
Using Prior Knowledge with Adaptive Probing

Wheeler Ruml
Division of Engineering and Applied Sciences

Harvard University
33 Oxford Street

Cambridge, MA 02138
ruml@eecs.harvard.edu

Abstract

When searching a tree to find the best leaf, complete search
methods such as depth-first search and depth-bounded dis-
crepancy search use a fixed deterministic order that may or
may not be appropriate for the tree at hand. Adaptive prob-
ing is a recently-proposed stochastic method that attempts to
adjust its sampling on-line to focus on areas of the tree that
seem to contain good solutions. While effective on a variety
of trees, adaptive probing wastes time learning basic features
of the problem that are built into other algorithms, such as the
fact that the heuristic is often helpful. In this paper, we inves-
tigate two simple methods for adding such prior knowledge to
adaptive probing. The first simply reuses the model learned
during a previous run on a similar problem. The second uses a
heuristically biased policy at the start of the search, gradually
deferring to learned information in later iterations. Empirical
results on two different representations of number partition-
ing confirm that these methods can allow adaptive probing
to search efficiently from the very start of a run. However,
reusing previous models seems to more frequently preserve
the ability of the algorithm to adapt to the search space.

Introduction
In many search problems of practical interest, time limita-
tions prohibit an exhaustive search of the tree to find the
best leaf. The best strategy one can adopt in such a situa-
tion is to visit those leaves first that have the greatest chance
of being optimal. Complete search methods, such as depth-
first search and depth-bounded discrepancy search (Walsh
1997), follow fixed deterministic search orders as they back-
track and explore alternative solutions. In most problems, a
heuristic function is used to rank the children of each node
according to the expected quality of their descendants. If
this function tends to be more accurate at the bottom of the
tree than at the top, then the search order of depth-first search
will be exactly wrong—the decisions for which the heuris-
tic was most accurate will be revisited first. In general, the
fixed ordering of a systematic algorithm embodies a set of
assumptions that may or may not match the tree at hand.
In effect, the algorithms embody an assumption of certainty
while any real world application has at least two elements
of uncertainty: it can be unclear which set of assumptions
best models a general problem class and it can be unclear
how closely any given instance adheres to its class’s typical
characteristics.

Adaptive probing (Ruml 2001) is a stochastic sampling
method that attempts to adjust to the tree on-line, rather
than using a prespecified ordering. The algorithm iteratively
probes from the root to a leaf. Starting without preconcep-
tions about whether or not to follow the heuristic, the ob-
served leaf costs are used to incrementally build a model of
the tree. In a manner reminiscent of reinforcement learn-
ing, the estimates are simultaneously used during probing to
choose which child to expand. This approach allows the al-
gorithm to adjust to the particular tree it finds itself in, learn-
ing when to trust the heuristic and when not to.

Ruml (2001) presents results showing that adaptive prob-
ing can successfully adapt to a wide variety of trees and that
it is competitive with systematic algorithms except when the
heuristic is very accurate. When the heuristic is very often
correct, adaptive probing suffers the overhead of having to
discover that fact from scratch. In this paper, we investigate
two methods for remedying this liability. Both are based on
the idea of adding our prior knowledge as an element of the
search. The first approach is simply to re-use a model that
was built during a previous run on a similar problem. This
avoids having to specify an initial bias manually, although it
requires identifying classes of similar problems. The second
is to use a pre-specified probing policy initially, but slowly
discount its influence in favor of the learned model. We will
empirically evaluate the effectiveness of these approaches on
two different search spaces derived from the combinatorial
optimization problem of number partitioning. We will see
that the simpler method is more robust, while the combina-
tion of policies provides a less reliable advantage. But first,
we will briefly review the basic adaptive probing algorithm
itself.

Adaptive Probing
Following Ruml (2001), we will use an additive cost model
for adaptive probing. We will postulate costs for choosing
a preferred or non-preferred child at each depth and then
assume that the cost of a leaf is the sum of the costs along its
path from the root. Each cost is assumed to be drawn from
a normal distribution with some fixed mean and variance.
This variance is assumed to be the same for all costs and the
mean cost of expanding the preferred or non-preferred child
is assumed to be the same at each particular depth in the tree.
For example, the cost of choosing the non-preferred child at



depth 23 is assumed to be the same at all nodes at depth 23.
For a tree of depth d and branching factor b, this model will
have db parameters for the costs, plus one for the variance.

To estimate these parameters, we use the observed leaf
costs. If aj(i) is the cost of taking child i at depth j and lk is
the cost of the kth leaf seen, probing three times in a binary
tree of depth three might give the following information:

a0(0) + a1(0) + a2(1) = l0
a0(0) + a1(1)+ a2(0) = l1

a0(1)+ a1(0) + a2(0) = l2

We use the perceptron learning algorithm to update the aj(i)

according to η(lk − l̂k)/d, where the learning rate η is set
to 0.2. If we assume the costs at each level are indepen-
dent, then the variance can be estimated from the observed
variance in leaf costs.1 The only complication is that the
observed variance will be magnified according to the differ-
ence in the means at each level—if they differ, we will see
variance even if each cost has none. Happily, this correction
term is easy to compute (Ruml 2001).

To use the model, we select each action at a node accord-
ing to the probability that it leads to solutions will lower
costs (ie, that it has the lower mean). Given that we know the
estimated means and variance for each action and we know
how many times we have selected each of them, this can be
computed using a standard statistical test for the difference
of two sample means. This test is sensitive both to the differ-
ence between the costs of the actions and to the number of
times each one has been tried. For a given level of variance,
an action either has to have a much lower mean cost or we
have to have tried it many times before we will give it high
probability of being actually lower. To prevent the algorithm
from eventually converging to a single path, the probability
of choosing any action is clamped at 0.051/d, which ensures
at least one deviation on 95% of probes.

By giving the non-preferred children relatively high costs
at shallow depths and costs at deep depths that are compa-
rable to the preferred children, this model should be able
to express behavior similar to depth-first search. Simi-
larly, a preference for the heuristic at deep depths but not
a shallow ones would mimic depth-bounded discrepancy
search (Walsh 1997), and a moderate preference at all levels
should produce behavior somewhat akin to limited discrep-
ancy search (Harvey & Ginsberg 1995; Korf 1996).

Reusing Learned Models
With db parameters and a single observed leaf cost per
probe, adaptive probing will take O(db) probes to estimate
the costs of choosing each child. While the ability to ad-
just to any possible configurations of costs is admirable, it
is unlikely that the heuristically preferred child is actually
significantly worse than the others. We would like to avoid
having to spend the time to learn this, while still maintaining
the flexibility to change the model if evidence suggests we
have encountered one of these rare situations. Perhaps the

1We ignore, at our peril, the fact that the probing will tend
to converge to high-quality solutions, thereby distorting our esti-
mates.

L
og

10
(D

if
fe

re
nc

e)

-3

-4

-5

-6

Leaves Seen
10,0008,0006,0004,0002,000

Random
ILDS
DDS
DFS

Adaptive
Adaptive w/ Prior

Figure 1: Searching the greedy representation of number
partitioning. Error bars indicate 95% confidence intervals
around the mean over 20 instances, each with 128 44-digit
numbers.

simplest way of avoiding a prolonged initial learning period
is to begin with an estimated model. More specifically, we
can use the costs estimated from a previous run on a similar
problem, while setting the variance to ∞ and the recorded
number of counts for each action to 0. This should improve
the accuracy of our estimated costs, speeding our identifica-
tion of the preferred child as useful, while still allowing the
algorithm plenty of latitude to explore and revise the costs as
it gradually becomes confident in its estimates and focuses
the search.

We will test this method in two different search trees de-
rived from the combinatorial optimization problem of num-
ber partitioning. The objective in a number partitioning
problem is to divide a given set of numbers into two disjoint
groups such that the difference between the sums of the two
groups is as small as possible. It was used by Johnson et
al. to evaluate simulated annealing (1991), Korf to evaluate
his improvement to limited discrepancy search (1996), and
Walsh to evaluate depth-bounded discrepancy search (1997).
To encourage difficult search trees by reducing the chance
of encountering a perfectly even partitioning (Karmarkar et
al. 1986), we used instances with 64 25-digit numbers or
128 44-digit numbers. Common Lisp, which provides ar-
bitrary precision integer arithmetic, was used to implement
the algorithms. All results are normalized as if the original
numbers were between 0 and 1. To better approximate a
normal distribution, the logarithm of the partition difference
was used as the leaf cost.

Greedy Number Partitioning
The first type of search tree we will examine is derived
from a straightforward greedy encoding of the problem. The
numbers are sorted in descending order and then each de-
cision places the largest remaining number in a partition,
preferring the smaller partition. Figure 1 compares the per-
formance of adaptive tree probing with depth-first search
(DFS), improved limited discrepancy search (ILDS), depth-



L
og

10
(D

if
fe

re
nc

e)
-3

-4

-5

-6

-7

Nodes Generated
1,000,000800,000600,000400,000200,000

Random
DDS

Adaptive
Adaptive w/ Prior

ILDS
DFS

Figure 2: Performance on the greedy representation as a
function of nodes generated.

bounded discrepancy search (DDS), and completely random
tree probing. Adaptive probing was run twice–the first time
with its model’s costs initialized to zero and the second time
with the costs that were estimated by a previous run on a
different problem instance. To provide a comparison of the
algorithms’ search orders, the horizontal axis represents the
number of leaves seen.

The figure shows that adaptive probing, in addition to
learning to explore a profitable part of the search space, ben-
efits from the prior knowledge. While tabula rasa adap-
tive probing needs to see approximately 1,500 leaves before
overtaking the systematic algorithms, the estimates trans-
ferred from the previous problem lead the algorithm directly
to good solutions.

Although Figure 1 shows that adaptive probing with trans-
ferred knowledge quickly learns a good search order, it ig-
nores the overhead that is inherent in restarting at the root
with each probe. Figure 2 corrects for this factor, showing
performance as a function of the number of nodes (both in-
ternal and leaves). Both adaptive probing and DDS suffer
the maximum possible overhead compared to DFS, which
generates roughly one internal node per leaf. This is re-
flected in the figure, as DFS finds superior solutions when
given the same number of node generations. Although prior
knowledge provides a benefit, it is not enough to overcome
the overhead of adaptive probing. Adaptive probing is com-
petitive with ILDS, although results using only 64 numbers
(which appear in Figure 4) indicate that adaptive probing
surpasses ILDS as problem size grows.

CKK Number Partitioning

A more sophisticated representation for number partition-
ing, called CKK, was suggested by Korf (1995), based on
the heuristic of Karmarkar and Karp (1982). The essential
idea is to postpone the assignment of numbers to particu-
lar partitions and merely constrain pairs of number to lie in
either different bins or the same bin. Numbers are consid-
ered in decreasing order and constrained sets are reinserted

L
og

10
(D

if
fe

re
nc

e)

-6

-8

-10

-12

Nodes Generated
1,000,000800,000600,000400,000200,000

Random
Adaptive

Adaptive w/ Prior
DDS
DFS

ILDS

Figure 3: Searching the CKK representation of number par-
titioning problems.

in the list according to the remaining difference they rep-
resent. This representation creates a very different search
space from the greedy heuristic, as the heuristic tends to be
extremely accurate.

Figure 3 presents the performance of the search algo-
rithms as a function of the number of nodes generated. Ran-
dom probing would appear off the top of the plot. ILDS
performs best in this domain, indicating that the heuristic
tends to be inaccurate with equal probability at all depths.
Ordinary adaptive probing takes a long time to learn that the
heuristic is usually accurate everywhere, although it looks
as if it may eventually approach the systematic algorithms’
performance. When imbued with prior knowledge, adap-
tive probing quickly approaches DDS (which suffers simi-
lar node generation overhead). The benefit of using prior
knowledge seems to be greater in this search space than in
the greedy one, even though it is the harder one for plain
adaptive probing. When the knowledge is harder to acquire,
receiving it in advance represents a greater savings.

Blending Search Policies
While reusing an old model is easy and seems remarkably
effective, it is only possible if one has the luxury of pre-
vious experience with a similar problem. If the previous
problem has a very different distribution of leaf costs, the
initial bias can be counter-productive. Another method for
taking advantage of our a priori expectation that the heuris-
tic is beneficial is to behave at first according to that belief,
while continuing to learn a fresh model of the tree. We can
then gradually reduce the frequency with which we make
our decisions according to the prejudiced policy and begin
to rely more heavily on our experience in the tree at hand.
While this method applies even in the absence of experi-
ence with similar problems, it requires a prior judgment on
how quickly to make the switch. This is essentially the same
problem as deciding how much to trust the initial bias.

In the experiments reported below, we used a multiplica-
tive discounting policy. At the first probe, we use the prior



L
og

10
(D

if
fe

re
nc

e)
-3

-4

-5

-6

-7

Nodes Generated
500,000400,000300,000200,000100,000

DDS
Biased

Mixed Adaptive
Adaptive

ILDS

Figure 4: Searching the greedy representation of number
partitioning instances, each with 64 25-digit numbers.

bias with probability 1. After every probe, this probability
is multiplied by a constant such that, after 15d iterations, we
are as likely to use the current estimated model as we are to
use the prior bias.2 In effect, this creates a changing blend
of the initial policy and the current model. For an initial pol-
icy, we use an algorithm which selects the preferred child
with the maximum probability that would be allowed under
adaptive probing (recall that we clamped the probability of
any child as a safeguard against complete convergence of the
algorithm).

Evaluation
The empirical performance of blending policies was mixed.
Figure 4 shows algorithm performance using the greedy rep-
resentation of number partitioning instances with 64 num-
bers. Besides plain adaptive probing and the blended policy,
we also show the performance of a biased probing algorithm
that just uses the initial policy of the blended algorithm. This
biased probing algorithm performs on par with DDS in the
greedy search space, but seems to be a little worse than plain
adaptive probing. The blended adaptive probing algorithm
seems equivalent to the plain. On larger problems, how-
ever, the blended policy was eventually surpassed by plain
adaptive probing. This might be caused by the very skewed
distribution of examples on which the model is trained.

In the CKK search space, policy blending seemed to work
reasonably well. Figure 5 shows the performance of the al-
gorithms on 64-number problems. The blended algorithm
follows the biased probing algorithm at first, then switches
over to mimic the adaptive one. Unfortunately, the good
performance of the initial biased policy seems to provide lit-
tle benefit to the model learned by the adaptive component.
Figure 6 shows performance on larger problems. Here, the
model learned by the blended algorithm seems to have bene-
fitted from its initial experience, although the algorithm still
suffers a significant stagnant period during the transition in
which little improvement is seen. Use of a shorter or longer

2This constant is 0.5
1/(15d) .

L
og

10
(D

if
fe

re
nc

e)

-6

-7

-8

-9

Nodes Generated
500,000400,000300,000200,000100,000

Adaptive
Mixed Adaptive

biased
DDS

Figure 5: Searching the CKK representation of number par-
titioning.

L
og

10
(D

if
fe

re
nc

e)

-6

-8

-10

-12

Nodes Generated
1,000,000800,000600,000400,000200,000

Adaptive
Blended Adaptive

Biased
DDS
ILDS

Figure 6: Searching the CKK representation of instances
with 128 numbers.

blending time seemed to result in worse performance in pre-
liminary experiments on small problems. Using an abrupt
changeover rather than a gradual blending also led to the
learning of a poor model.

Related Work
Much work has been done on using learned models to guide
heuristic optimization (Boese, Kahng, & Muddu 1994;
Baluja 1997; Baluja & Davies 1998) although few authors
have explicitly investigated integrating prior knowledge or
transferring problem-solving experience between problems.
The X-STAGE algorithm (Boyan & Moore 2000) performs
a similar task in the context of improvement search instead
of tree search. The STAGE algorithm learns a model dur-
ing search that predicts when an initial solution will yield
good results with hill-climbing (or a similar algorithm). This
model is used to intelligently restart after the hill-climbing
has reached a local maximum by switching temporarily to
hill-climbing according to the model’s prediction of a solu-



tion’s potential as a starting place (which might be different
from its quality). In X-STAGE, several initial training prob-
lems are run and a separate model is learned on each using
STAGE. These models are then used to solve a new prob-
lem by having each model vote on whether or not to accept
a proposed modification to the starting solution. This avoids
worrying about having to scale a model to appropriate values
for use on a new problem, but does not allow any adaptation
to the new problem instance.

Horvitz et al. (2001) use runs on training data to learn a
model of running time, and then use this model to derive a
restart policy for a randomized backtracking search. This
high-level wrapper approach could be used on top of the ap-
proach we pursue here, which focuses on the structure of the
search space rather than the black-box behavior of a solver.

Conclusions
Systematic tree search algorithms fail to exhibit a fundamen-
tal trait of intelligent behavior: they do not adapt to their
surroundings. Purely adaptive algorithms, on the other hand,
are too general to exhibit high performance in the commonly
encountered search spaces in which the heuristic may be as-
sumed to be helpful. We investigated two methods for using
prior knowledge with an adaptive probing algorithm. The
simplest one, merely reusing the action costs estimated on
a similar problem, seemed to perform the best. An attempt
to blend an a priori policy with the learning algorithm gave
some improvement, but seems prone to leading to ineffective
learning. One way to circumvent these difficulties would be
to allow a biased adaptive probing algorithm to recognize
when its training data is unrepresentative and initiate further
exploration on its own. This is an important direction for
future work.

Acknowledgments

Many thanks to Stuart Shieber and the Harvard AI Research
Group for helpful suggestions and comments relating to this
work.

References
Baluja, S., and Davies, S. 1998. Fast probabilistic mod-
eling for combinatorial optimization. In Proceedings of
AAAI-98.

Baluja, S. 1997. Genetic algorithms and explicit search
statistics. In Mozer, M. C.; Jordan, M. I.; and Petsche, T.,
eds., Advances in Neural Information Processing Systems
9.

Boese, K. D.; Kahng, A. B.; and Muddu, S. 1994. A
new adaptive multi-start technique for combinatorial global
optimizations. Operations Research Letters 16:101–113.

Boyan, J. A., and Moore, A. W. 2000. Learning evaluation
functions to improve optimization by local search. Journal
of Machine Learning Research 1:77–112.

Harvey, W. D., and Ginsberg, M. L. 1995. Limited dis-
crepancy search. In Proceedings of IJCAI-95, 607–613.
Morgan Kaufmann.

Horvitz, E.; Ruan, Y.; Gomes, C.; Kautz, H.; Selman, B.;
and Chickering, M. 2001. A bayesian approach to tackling
hard computational problems. In Proceedings of UAI-01.
Johnson, D. S.; Aragon, C. R.; McGeoch, L. A.; and
Schevon, C. 1991. Optimization by simulated anneal-
ing: An experimental evaluation; Part II, graph coloring
and number partitioning. Operations Research 39(3):378–
406.
Karmarkar, N., and Karp, R. M. 1982. The differencing
method of set partitioning. Technical Report UCB/CSD
82/113, Computer Science Division, University of Califor-
nia, Berkeley.
Karmarkar, N.; Karp, R. M.; Lueker, G. S.; and Odlyzko,
A. M. 1986. Probabilistic analysis of optimum partitioning.
Journal of Applied Probability 23:626–645.
Korf, R. E. 1995. From approximate to optimal solutions:
A case study of number partitioning. In Proceedings of
IJCAI-95.
Korf, R. E. 1996. Improved limited discrepancy search. In
Proceedings of AAAI-96, 286–291. MIT Press.
Ruml, W. 2001. Incomplete tree search using adaptive
probing. In Proceedings of IJCAI-01, 235–241.
Walsh, T. 1997. Depth-bounded discrepancy search. In
Proceedings of IJCAI-97.


