass DFS in
this search space, looking across the two instance sizes in-
dicates that it consistently tracks DFS as the problem size
increases, unlike ILDS and DDS, whose solution quality ac-
tually decreases on larger problems.

A more sophisticated representation for number partition-
ing was suggested by Korf (1995), based on the heuristic of
Karmarkar and Karp (1982). The essential idea is to post-
pone the assignment of numbers to particular partitions and
merely constrain pairs of number to lie in either different
bins or the same bin. Numbers are considered in decreasing
order and constrained sets are reinserted in the list accord-
ing to the remaining difference they represent. Figures 5 and
6 compare the performance of BLFS with DFS, ILDS, and
DDS. BLFS tracked DFS in the greedy search space but now

L
og

10
(D

if
fe

re
nc

e)

-12.8

-13.2

-13.6

-14.0

Nodes Generated
2,000,0001,600,0001,200,000800,000400,000

DDS
DFS

ILDS
BLFS

Figure 6: CKK representation for partitioning 256 numbers

follows ILDS in this new search space where it is superior.
Looking across instance sizes, we see that the advantage of
BLFS increases as problems become larger. For large num-
ber partitioning problems, BLFS in the CKK search space is
the best algorithm known.

Discussion
BLFS is very similar to the iterative-deepening A* (IDA*)
algorithm for shortest-path problems, but depends on an ex-
plicit cost model (see Table 3). Because the cost model is ex-
plicit, the cost bound can be updated efficiently even when
few nodes have the same cost, unlike with IDA*. For ef-
ficiency, the cost model should give consistent predictions.
Happily, such a model can easily be learned, even during the
search it is intended to guide. The use of an additive cost
model is inherent in the shortest-path problems for which
IDA* was designed, but it is merely a convenient route to
consistency for BLFS. Many optimization problems, such
as number partitioning, have no inherent notion of operator
cost. What matters is the expected cost of taking a heuristi-
cally less-preferred child.

This unification of traditional AI heuristic search with
bounded-depth tree search clarifies some of the confusion
attendant to the term ‘heuristic search’, which is often ap-
plied to both shortest-path algorithms with a heuristic cost-
to-goal estimate (h(n)) and also to procedures like DFS with
a node ordering function. BLFS makes it clear that a node
ordering function is just a rough indicator of the cost of the
best leaf in the subtree, and by adhering to this semantics, it
approximates a rational search order.

BLFS is also related to previous work on learning for
search. This was explored in the context of improvement
search, as opposed to tree search, by Baluja & Davies (1998)
and Boyan & Moore (1998). Techniques for managing the
trade-off between time and expected solution improvement
are orthogonal to BLFS, and could be applied on top of it.
Mayer (1994) and Hansson (1998) have done preliminary
work in this direction.

In practice, the main drawback of BLFS is its runtime



BLFS IDA*
f(n) semantics best leaf below n best path through n

desired f(n) property consistent non-overestimating
f(n) non-overestimating correctness optimality

f(n) non-underestimating efficiency efficiency
f(n) source from user or learned = g(n) + h(n)
g(n) source not necessary from problem
h(n) source not necessary from user

additive model convenient required
updating bound estimation add ε

rational optimal

Table 3: A comparison of BLFS and IDA*.

overhead, which can be noticeable if the search is short.
The most expensive operation is the cost bound estima-
tion, which is done a logarithmic number of times. For the
number partitioning experiments reported here, for example,
overheads of 20–30% were not uncommon in our prototype
implementation. Further engineering work is needed to de-
termine how small this overhead can be made.

Possible Extensions
It would be very interesting to explore other models be-
sides those investigated here. It should be straightforward to
combine on-line learning of weights with the heuristic child
scores used in indecision search. This would relax the as-
sumption that heuristic scores are strictly comparable across
levels. Multiple models could be trained simultaneously and
the one with the lowest error on the previous iteration could
be used to guide search. By constraining adjacent costs to
be similar, fewer parameters would be needed in the model,
and it might be feasible to consider learning models for both
value choice and variable choice (Ruml 2001b).

BLFS currently does not take into account the uncertainty
in its cost model or the possible benefits of visiting a leaf
predicted to be poor. A drastically misestimated cost can
cause the search to avoid the corresponding edge and fail to
correct the estimate. One way to remedy this would be to
use as a node evaluation the probability that the node leads
to the optimal leaf. This could be computed from a child
cost model by estimating variance and assuming normality,
following Ruml (2001a). The cost bound on each iteration
would become a probability bound. This seems similar to
the methods proposed by Bedrax-Weiss (1999), although her
algorithm was trained and scheduled off-line. Active learn-
ing under a known deadline is another possible direction.

Conclusions
We introduced best-leaf-first search (BLFS), a new frame-
work for searching the bounded-depth trees that arise in
combinatorial optimization and constraint satisfaction prob-
lems. BLFS generalizes previous work and represents the
first successful rational approach to search for this setting.
Empirical results show that, even with simple cost models,
BLFS performs well on a variety of synthetic benchmark
problems, yielding results competitive with or superior to

the best previous method for each problem. Its robustness
is unparalleled. It retains completeness while adapting on-
line to individual problem instances and it uses an explicit
model of its assumptions. Perhaps most importantly, BLFS
shows how search for combinatorial optimization and con-
straint satisfaction can be viewed from a perspective similar
to that of traditional heuristic search for shortest-path prob-
lems, as the strategy of a rational agent trying to efficiently
take advantage of heuristic information for problem-solving.

Acknowledgments
Stuart Shieber and the Harvard AI Research Group gave nu-
merous helpful suggestions. This work was supported in
part by NSF grants CDA-94-01024 and IRI-9618848.

References
Baluja, S., and Davies, S. 1998. Fast probabilistic mod-
eling for combinatorial optimization. In Proceedings of
AAAI-98.
Bedrax-Weiss, T. 1999. Optimal Search Protocols. Ph.D.
Dissertation, University of Oregon, Eugene.

Boyan, J. A., and Moore, A. W. 1998. Learning evaluation
functions for global optimization and boolean satisfiability.
In Proceedings of AAAI-98.

Brélaz, D. 1979. New methods to color the vertices of a
graph. Communications of the ACM 22(4):251–256.

Feo, T. A., and Resende, M. G. C. 1995. Greedy ran-
domized adaptive search procedures. Journal of Global
Optimization 6:109–133.

Geelen, P. A. 1992. Dual viewpoint heuristics for binary
constraint satisfaction problems. In Neumann, B., ed., Pro-
ceedings of ECAI-92, 31–35.
Ginsberg, M. L., and Harvey, W. D. 1992. Iterative broad-
ening. Artificial Intelligence 55:367–383.

Gomes, C. P., and Selman, B. 1997. Problem structure in
the presence of perturbations. In Proceedings of AAAI-97,
221–226.
Gomes, C. P.; Selman, B.; Crato, N.; and Kautz, H.
2000. Heavy-tailed phenomena in satisfiability and con-
straint satisfaction problems. Journal of Automated Rea-
soning 24:67–100.



Gomes, C. P.; Selman, B.; and Kautz, H. 1998. Boosting
combinatorial search through randomization. In Proceed-
ings of AAAI-98.
Hansson, O. 1998. Bayesian Problem-Solving Applied to
Scheduling. Ph.D. Dissertation, University of California,
Berkeley.
Harvey, W. D., and Ginsberg, M. L. 1995. Limited dis-
crepancy search. In Proceedings of IJCAI-95, 607–613.
Morgan Kaufmann.
Johnson, D. S.; Aragon, C. R.; McGeoch, L. A.; and
Schevon, C. 1991. Optimization by simulated anneal-
ing: An experimental evaluation; Part II, graph coloring
and number partitioning. Operations Research 39(3):378–
406.
Karmarkar, N., and Karp, R. M. 1982. The differencing
method of set partitioning. Technical Report UCB/CSD
82/113, Computer Science Division, University of Califor-
nia, Berkeley.
Korf, R. E. 1985. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence
27(1):97–109.
Korf, R. E. 1995. From approximate to optimal solutions:
A case study of number partitioning. In Proceedings of
IJCAI-95.
Korf, R. E. 1996. Improved limited discrepancy search. In
Proceedings of AAAI-96, 286–291. MIT Press.
Mayer, A. E. 1994. Rational Search. Ph.D. Dissertation,
University of California, Berkeley.
Meseguer, P., and Walsh, T. 1998. Interleaved and discrep-
ancy based search. In Proceedings of ECAI-98.
Meseguer, P. 1997. Interleaved depth-first search. In Pro-
ceedings of IJCAI-97, 1382–1387.
Murata, N.; Müller, K.-R.; Ziehe, A.; and Amari, S. 1997.
Adaptive on-line learning in changing environments. In
Mozer, M.; Jordan, M.; and Petsche, T., eds., Advances in
Neural Information Processing Systems 9 (NIPS-96), 599–
605. MIT Press.
Ruml, W. 2001a. Incomplete tree search using adaptive
probing. In Proceedings of IJCAI-01, 235–241.
Ruml, W. 2001b. Stochastic tree search: Where to put the
randomness? In Hoos, H. H., and Stützle, T. G., eds., Pro-
ceedings of the IJCAI-01 Workshop on Stochastic Search,
43–47.
Ruml, W. 2002. Adaptive Tree Search. Ph.D. Dissertation,
Harvard University.
Walsh, T. 1997. Depth-bounded discrepancy search. In
Proceedings of IJCAI-97.


