
On-line Anticipatory Planning

1Department of Computer Science
University of New Hampshire

Durham, NH 03824 USA
aba4 atunh.edu

ruml atcs.unh.edu

Allen Hubbe1 and Wheeler Ruml1 and Sungwook Yoon2 and J. Benton2 and Minh B. Do3

2Dept. of Computer Science and Eng.
Arizona State University
Tempe, AZ 85287 USA

sungwook.yoon atgmail.com
j.benton atasu.edu

3Embedded Reasoning Area
Palo Alto Research Center
Palo Alto, CA 94304 USA
minhdo atparc.com

Abstract

We consider the problem of on-line continual planning, in
which additional goals may arrive while plans for previous
goals are still executing and plan quality may depend on how
quickly goals are achieved. Even in domains with determin-
istic actions, this is a challenging problem. One common and
straightforward approach isreactionaryplanning, in which
fresh plans are synthesized when a new goal arrives. In this
paper, we adapt the technique of hindsight optimization from
on-line scheduling to create ananticipatory planning algo-
rithm. Using an estimate of the goal arrival distribution, we
sample possible futures and use ordinary deterministic plan-
ning techniques to estimate the value of taking each possible
action. We present benchmark domains inspired by crisis re-
sponse and manufacturing and show how an anticipatory ap-
proach yields a superior planner that is sensitive not only to
which action should be executed, but when.

Introduction
Consider the problem faced by an ambulance dispatcher.
The agent wants to minimize the time between when a vic-
tim is stricken and when he reaches the hospital. Even
when the actions of the ambulance, such as driving particu-
lar routes or loading and unloading patients, can be regarded
as deterministic, the stochastic arrival of new transport re-
quests can make for a challenging on-line planning problem.
Should a dispatched ambulance divert from its previously
planned route to tend to a new request that can be served
faster? What should the ambulance do when no requests
are pending? From a global perspective, it might be worth
preemptively parking the ambulance near locations where
requests are likely.

A similar problem occurs in situations where significant
setup costs are involved. For instance, problems like gro-
cery shopping (or manufacturing) often have relatively pre-
dictable actions but the question is whether to immediately
plan and execute every time a request arrives. It may be
worth the cost of delaying to wait for more requests so as to
minimize the makespan and cost of the final plan.

We call theseon-line continual planningproblems. They
incorporate aspects of planning (action selection), schedul-
ing (when to perform the actions), and uncertainty (unknown
future goals). The traditional approach to such problems
is to synthesize plans when goals arrive. After generat-

ing a plan when the first goal arrives, there are two possi-
ble strategies for handling the arrival of subsequent goals.
The first is a greedy strategy, in which previous plans are
held fixed and the plans for the new goals are restricted to
respect the assumptions of the old ones. This simple ap-
proach was taken by Do, Ruml, and Zhou (2008) in their
work on fast on-line planning for modular printers and by
ter Mors, Zutt, and Witteveen (2007) in their work on air-
port taxiway routing. The second possible strategy is based
on replanning, and considers all the possible future plans
for the current goals that are compatible with the actions al-
ready executed (Nebel and Koehler 1995; Knight et al. 2001;
Fox et al. 2006). Both of these strategies wait to plan un-
til goals actually arrive, and they consider only those goals
that have been revealed. We call this general approachreac-
tionary planning.

In this paper, we consider an alternative approach that ex-
plicitly acknowledges stochastic goal arrival. We call itan-
ticipatory planning. It assumes that the probability distribu-
tion over incoming goals is either known or learnable and
employs the technique ofoptimization in hindsight, previ-
ously developed for on-line scheduling and recently intro-
duced for planning with stochastic actions (Mercier and van
Hentenryck 2007; Yoon et al. 2008). As we explain in more
detail below, this technique first samples from the distribu-
tion of possible future goal arrivals and then considers which
next action optimizes the expected cost when averaged over
the sampled futures. While anticipatory planning involves
more computation than reactionary planning, we show that
its overhead can be made quite modest and that the result-
ing planner successfully addresses the challenges raised by
on-line continual planning when tested in two benchmarks
domains modeled on the two examples above.

On-line Continual Planning
Most academic research on general purpose planning has
concentrated on off-line scenarios. However, planners de-
ployed for real-world applications are frequently run in an
on-line setting in which goal arrival, plan synthesis, and
plan execution happen concurrently. Such domains include
manufacturing process control, supply chain management,
power distribution network configuration, transportationlo-
gistics, mobile robotics, and spacecraft control. Despitethe
importance of these on-line domains, little investigationef-



fort has focused on the potential drawbacks of using stan-
dard, academic off-line (and therefore reactionary) planners
in an on-line environment. In particular, we see three main
qualities of on-line planning problems that current state-of-
the-art off-line planners lack mechanisms to handle.
Optimizing wall clock end time: A planner must keep
a view of the globalwall-clock time. That is, as pointed
out by Benton et. al. (2007), the planner must focus both
on executionandplanningtime to minimize the totalwall-
clockmakespan of plans. This is especially important when
the objective is to achieve the goals as quickly as possible,
meaning that the figure of merit is the wall-clock time at
which the plan’s execution finishes.
Asynchronous goal arrival: In many real-world settings,
goals are not neatly divided into separate episodes. Rather,
new goals may arrive while plans for previous goals are still
executing.
Goal distributions: Though goals may be asynchronous,
in many on-line planning problems information such as the
distribution of possible goals and their arrival times can be
obtained either by learning techniques or expert knowledge.

An off-line planner with informedness as to its own plan-
ning time may appear to solve these problems at first glance.
Unfortunately, this is an ignoratio elenchi. Consider an off-
line planner capable of finding an optimal solution instan-
taneously. It would need to completely replan and at most
could use a mechanism for maintaining commitments made
in previous plans for plan repair. This can lead to plans that
appearglobally inefficient in hindsight. For example, con-
sider a logistics domain where a vehicle has just passed a
warehouse. After several minutes a new pick-up request ar-
rives for that same warehouse, and so the vehicle must re-
visit the warehouse to achieve the goal. Having foreknowl-
edge of the high possibility that a goal at the warehouse may
arrive would allow the planner to generate a plan that waited
at the location for a short time.

In this work, we investigate the use of goal arrival distri-
butions to generate plans that exhibit anticipatory behavior
for asynchronous goals. By sampling solutions for the po-
tential goals, we can guess the best next action to take, po-
tentially even choosing actions for goals that have not yet
been revealed. This can significantly improve plan quality,
especially when it depends on the time of goal achievement
rather than the makespan from the first action to the last.

Problem Setup
We define an on-line planning problemP as a 7 tuples
〈F, S, A, G, C, L, T 〉, whereS is the set of states, andA
is the set of actions. As usual, each state consists of a
set of factss ⊂ F . Applying actiona to a states sat-
isfying all of a’s preconditions changes as usual:s′ ←
(s \ Del(a)) ∪ Add(a), whereDel(a) is the set of delete
facts of actiona andAdd(a) is the set of add facts.

G is a generation function and generates new goals and
corresponding state facts at each time point,〈g, s〉. We
assumeG is either stationary or changes deterministically.
Each goalg is a pair containing a conjunction of facts and
a deadline time,〈f, t〉, wheret ∈ T is a time point.T is a

set of integer-valued infinite time points.C is an action cost
function that maps each action to a real number.L(g) is the
goal cost function that maps each goal to some real number
at each time point. We will not explicitly specify the role of
the goal deadline time ing, as it is defined by the applica-
tion. One example of a cost function is a “step function” that
increases its value after passing the goal deadline, similar to
what is defined by Haddawy and Hanks (1993).

Unlike an off-line planning problem, the goal set of the
problem is continuously changing. There are two factors
that affect the current goal set: (1)G generates new goals
(or possibly no goals) at every time point and (2) an action
that achieves a goalg removes it from the current goal setG.
Regardless of a goal’s deadline, we consider a goal achieved
when an action asserts it. Thus, an actiona ∈ A maps the
current states and current goal setG to another state and
another goal,a(s,G)→ (s′,G′).

We useN(s,G, a, G) → (s′,G′), to advance the current
states to s′ through an actiona and new goalsG. This
constitutes advancing one time point, that is, ifs is in timet,
thens′ is in timet + 1. Suppose,G generated〈g, sg〉 at the
current time step anda(s,G) → (sa,Ga) then the updated
states′ is sa ∪ sg and the updated goalsG′ is Ga ∪ {g}.
On-line Planning Objective: The objective of an on-line
planning problemO(s,G0, H) is to minimize the average
cost over a predefined horizonH starting from the current
states and the current goal setG0.

O(s,G0, H) =

H∑

t=1

C(at) + L(Gt)

where(st,Gt) ∼ N(st−1,Gt−1, at, G) and we assumet =
1 at the current time. At the current states, the future goals
are not seen and deciding which action to take is not a trivial
problem. Since the future is not known, a simple reactionary
planning approach plans only for the outstanding goals. This
approach does not directly optimize the above equation. In
the following sections, we develop an anticipatory algorithm
that minimizesO(s,G0, H). First, we describe two domains
that we use to demonstrate the need for anticipatory plan-
ning.

Example Domains
We introduce two on-line planning domains that reflect in-
teresting real life on-line planning scenarios.

Ambulance Domain
The ambulance domain models a scenario faced by hospi-
tals. Namely, where to place ambulances throughout a city
such that they can quickly apply first aid and deliver people
to the hospital. The domain consists of people, ambulances,
locations, and hospitals. The goals involve having each per-
son at the hospital. When an accident happens, a goal is
posted that indicates the location of a person and a deadline
time of when the person needs to be at the hospital (indicat-
ing the survival time for a critically injured patient). There-
fore, ambulances need to pick up people and deliver them
to the hospital as quickly as possible. There is a stochas-
tic distribution of the potential locations where the accidents



Figure 1: Ambulance Domain Example: There are 9 loca-
tions and the distribution of the accident is uniform and the
best spot for the ambulance is the center point.

might happen. We would like plans that place ambulances
near these locations. Reactionary planners cannot immedi-
ately identify these strategic locations and will therefore fail
to serve the goal in a timely manner. Figure 1 shows an ex-
ample of this domain in a 3×3 grid. In our example, the
probability of an accident occurring is uniform throughout
each location. Because of this, it is preferable to have the
ambulance at the center location rather than at the hospital.

This domain is analogous to police patrols, which are
routed and scheduled so as to encounter predicted problems
or criminal activity. Police are commonly dispatched to ma-
jor gatherings such as sporting events, concerts, and protests,
in anticipation of their being needed.

Grocery Domain
This domain models problems where paying setup costs re-
sults in plans where delaying action can be better than taking
action (as opposed to the ambulance domain, where preemp-
tive action is important). It involves three locations: home,
work, and the grocery store. Figure 2 gives a pictorial il-
lustration. Goals involve finishing work (at a workplace)
and purchasing groceries (at a grocery store). In contrast to
the ambulance domain, where cost is accrued due to unmet
deadlines, here we have cost for (1) having unfinished work
to do or groceries to purchase (independent of the amount of
work or groceries) (2) travelling between locations, (3) be-
ing away from home and (4) doing a work task or purchasing
groceries. A travel actions has the same cost as purchasing
any number of item from the grocery store, and therefore it
is often better to wait for more grocery requests to arrive be-
fore heading to the store. Similarly, we want to go to work
only when doing the work is worth the cost of travelling to
work to “relieve” the penalty of not working. The best strat-
egy may involve delaying action until enough goals arrive.

Anticipatory Planning
Anticipatory algorithms were originally developed in the
scheduling and networking communities (Chong, Givan,
and Chang 2000; Mercier and van Hentenryck 2007) and

Travel
Cost

Travel
Cost

Travel
Cost

Goal: Buy
Grocery,
Buy Cost

Goal: Do
Work,
Work Cost

At Home:
No Cost

Figure 2: Grocery Domain Example: Staying at home is
always preferable, as long as there is no outstanding goals.
Since travel is costly, when some more goals are expected to
arrive it is often better to wait and achieve them in a single
trip to the destination.

recently have been applied to probabilistic planning do-
mains (Yoon et al. 2008). They work by sampling poten-
tial future problems and solving them to determine the best
“next” actions to take. In this spirit, our algorithm samples
for potential goals, solves for them, then chooses the best
course of action (or inaction) based upon the resulting solu-
tions.

On-line Anticipatory Planning

Anticipating goal arrival involves some knowledge of pos-
sible future events. Essentially, given knowledge of goal
arrival distributions, we conjecture the best next actions(in-
cluding null actions) to take that will likely lead to the low-
est cost outcome. Recall that plan cost is defined by the
summed cost of actions and the cost associated with the time
of goal achievement. Thus the objective isO(s,G0, H) =∑H

t=1
C(at) + L(Gt).

Using a set of given cost functions on goals and actions
along with the distribution of goal arrival, a set of actions
should be found that minimizes the expectation of the future
goals. That is, we have the function

V (s) = min
a1...aT

Egt∼G

H∑

t=1

C(at) + L(Gt)

where(st,Gt) ∼ N(st−1,Gt−1, at, G). This function asks
us to take a first action,a1 in an action sequence that mini-
mizes the expectation of the cost over future goals. To com-
pute this exactly, we can perform an expectation minimiza-
tion search. Unfortunately, this choice offers some severe
trade-offs, as its performance degrades exponentially as the
horizonH increases. Other alternatives, such as brute force
methods involving the enumeration of all plans, offer simi-
larly bleak prospects on scalability.

Instead of these approaches, this work implements a tech-
nique used in other anticipatory algorithms that involves



interchanging expectation and minimization (Chong, Gi-
van, and Chang 2000; Mercier and van Hentenryck 2007).
Specifically, the expectation function is changed to reflect
expectation over minimizing cost for future goals as against
minimizing cost for the expected value of future goals. We
now have the equation

V a(s) = Eg∼G min
a1...aT

T∑

t=1

C(at) + L(Gt).

Of course this neglects preservation of the current state
s. However, this technique allows for large computational
efficiency gains. Using fixed future goals, the minimization
problem is manageable. The problem becomes the deter-
ministic planning problem of finding an action sequence that
minimizes cost given a fixed set of future goals. To find the
best action in the current state, we define a Q-value for each
action.

Q(s, a) = C(a) + Eg∼G min
a1...aT

H−1∑

t=1

C(at) + L(Gt)

The Q-value computes the potential cost of taking each ac-
tion in the states. And following this, the best action choice
in s is given bymina Q(s, a). In this sense, we are perform-
ing optimization in hindsightof knowledge gained through
sampled futures.

Figure 3 summarizes our anticipatory planning algorithm.
At each time step, the algorithm is used to find the next ac-
tion to execute for the current states. The inputs to the al-
gorithm are the current state, the set of current goals, a goal
distribution function, a horizonH and a sampling widthW .
For each action, we advance to a next states′ then generate
a sample ofW future goals using thedraw-future()func-
tion for H time points. The resulting possible futureGF is
paired with the states′, generating a deterministic planning
problem. Solving this problem provides a solution to the fu-
tureGF . The functionsolve()returns this solution and its
cost. We repeat thisW times, accumulating the potential
cost across the sampled futures that could have occurred af-
ter an actiona is taken. This cumulative value is the Q-value
for each actiona in s. We select the minimum Q-value ac-
tion and return it.

Empirical Evaluation
We have tested our on-line anticipatory algorithm on the
two example domains that were introduced above. For this
demonstration, we have built a simpleA∗ search-based plan-
ning algorithm for both reactionary and anticipatory plan-
ning experiments. Our implementation serves as a proof of
concept, and our approach can easily be adapted to use any
off-line deterministic planner capable of handling the given
cost metrics. For comparison we also implemented a reac-
tionary planner that simply generates plans as goals arrive.

Ambulance Domain: The ambulance domain, as previ-
ously described, involves getting people to a hospital before
a deadline time. For our tests, the probability of a incident
with a patient is uniform through a grid (as illustrated in
Figure 1). The best strategy for this scenario is to have the

Anticipatory Planning (s,G, G, H, W )
// s the current state

// G the current goal set

// G is the goal distribution function

// H the horizon

// W future sample width

Best-Action← null
Best-Action-Cost←∞
for-each actiona available ins

Q(s, a)← 0
for W times
GF ← draw-future(G, H)
Q(s, a)← C(a)+ solve(a(s),G,GF ) +Q(s, a)

if Q(s, a) < Best-Action-Cost
Best-Action← a
Best-Action-Cost← Q(s, a)

Return Best-Action

Figure 3: Anticipatory Planning Algorithm. At the current
state, it computes the anticipatory Q values for each action,
by sampling and planning. The action that achieves the min-
imal Q value cost is returned.

ambulance at a central location where any new patients may
be easily reached with minimum expected cost. In this case,
this is the center position. There exists a fixed cost for ambu-
lance movement. Outstanding goals have a fixed cost at ev-
ery time step, therefore total cost increases steadily as goals
remain unachieved and one wishes to deliver patients to the
hospital as quickly as possible.

We used fixed grid sizes of3×3, 5×5, and7×7 cells and
set the future sample size to 20 with varying horizon lengths.
Figure 4 shows the results of these experiments. The x-axis
indicates the probability of goal arrival (i.e., higher values
indicate a higher chance that an incident will occur, requir-
ing a patient be transferred to a hospital) and the y-axis indi-
cates the percentage cumulative cost above a lower bound.

For all grid sizes, the anticipatory planning algorithm per-
formed better than the reactionary planning algorithm, inde-
pendent of the horizon used. During the experiments we ob-
served that the anticipatory algorithm preemptively placed
the ambulance at the center location and therefore the gen-
erated plans achieved the goal more quickly than the reac-
tionary planner after an accident occurs. The results of this
were especially noticeable after a single patient was deliv-
ered to the hospital. The reactionary planner would wait at
the hospital for the next goal, rather than incur cost by mov-
ing to the center location in anticipation of a new patient.
Given that we placed the hospital at a corner location, this
caused much of the additional cost used.

We see that horizon also changes the performance of the
anticipatory planner. Interestingly, as we increase the hori-
zon to 4, the cost of the plans decreases to its best value. It
is striking that even a horizon of 1 was more effective than
the reactionary planner, as providing a small lookahead as to
the arrival of new goals works better than none (a behavior



which is also seen by Natarajan et al. (2007)).
Adding future samples should improve the accuracy of

the anticipatory planner, thereby providing, over time, lower
cost plans. To test this, we fixed the horizon at 12 with varied
numbers of future samples. As can be seen in Figure 5, the
size of the future samples correlates well with performance.
That is, as we increase the number of samples, the anticipa-
tory planning algorithm generates lower cost plans. Giving
more sample futures gives a more reliable estimate on the Q-
values (and the possible futures). Surprisingly, even a single
sample does significantly better than the reactionary plan-
ner. This is even true when we have a low probability of an
incident occurring. Note, however, that on the3 × 3 grid,
in fact the reactionary planner and the anticipatory planner
with a single future sample performed about equivalently.
Likely the larger grids provided the sample with an incident,
providing a more accurate Q-value.

In a separate pilot experiment, we tried re-distributing the
goal arrival probabilities in a5 × 5 grid such that patients
could only arise in a3 × 3 area of the grid, located in a
corner. In this case, the anticipatory planner placed the am-
bulance in the center of the3 × 3 area, as expected, rather
than in the center of the entire grid. This demonstrates the
technique’s ability to adapt to the particular goal distribution
encountered.

Grocery Domain: In the grocery domain, it is better to
stay at home when there are no work task or grocery item
goals outstanding. Travel to the work place and grocery
store has a cost, as does being away from home. Since
grocery store errands can be performed with a single visit
(and purchase), it can be advantageous to wait for grocery
requests to accumulate due to the expense of the trip. Work
penalties accrue when tasks remains undone, independent of
the amount of work to do, but each individual work task re-
quest takes an entire time unit to achieve. It is best to go to
work only when enough work accumulates to justify the trip
and remove the burden of the penalty.

Figure 6 shows the results of our runs. In the Figure 6(a),
we varied the grocery order arrival rate while fixing the the
work probability arrival rate to 0.5 (i.e., for every time step
there is a 0.5 chance that work will arrive). As the grocery
order arrival rate increases, the anticipatory algorithm found
much lower cost plans than the reactionary planer (and is al-
ways dominating it). However, with a lower probability of
a grocery order occurring, the two approaches yield similar
results. This can happen when possible futures are sampled
that involve grocery orders but in the “true” future, the or-
ders were not actually made. In the end, the anticipatory
planner waited for an order but none arrived, and therefore
it had worse performance. We see a similar result in Fig-
ure 6(c), where we have only grocery store orders and no
work orders (by setting the probability of work to 0). In
this panel, the lines eventually dip below the baseline lower
bound. This is because the ’lower bound’ used in the grocery
domain is not a true lower bound, as it does not recognize
that multiple groceries can be purchased in a single action.

In Figure 6(b), we fixed the grocery order arrival rate to
0.5 and varied the work order arrival rate. Although the an-
ticipatory algorithm perform much better, its performance

did not correlate with the work order rate. This is a reason-
able result, considering that an entire set of grocery orders
can be achieved in one session of shopping session. Thus,
as grocery order rate increases, it is better to wait and in this
case anticipatory planner found that the “waiting” action was
more useful.

Discussion and Related Work
Many real-world scenarios involve on-line continual plan-
ning. Despite this, most academic planning systems focus
on off-line domain-independent planning techniques that do
not address these real-world scenarios. We have identified
several challenges associated with on-line planning which
off-line planners cannot directly tackle. Namely, on-line
continual planning involves optimizing for wall-clock time
and handling asynchronous goals with known arrival distri-
butions. Our work takes a step toward handling these issues.
By anticipating future goal arrival and acting on it, we can
find plans that minimize costs associated goal achievement
time.

Anticipatory algorithms have been studied by the op-
timization and scheduling communities (Mercier and van
Hentenryck 2007; Chong, Givan, and Chang 2000; Wu,
Chong, and Givan 2002). Some schedulers face challenges
similar to ours. For instance, they need to continuously
schedule actions given new goals. As an example, con-
sider the problem of routing packets. As new packets arrive
for a networking router, it must schedule their routing for
speed and lack of contention. However, the scheduler has
only a distribution of their possible arrival times and must
allot a space for them based on anticipating their future ar-
rival. These anticipatory schedulers do hindsight sampling
and use domain specific solvers to find the estimation of
the Q-values. The key difference is that planning goals are
achieved over time and typically require multiple actions.
This highlights preemptive execution and opens the door to
delayed execution.

In contrast to Chong, Givan, and Chang (2000), we con-
sider stochastic goal arrival rather than probabilistic action
effects. Conceptually, one could consider the current goal
set as part of the agent’s state and view our approach as a
special case of probabilistic effects. However, on-line con-
tinual planning deserves to be considered separately for two
reasons. First, it arises often in applications where either the
environment is static (as with spacecraft) or the agent’s hard-
ware is very reliable (as in manufacturing). Practitioners
often prefer to approximate their systems as deterministic
whenever possible, relying on replanning to handle execu-
tion failure. Secondly, problems with deterministic actions
and stochastic goal arrival avoid one drawback of optimiza-
tion in hindsight that was mentioned by Chong, Givan, and
Chang (2000). Consider the example from their Figure 1b:
a probabilistic domain in which a possible actiona leads
to states′. Froms′, actionc achieves the goal with prob-
ability ǫ (and leads to a dead end otherwise) and actiond
leads to a dead end with probabilityǫ (and achieves the goal
otherwise). When drawing ‘common random numbers’ in
advance (as is common to reduce variance in hindsight op-
timization), it will appear that the goal is reachable in one



(a) (b) (c)

Figure 4: Results in the Ambulance domain, varying the horizon length.

(a) (b) (c)

Figure 5: Results in the Ambulance domain, varying the number of samples.

(a) (b) (c)

Figure 6: Results in the Grocery domain, varying the goal mix.



step with probability 1 froms′, leading the agent to choose
actiona, even if there exists a series of actions that actually
do reach the goal froms with probability 1 but take a lit-
tle longer. On the other hand, the use of common random
numbers in our setting, sampling the possible future goal ar-
rival sequences before considering each possible next action,
causes no problems whatsoever. In this sense, the hindsight
optimization technique is in fact better suited to our setting
than to probabilistic planning.

Future Work
This work serves as an initial investigation into the possi-
bility of using anticipatory algorithms for on-line continual
planning settings. As such, there is much room for future
work. In particular, we would like to investigate the pos-
sibility of handling parallel actions and committed actions
that have retraction costs, and explore the best way to allo-
cate plan synthesis time to solve for possible futures.

Our current algorithm generates only sequential plans.
Naively extending our algorithm for parallel actions would
lead to an increase in computation, requiring every possible
combination of actions to be considered for possible futures
to investigate. Heuristics that can take into account ‘timed
goals’ would be relevant here.

Planning for new goals when there already exists an exe-
cuting plan is difficult. Often the decision has to be made to
retract previous actions and commitments in order to gener-
ate the best plan. These retractions often come with a cost,
which is a serious issue for on-line planning scenarios. Mod-
els involving such costs have been discussed by Cushing and
Kambhampati (2005). We plan to investigate this issue with
a simulator that was developed for this purpose (Benton, Do,
and Ruml 2007).

Along with these issues, we also wish to investigate how
much time to allocate to the planner for its search over sam-
pled future goal arrivals. The baseline planner could take an
additional argument of a time limit for each future, trying
to find the best solution in an anytime fashion. We are con-
sidering the use of a stochastic search with random restart
behavior as found in scheduling research in case a plan can-
not be found within the time limit.

References
Benton, J.; Do, M.; and Ruml, W. 2007. A simple testbed
for on-line planning. InProceedings of the ICAPS Work-
shop on Moving Planning and Scheduling Systems into the
Real World.

Chong, E.; Givan, R.; and Chang, H. 2000. A frame-
work for simulation-based network control via hindsight
optimization. InIEEE Conference on Decision and Con-
trol.

Cushing, W., and Kambhampati, S. 2005. Replanning: A
new perpsective. InPoster Proceedings of the International
Conference on Automated Planning and Scheduling.

Do, M.; Ruml, W.; and Zhou, R. 2008. On-line plan-
ning and scheduling: An application to controlling modu-
lar printers. InAAAI.

Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006.
Plan stability: Replanning versus plan repair. In Long, D.;
Smith, S. F.; Borrajo, D.; and McCluskey, L., eds.,ICAPS,
212–221. AAAI.
Haddawy, and Hanks, S. 1993. Utility models for goal-
directed decision theoretic planners. Technical Report TR-
93-06-04.
Knight, R.; Rabideau, G.; Chien, S.; Engelhardt, B.; and
Sherwood, R. 2001. Casper: Space exploration through
continuous planning.IEEE Intelligent Systems16(5):70–
75.
Mercier, L., and van Hentenryck, P. 2007. Performance
analysis of online anticipatory algorithms for large multi-
stage stochastic programs. InInternational Joint Confer-
ence on Artificial Intelligence.
Natarajan, S.; Judah, K.; Tadepalli, P.; and Fern, A. 2007.
A decision-theoretic model of assistance - evaluation, ex-
tensions and open problems. InInteraction Challenges for
Intelligent Assistants, 90–97.
Nebel, B., and Koehler, J. 1995. Plan reuse versus plan
generation: A theoretical and empircal analysis.Artificial
Intelligence76:427–454.
ter Mors, A. W.; Zutt, J.; and Witteveen, C. 2007. Context-
aware logistic routing and scheduling. InProceedings of
the International Conference on Automated Planning and
Scheduling.
Wu, G.; Chong, E.; and Givan, R. 2002. Burst-level con-
gestion control using hindsight optimization.IEEE Trans-
actions on Automatic Control.
Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S.
2008. Probabilistic planning via determinization in hind-
sight. In Proceedings of Conference on Artificial Intelli-
gence (AAAI).


