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Abstract

We consider the problem of on-line continual planning, in
which additional goals may arrive while plans for previous
goals are still executing and plan quality depends on how
quickly goals are achieved. This is a challenging problem
even in domains with deterministic actions. One common
and straightforward approach isreactiveplanning, in which
plans are synthesized when a new goal arrives. In this paper,
we adapt the technique of hindsight optimization from on-
line scheduling and probabilistic planning to create anantic-
ipatory on-line planning algorithm. Using an estimate of the
goal arrival distribution, we sample possible futures and use a
deterministic planner to estimate the value of taking possible
actions at each time step. Results in two benchmark domains
based on unmanned aerial vehicle planning and manufactur-
ing suggest that an anticipatory approach yields a superior
planner that is sensitive not only to which action should be
executed, but when.

Introduction
Consider the problem faced by a unmanned aerial vehicle
(UAV) dispatcher who must plan for a set of UAVs to service
a set of observation requests. To service a request, one of the
UAVs must fly over a given strip of land with its observation
equipment turned on. The dispatcher wants to minimize the
time between when a request arrives and when an UAV has
completed the flyover. Even when the actions of the UAV,
such as flying particular routes or switching on/off obser-
vational equipment, can be regarded as deterministic, the
stochastic arrival of new requests can make for a challenging
on-line planning problem. What should the UAVs do when
no requests are pending? To maximize expected utility, it
might be worth preemptively moving them near locations
where requests are likely to arrive. A similar problem occurs
in situations where significant set-up costs are involved. For
example, problems like manufacturing often have relatively
predictable actions but the question is whether to immedi-
ately plan and execute every time a request arrives. It may
be worth the cost of delaying production to wait for more or-
ders, so as to reduce the total cost of execution for the entire
batch. We call theseon-line continual planningproblems
(OCPPs). They incorporate aspects of planning (action se-
lection), scheduling (when to perform the actions), and un-
certainty (unknown future goals).

Traditionally, there are two major strategies for handling
the on-line arrival of additional goals. The first is a greedy
strategy, in which previous plans are held fixed and plans
for the new goals are restricted to be consistent with the old
ones. This simple approach was taken by ter Mors, Zutt,
and Witteveen (2007) in their work on airport taxiways and
by Ruml et al. (2011) in their work on planning for mod-
ular printers. The second strategy re-plans for all goals
from scratch (Nebel and Koehler 1995; Knight et al. 2001;
Fox et al. 2006). Both of these strategies wait to plan un-
til goals actually arrive and consider only those goals that
have been revealed. Thesereactive planningapproaches ne-
glect any available information about possible future goal
arrivals and therefore they fail to preemptively arrange for
better handling of future goals, even when they are expected.

In this short paper, we consider an alternative approach,
anticipatory on-line planning, that explicitly exploits in-
formation about future goal arrivals. It assumes that the
probability distribution over incoming goals is either known
or learn-able and employs the technique ofoptimization
in hindsight, previously developed for on-line scheduling
and recently investigated for planning with stochastic ac-
tions (Mercier and van Hentenryck 2007; Yoon et al. 2008;
2010). This technique first samples from the distribution of
possible future goal arrivals and then considers which next
action optimizes the expected cost when averaged over the
sampled futures. By using this anticipatory technique, our
planner is able to take future goals into account. Although
anticipatory planning involves more computation than reac-
tive planning, we find that the resulting planner finds plans
with much higher expected utility when tested in benchmark
domains modeled on the two examples above.

On-line Continual Planning
While most research has concentrated on off-line scenarios,
planners deployed for real-world applications are frequently
run in an on-line setting in which goal arrival, plan syn-
thesis, and plan execution are concurrent and interleaved.
Such domains include manufacturing process control, sup-
ply chain management, power distribution network configu-
ration, transportation logistics, mobile robotics, and space-
craft control. Despite the importance of these on-line do-
mains, little attention has been paid to the potential draw-
backs of using standard off-line (and therefore reactive)



planners in an on-line environment.
In the problems that we consider here, the world is de-

terministic, however, new goals may arrive at each time step
with some known distribution. The agent must decide which
action to perform at each step. We distinguish between the
world state, the configuration of the world, andstate, the
combination of the world state and the current set of goals
that must be achieved. We define the on-line continual plan-
ning problem (OCPP) as a Markov decision process (MDP)
with both world states and goal sets. An OCPP consists of
a 5-tupleP = 〈W,G,A, T, C〉, whereW is a set of world
states,G is a set of goals andA is a set of actions. A state
s = 〈w, g〉 ∈ S is a combination of a world statew ∈ W
and a current goal setg ⊆ G, therefore, the set of possible
states is asS = W×2G. The functionT : S×A×S → R is
the transition function:T (〈w, g〉, a, 〈w′, g′〉) gives the prob-
ability of transitioning from a world statew with goal setg
to a world statew′ with goal setg′ when performing action
a. Because we consider a deterministic world with stochas-
tic goal arrivals, theT function, can be thought of as defin-
ing the goal arrival distribution. This differs from traditional
MDP models that do not explicitly define goals or their ar-
rival. The functionC : S × A → R defines a cost for
performing an action in a given state. Reward is represented
as negative cost.

Because the notion of a complete plan is less meaningful
in an on-line continual context, we consider the objective of
minimizing cost over a horizonH starting from the current
states1. If a sequence of actionsa = 〈a1, ..., aH〉 is per-
formed, giving a sequence of statess = 〈s1, ..., sH〉, then
we compute the total cost asCH(s, a) =

∑H

i=1
C(si, ai).

Note that the horizon is defined over action transitions and,
as formulated above, the transition includes both action ex-
ecution and goal arrival.

Anticipatory On-line Planning
Optimization in hindsight was originally developed in the
scheduling and networking communities (Chong, Givan,
and Chang 2000; Mercier and van Hentenryck 2007; Wu,
Chong, and Givan 2002) and has recently been applied to
probabilistic planning (Yoon et al. 2008; 2010). Rather than
waiting for goals to arrive or assuming a single ‘most likely’
future, hindsight optimization samples possible futures ac-
cording to their distribution. In this way, it incorporates
probabilistic information. It then solves each sampled fu-
ture with a fast deterministic planner, achieving scalability.

As an example, consider the UAV dispatching problem.
Given that we have an estimate of the distribution over pos-
sible future observation request locations, we can sample
possible future sequences of requests. We can then evaluate
each available action for a UAV by imagining the average
cost of continuing after that action to complete the antici-
pated, sampled requests. In this way, optimization in hind-
sight allows us to intelligently anticipate future goal arrivals.

Following Chong, Givan, and Chang (2000), we can de-
fine the value of being in a states1 as the minimum expected
plan cost that extends froms1. That is, the minimum over
all possible future action sequences of the total cost over all

ANTICIPATORY-PLANNING(s = 〈w, g〉, G,H,Width)
1. for i from 1 toWidth do
2. fi ← draw future(G,H)
3. foreach actiona applicable in world statew
4. s′ ← 〈a(w), g〉
5. m← (

∑

Width

i=1
solve(s′, fi))/Width

6. Q(s, a)← C(s, a) +m
7. Returnargmina Q(s, a)

Figure 1: The anticipatory planning algorithm.

expected future states:

V ∗

H(s1) = min
a1,...,aH

E
s2,...,sH

[

H
∑

i=1

C(si, ai)

]

Recall that states are composed of both world states and goal
sets. Since we only consider deterministic world state transi-
tions, the expectation over future statess2, ..., sH is actually
over the distribution of possible goal arrivals. So, given the
goal arrival distribution, we would like to find the action se-
quencea1, ..., aH that minimizes the sum of the costs over
the expected goal arrivals. To computeV ∗ exactly, we can
perform an expectation minimization search. Unfortunately,
this requires us to compute the expectation for each of ex-
ponentially many plans in the horizonH . This can be very
costly.

Following the principle of optimization in hindsight, we
may instead approximate the value function by exchanging
expectation and minimization, so that we are taking the ex-
pected value of minimum-cost plans instead of the minimum
over expected-cost plans. We then have:

V̂H(s1) = E
s2,...,sH

[

min
a1,...,aH

H
∑

i=1

C(si, ai)

]

This approximation ofV ∗

H(s) uses fixed future goals for
each minimization, making it much more manageable. For
each possible future in the expectation, the problem becomes
the deterministic planning problem of finding an action se-
quence that minimizes cost given a fixed set of future goals,
i.e., cost-based deterministic planning. We define aQ-value
to be the potential cost of taking an actiona1 in the states1:

Q(s1, a1) = C(s1, a1) + E
s2,...,sH

[

min
a2,...,aH

H
∑

i=2

C(si, ai)

]

From this we estimate the best action choice ins1 as
mina Q(s1, a). Using this technique, we are said to be per-
forming optimization with the benefit of ‘hindsight’ knowl-
edge about how future uncertainty will be resolved.

Figure 1 summarizes our anticipatory planning algorithm.
At each time step, the algorithm is used to find the next ac-
tion to execute for the current states. First, we generate a set
of Width samples, using thedraw future() function, where
each sample is a sequence of future goal arrivals. This func-
tion samples a goal from the known distribution for each
time step from1 toH (lines 1–2). Because world state tran-
sitions are deterministic, our algorithm samples over the dis-
tribution of possible goal arrivals occurring in the upcom-
ing time steps, rather than over possible action outcomes



as is done in hindsight optimization for probabilistic plan-
ning. Next, for each action, we advance deterministically
to world state resulting from actiona in w, which we no-
tate asa(w). This gives us a new states′ = 〈a(w), g〉 that
contains the new world statea(w) and the goal setg from
the current state (line 4). Then, each possible futurefi is
grouped with the states′, generating a deterministic plan-
ning problem. Solving this problem provides an optimal so-
lution to the futurefi. The mean optimal solution cost across
the set of samples (line 5) along with the cost of the action
C(s, a) is used as theQ-value for each actiona in states
(line 6). Finally, we return the action with the minimumQ-
value (line 7).

Empirical Evaluation
We compared this on-line anticipatory algorithm to a reac-
tive planner on our two example domains: UAV dispatching
and production planning. Both the anticipatory and reactive
planners used an A∗ based search, however our approach
can easily be adapted to use any off-line, cost-optimal, de-
terministic planner. We also implemented a greedy planner
that always took the action that minimized the sum of the
next action’s cost and a heuristic estimate. This domain-
dependent heuristic was the same as that used in the deter-
ministic search.

Our simulator calls the planner at each time step to de-
termine the next action to perform. After each action is per-
formed, a new goal may arrive according to the known distri-
bution for the given domain. Each instance used in the sim-
ulation is characterized by the future goal arrival sequence.
We generated these sequences out to 80 time steps. Before
simulation, we used an oracle planner to find the optimal
plan for each instance. Next, each planner was run in the
simulation for a fixed number of simulated time steps equal
to 1.25 times the length of the optimal plan.
Unmanned Aerial Vehicle Domain: The UAV domain in-
volves planning the actions of a set of UAVs on a grid with
eight-way connectivity in order to minimize the time re-
quired to service observation requests. Each observation re-
quest is specified by a start and end location. To service a re-
quest, a UAV must move to the start location for the request,
switch on its instrumentation, traverse to the end location
and then shut off its instrumentation. In our experiments,
we use a uniform distribution for request begin and end loca-
tions. Switching on observation instruments and horizontal
and vertical moves of the UAV had a cost of 1 and diagonal
moves cost

√
2. An additional penalty of 1 was charged at

each time step for each outstanding request that was not be-
ing serviced by any UAV, and a penalty of 0.5 was changed
for each request that was in the process of being serviced.
These penalties promote prompt service of requests. Finally,
for each completed request, a reward equal to the length of
the request plus the length of the length of the diagonal of
the grid was given. This ensures that it is actually worth ser-
vicing a request. These rewards were presented as negative
costs during the action of switching off observation instru-
mentation (i.e., when the goal was achieved).

Figure 2 shows the results of the experiment with a set of
100 instances of the UAV domain on a7 × 7 grid for 1, 2
and 3 UAVs with observation request arrival probabilities of
both 0.02 and 0.04 per time step. The mean optimal solution
cost over this set of instances was -22.2 with a standard de-
viation of 14.8. Each box in the figure surrounds the middle
half of the costs, the horizontal line represents the median
value, the ‘whiskers’ extend to the extremes. The gray bars
indicate 95% confidence intervals for the mean. The y axis
represents the reward achieved on each instance, normalized
between the reward obtained by the greedy planner (0) and
the optimal oracle planner (1). Any datum lying below the
0 line represents an instance where the planner performed
worse than the greedy planner.

From this figure, we can see that the boxes for the reac-
tive planner appear as flat lines aty = 0 indicating that the
reactive planner often found solutions that were equivalent
in reward to the plans found by the greedy solver. While
some runs of the anticipatory planner were below the zero
line (for any configuration this occurred no more than 14
times and as few as 1 time out of 100 runs), well over 3/4
of the distribution of normalized reward values are signif-
icantly better than the greedy solver and the reactive plan-
ner in this domain. The solutions found by the anticipatory
planner were as close as 52% of the way to optimal on the
median and a maximum of 99.999% of the way to optimal.
We also see that increasing the sample horizon for the antic-
ipatory planner tended to lead to better solutions. This effect
was more pronounced for the more difficult instances with
arrival probability 0.04 and multiple UAVs.

In the most difficult setting (3 UAVs, h=8, and
prob=0.04), the hindsight planner took a median of 10 sec-
onds to solve each instance, and 0.1 seconds to plan each
action. In the easiest setting (1 UAV, h=4, and prob=0.02)
it took a median of 0.2 seconds and 0.002 seconds per ac-
tion. The reactive planner took almost no time to plan each
action.

Because we defined an OCPP as a form of MDP, it is nat-
ural to ask how an MDP solver would perform on this type
of problem. We hypothesized that an MDP solver would not
fare well because the state space is so large in these prob-
lems. For example, the state space for a3× 3 UAV problem
that is restricted to have no more than three outstanding re-
quests with a possible fourth request that is currently being
serviced has close to 70 million states. To verify our hypoth-
esis, we implemented a planner based on labeled real-time
dynamic programming (Bonet and Geffner 2003) and ran it
on a set of 1003 × 3 UAV instances. When given approx-
imately two orders of magnitude more time than the reac-
tive and anticipatory planners required on each instance, the
LRTDP based planner found plans that were nearly equiva-
lent to those found by the reactive and greedy planners and
was outperformed by the anticipatory planner. Because the
state space grows very quickly as the grid size increases, this
approach will perform much worse on7 × 7 grids like the
ones used in Figure 2. We omit further results with this ap-
proach.
Manufacturing Domain: In contrast to the UAV domain,
where preparatory actions are worthwhile, the manufactur-
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Figure 2:7×7 UAV instances with request arrival probabilities of 0.02 and 0.04 and 1, 2 and 3 UAVs. The anticipatory planner
used 32 samples and horizons of 8 (h=8) and 16 (h=16) with 1 UAVand, 4 (h=4) and 8 with 2 and 3 UAVs.

ing domain models problems where delaying action can lead
to lower cost. The goal of this domain is to plan actions for
a machine that makes widgets and occasionally requires re-
pair. At each time step, a widget request may arrive that can
be satisfied by producing a widget set using the machine.
Additionally, any of the parts of the machine may acquire
damage. While the machine will still produce widgets re-
gardless of the amount of damage, operating the machine
becomes. The amount of damage on a part of the machine is
represented by an integer value and the parts of the machine
may be fixed by bringing the machine off-line and repairing
it entirely.

The available actions transition between the three states
of the machine: idle, active, and down for repair. When
the machine is in the active state it may produce one set of
widgets at each time step. When the machine is down for
repair, the repair action may be applied in order to fix all
of the damaged parts at once. The cost of each action (pro-
ducing a widget, transitioning states of the machine and re-
pairing the machine) is 1, there is an additional cost of 1 for
each outstanding widget request, encouraging prompt pro-
duction. Finally, every action is penalized for every part of
the machine that has acquired damaged as follows: if the
part has acquiredn units of damage then the penalty is 1 if
n = 1 and 3n

4
otherwise. This cost function reflects the fact

that requiring more service on the same part of the machine
may be less costly than the initial service requirement. This
demonstrates that anticipatory planning can easily handlea
complex cost function with goal utility dependencies (Do et
al. 2007), where the utility of repairing the machine depends
on the service requirement goals for the damaged parts.

Because the repair action fixes all of the damaged parts of
the machine at once, the setup cost for bringing the machine
down for repair may outweigh the benefits of repairing the
machine unless it has acquired a sufficient amount of dam-
age. A successful planner should recognize that it can wait
for more parts to break before paying the cost of bringing
the machine down for maintenance.

In the manufacturing domain, we used a set of 100 in-
stances and varied the order arrival and damage probabili-
ties between 0.2 and 0.4. The mean optimal solution cost
for this set was 254.3 with a standard deviation of 148.9. All
planning times in this domain were nearly instant. Figure 3
shows the normalized reward for the reactive planner and
the anticipatory planner. We also generated results with a
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Figure 3: Manufacturing domain using machine with of two
parts and order and damage probabilities of 0.2 and 0.4. The
anticipatory planner used 32 samples and a horizon of 8.

sample horizon of 16, however, they showed little improve-
ment over the horizon of 8 in this domain. Unlike the UAV
domain, the reactive planner gave plans that were closer to
optimal than the greedy solver. The anticipatory planner,
again, gave a significant improvement over the reactive plan-
ner. We can see that on problems with low goal arrival rates,
the worst anticipatory planner result was better than the great
majority of the the reactive planner results.

Conclusion and Future Work
Recent results have exhibited the power of hindsight opti-
mization (Yoon et al. 2010; 2008) and UCT (Kocsis and
Szepesvari 2006; Keller and Eyerich 2011) in planning with
probabilistic actions. This paper has formulated the prob-
lem of on-line continual planning and shown that Monte
Carlo roll-out-based methods can extend easily to this set-
ting, even with complex cost functions. There is much room
for future work. It would be interesting to adaptively deter-
mine how much time to allocate to the deterministic planner
for its search over sampled future goal arrivals. We would
also like to investigate the possibility of handling parallel
actions.
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