
Allocating Planning Effort when Actions Expire

Shahaf S. Shperberg,1 Andrew Coles,2 Bence Cserna,3
Erez Karpas, 4 Wheeler Ruml,3 Solomon E. Shimony1,5

1Ben-Gurion University, Israel; 2King’s College London, UK;
3University of New Hampshire, USA; 4Technion, Israel; 5UMass Lowell, USA
shperbsh@post.bgu.ac.il, andrew.coles@kcl.ac.uk, {bence,ruml}@cs.unh.edu,

karpase@technion.ac.il, shimony@cs.bgu.ac.il

Abstract

Making plans that depend on external events can be tricky.
For example, an agent considering a partial plan that involves
taking a bus must recognize that this partial plan is only vi-
able if completed and selected for execution in time for the
agent to arrive at the bus stop. This setting raises the thorny
problem of allocating the agent’s planning effort across mul-
tiple open search nodes, each of which has an expiration time
and an expected completion effort in addition to the usual es-
timated plan cost. This paper formalizes this metareasoning
problem, studies its theoretical properties, and presents sev-
eral algorithms for solving it. Our theoretical results include
a surprising connection to job scheduling, as well as to delib-
eration scheduling in time-dependent planning. Our empiri-
cal results indicate that our algorithms are effective in prac-
tice. This work advances our understanding of how heuristic
search planners might address realistic problem settings.

Introduction
Agents that plan and act in the real world must deal with
the fact that time passes as they are planning. For example,
an agent that needs to get to the airport may have two op-
tions: take a taxi, or take a bus. Each of these options can be
thought of as a partial plan to be elaborated into a complete
plan before execution can start. Clearly, the agent’s planner
should only elaborate the partial plan that involves taking the
bus if it can be elaborated into a complete plan before the
bus leaves. Furthermore, consider a second example. When
faced with two partial plans that are each estimated to re-
quire five minutes of computation to elaborate into complete
plans, if only six minutes remain until they both expire, then
we would want the planner to allocate all of its remaining
planning effort to one of them, rather than to fail on both.

Cashmore et al. (2018) recognized the problem of node
expiration in the context of temporal planning with timed
initial literals (TIL) (Cresswell and Coddington 2003;
Edelkamp and Hoffmann 2004), where the TILs occur at
times that are relative to when planning starts, rather than to
when execution starts. However, their approach to address-
ing it is relatively superficial in that, after estimating the
latest time when execution can start for each search node,
this information is used merely to prune nodes that become

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

infeasible. Such a planner, while handling the first exam-
ple given above, can fail in our second example. In this
paper, we investigate the problem more deeply, explicitly
using rational metareasoning (Russell and Wefald 1991) to
choose which node to expand. We formalize this metarea-
soning problem, which we call Allocating Effort when Ac-
tions Expire (AE2), as an MDP, allowing us to define the
optimal solution in a manner similar to Hansen and Zilber-
stein (2001). We establish close connections between AE2,
deliberation scheduling in time-dependent planning (Boddy
and Dean 1994), and a seemingly unrelated problem in job
scheduling with deadlines (Yedidsion 2012). We describe
several efficient ways of solving the metareasoning problem,
although not necessarily optimally, and evaluate them em-
pirically over several types of distributions. The empirical
results suggest that taking estimated node expiration times
into account can lead to a better planning strategy.

In this paper, we examine only the one-shot version of the
metareasoning problem. Integrating the solutions we present
here into a temporal planner can involve solving this prob-
lem repeatedly, possibly after each node expansion, in ad-
dition to gathering the requisite statistics. These issues are
beyond the scope of the current paper. Nevertheless, we de-
vote attention to developing effective metareasoning algo-
rithms that can be useful in practice. When testing our algo-
rithms, we use scenarios based on realistic search trees gen-
erated by OPTIC (Benton, Coles, and Coles 2012), the same
planner that was adapted in the experiments of Cashmore
et al. (2018). Our work provides a firm basis for further ef-
forts to design planners for agents that interact with a wider
world containing exogenous processes and other agents, one
in which time passes and opportunities can be fleeting.

Problem Statement
To formalize AE2, we abstract away from any particular
planning methodology and merely posit the existence of n
computational processes, all attempting to solve the same
problem. For example, these may represent promising par-
tial plans for a certain goal, implemented as nodes on the
frontier of a search tree. There is a single computing thread
or processor to run all the processes, so it must be shared.
When process i terminates, it will, with probability Pi, de-
liver a solution or, otherwise, indicate its failure to find one.
For each process, there is a deadline, defined in absolute wall

clock time, by which the computation must be completed in
order for any solution it finds to be valid, although that dead-
line may only be known to us with uncertainty. For process
i, let Diptq be the CDF over wall clock times of the random
variable denoting the deadline. Note that the actual dead-
line for a process is only discovered with certainty when its
computation is complete. This models the fact that, in plan-
ning, a dependence on an external timed event might not
become clear until the final action in the plan is added. If
a process terminates with a solution before its deadline, we
say that it is timely. The processes have performance profiles
described by CDFsMiptq giving the probability that process
i will terminate given an accumulated computation time on
that process of t or less. Although some of the algorithms
we present may work with dependent random variables, we
assume in our analysis that all the variables are independent.
Given the Diptq, Miptq, and Pi, the objective of AE2 is to
schedule processing time over the n processes such that the
probability that at least one process finds a solution before
its deadline is maximized. This is the essential metareason-
ing problem in planning when actions expire.

Previous Work
There is much related work on planning under time con-
straints, such as that by Dean et al. (1995). For an appro-
priate early survey see Garvey and Lesser (1994). In this
section we refer only to existing work that is directly used
in developing results for AE2: work in deliberation schedul-
ing (Boddy and Dean 1994) and job scheduling (Yedidsion
2012). In both of these problems, we have a set of n compu-
tational processes that need to be allocated processing time
on a single processor. Each process 1 ď i ď n has a known
deadline di by which computation in that process must be
completed.

Deliberation Scheduling
In deliberation scheduling for time-dependent planning
(Boddy and Dean 1994), typically what is being scheduled
are anytime algorithms, which exhibit a trade-off between
runtime and solution quality (utility). We are thus given a
performance profile, a mapping viptiq from the total pro-
cessing time ti allocated to process i to the expected utility
value generated by that process. The problem is to find a
schedule, mapping time to process number, such that the to-
tal expected utility U “

řn
i“1 viptiq is maximized, subject

to the constraint that all processing allocated for process i
occurs no later than di. The objective function here is not
the same as for AE2, and there is no notion of complete fail-
ure to find a solution. However, there is a direct mapping be-
tween this version of deliberation scheduling and AE2 with
known deadlines, which we mention and exploit later on.

Although the problem is NP-hard, in the special case of
diminishing returns, it can be solved optimally in polyno-
mial time. The diminishing returns requirement is that the
returns slope dviptq

dt be non-increasing in t. We define a sim-
ilar notion of diminishing returns for AE2 below.

Boddy and Dean (1994) present a deliberation scheduling
algorithm for diminishing returns piecewise linear perfor-

mance profiles. It scans from the latest deadline backwards.
In the current inter-deadline segment, select, from all pro-
files whose deadline has not expired, the profile i with the
greatest slope. Then allocate to process i time sufficient to
exhaust this slope segment or to reach the previous deadline,
whichever is first. When an earlier deadline is reached, ad-
ditional profiles become relevant, which may introduce pro-
files with a better slope. Upon scan is completion, re-arrange
the schedule into contiguous segments, in order of deadlines.

Job Scheduling
The minimum tardiness job scheduling problem (Yedidsion
2012) differs from deliberation scheduling in that all pro-
cesses must be run to completion, and no uncertainty is in-
volved. However, a process i can run faster by paying a cost
ci, modeling the allocation of additional resources. The to-
tal job i runtime is a known function Tipcq of the cost. The
goal is to find costs and a schedule such that the sum of the
costs is minimized, while ensuring that all jobs finish be-
fore their respective deadlines. (Actually, Yedidsion (2012)
allows processes to run beyond the deadline by a certain tar-
diness value that is either to be constrained or minimized,
but for our purposes we need only refer to the variant that
constrains the maximum tardiness to be zero.)

In job scheduling, a polynomial-time scheme is possible if
the the speedup is a diminishing-returns function of the cost,
i.e. if T 1i pcq “

dTipcq
dc is an always non-decreasing function

of c. Note that Tipcq is non-negative and T 1i pcq ă 0.
In the case of diminishing returns, it was shown that there

exists an optimal schedule such that
A) time allocations are contiguous, i.e. the schedule can be

represented as a list of start-length pairs psi, liq;
B) the allocations are in order of the respective deadlines. We

assume w.l.o.g. that s1 ď s2 ď ... ď sn; and
C) the performance slopes T 1i pcq obey T 1i pciq ě T 1i`1pci`1q

for all 1 ď i ă n.
As discussed below, these properties also hold for diminish-
ing returns in AE2 (with property C adapted as discussed
below). Using these properties, Yedidsion (2012) provides
an algorithm to find an optimal schedule in polynomial time,
with a complexity depending on speedup profiles Ti repre-
sentation. An analytical representation manipulable in Op1q
is assumed therein, resulting in a runtime Opnq.

The Deliberation Scheduling MDP
We now address the AE2 problem of deliberation scheduling
with uncertain deadlines. For simplicity, we initially assume
that time is discrete and the smallest unit of time is 1. Al-
lowing continuous time is more complex because one needs
to define what is done if some time-slice is allocated to a
process i, and that process terminates before the end of the
time-slice. Discretization avoids this complication.

We can now define our deliberation scheduling problem
as an MDP, with distributions represented by their discrete
probability function (pmf). Denotemiptq “Miptq´Mipt´
1q, the probability that process i completes after exactly t
time units of computation time, and diptq “ Diptq´Dipt´

1q, the probability that the deadline for process i is exactly
at time t. Without loss of generality, we can assume that
Pi “ 1: otherwise modify the deadline distribution for pro-
cess i to have dip´1q “ 1 ´ Pi, simulating failure of the
process to find a solution at all with probability 1´ Pi, and
multiply all other diptq by Pi. This simplified problem we
call SEA2. We formalize the SEA2 MDP as an indefinite
duration MDP with terminal states, where we keep track of
time as part of the state. (An alternate definition would be
as a finite-horizon MDP, given a finite value d for the last
possible deadline.)

The actions in the MDP are: assign the next time unit to
process i, denoted by ai with i P r1, ns. We allow action ai
only if process i has not already failed.

The state variables are the wall clock time T and one state
variable Ti for each process, with domain N Y tF u. Ti de-
notes the cumulative time assigned to each process i until the
current state, or that the process has completed computation
and resulted in failure to find a solution within the deadline.
We also have special terminal states SUCCESS and FAIL.
Thus the state space is:

S “ pdompT q ˆ
ą

1ďiďn

dompTiqq Y tSUCCESS, FAILu

The initial state is T “ 0 and Ti “ 0 for all 1 ď i ď n.
The transition distribution is determined by which process

i has last been scheduled (the action ai), and the Mi and Di

distributions. If all processes fail, transition into FAIL with
probability 1. If some process is successful, transition into
SUCCESS with probability 1. More precisely:

• The current time T is always incremented by 1.

• Accumulated computation time is preserved, i.e. for ac-
tion ai, Tjpt` 1q “ Tjptq for all processes j ‰ i.

• Tiptq “ F always leads to Tipt` 1q “ F .

• For action ai (assign time to process i), the probability
that process i’s computation is complete given that it has
not previously completed is P pCiq “

mipTi`1q
1´MipTiq

. If com-
pletion occurs, the respective deadline will be met with
probability 1´DipTiq. Therefore, transition probabilities
are: with probability 1´P pCiq set Tipt`1q “ Tiptq`1,
with probability P pCiqDipTiq set Tipt`1q “ F (process
i failed to meet its deadline), and otherwise (probability
P pCiqp1 ´ DipTiq) transition into SUCCESS (the value
of Ti in this case is ‘don’t care’).

• If Tipt` 1q “ F for all i, transition into FAIL.

The reward function is 0 for all states, except SUCCESS,
which has a reward of 1.

Solution Complexity and Approximations
Solving the SEA2 MDP implies finding an optimal condi-
tional (also called adaptive) policy, which is a hard com-
putational problem because the state space of the MDP is
exponential in n. We show below that the problem is NP-
hard, but conjecture that it is PSPACE-complete. As this is a
meta-reasoning problem, we cannot afford to devote a lot of
computational resources to solving it; instead we attempt to

solve easier problems that may give approximately optimal
solutions, or optimal solutions to special cases. We begin
by considering the optimal linear policy. A linear allocation
policy is simply a (possibly infinite) sequence A of integers,
where Arts “ i means ‘assign time slice t to process i.’

There are two possible ways to execute the linear policy.
The basic scheme (also called “batch”, or “non-adaptive”)
simply executes processArts at time t, except when that pro-
cess has already failed, in which case we leave the processor
idle. Upon success, we stop all the computations. Clearly, a
better expected performance would result from reallocating
the time allocated to an already failed process to the next
process in the sequence that has not failed yet. We call this
execution method the semi-adaptive execution scheme. The
semi-adaptive scheme is easy to implement during execu-
tion, but hard to analyze, therefore our analysis below is for
the basic execution scheme. In some special cases discussed
below, the basic and semi-adaptive schemes are equivalent.

As shown below, finding the optimal linear policy is also
NP-hard, although it may be easy to approximate using a
greedy scheme. However, even if the optimal linear policy
can be found, it is not necessarily an optimal solution to the
MDP, as shown in the following counter-example.

Example 1: We are given processes t1, 2, 3u with dead-
line distributions d1 “ r0.5 : ´1, 0.5 : 2s, d2 “ r0.5 :
´1, 0.5 : 4s, and d3 “ r0.4 : ´1, 0.6 : 4s. The computation
completion time distributions are: m1 “ r0.1 : 1, 0.9 : 2s,
m2 “ r1 : 2s, and m3 “ r1 : 3s, the latter two being degen-
erate distributions, i.e. known runtimes times.

The optimal linear policy is A12 “ p1, 1, 2, 2, ...q, where
the subscript denotes the processes to which time is allo-
cated. A12 delivers a timely solution if either process 1 suc-
ceeds (its deadline is not´1) or if process 1 fails yet process
2 succeeds, so we get P12 “ 0.5 ` p0.5 ˆ 0.5q “ 0.75. To
see that A12 is optimal, consider the alternatives. Sequence
A13 “ p1, 1, 3, 3, 3, ...q succeeds only if process 1 succeeds,
or if it fails after 1 time unit and process 3 succeeds. If pro-
cess 1 takes too long to fail, process 3 will not meet its dead-
line. We get: P13 “ 0.5 ` 0.5 ˆ 0.1 ˆ 0.6 “ 0.53. Any se-
quenceA3 starting with process 3 succeeds only if process 3
succeeds, with P3 “ 0.6. All other sequences are dominated
by A3, A13, or A12, thus A12 is the (linear) optimum.

However, the following adaptive policy is better thanA12:
Run process 1 for one time unit. If it terminates with success,
then we are done. If it terminates with failure, then run pro-
cess 3. If it has not terminated, run process 1 for one more
unit and allocate the two subsequent time units to process 2.
The probability of a timely successful solution for this pol-
icy is greater than P12, because in the case where process 1
fails in one time unit, we take advantage of this knowledge
to run process 3 instead of process 2 because it has a higher
probability of success and can still finish within its deadline.

Whether linear plans are near-optimal is an open prob-
lem. However, we show below that in the special case where
the deadlines are known, the optimal linear policy is also an
optimal solution to the MDP. Unfortunately, finding an op-
timal linear policy remains NP-hard. But if, in addition, the
performance profile obeys a certain diminishing returns cri-
terion, the optimal linear policy (and thus the true optimal

policy) can be found in polynomial time. Although realistic
cases do not necessarily exhibit these properties, we will see
that the solution to the special case can be used effectively
as part of an efficient heuristic solution to the MDP.

We begin by formulating the objective function in the
cases of a linear policy and a linear contiguous policy. For
simplicity, we provide the equations for the basic execu-
tion scheme. For a given scheduled sequence A, we define
an individual allocation for a task i as a function Ai from
non-negative integers to t0, 1u. Aiptq is 1 if time slot t al-
located for process i and 0 otherwise. Denote by Siptq the
total number of time slots allocated to i on or before t, i.e.:
Siptq “

řt
t1“1Aipt

1q. Then the probability that process i
under allocation Ai will find a timely solution is

PSipAiq “
ÿ

t

AiptqmipSiptqqp1´Diptqq

In a contiguous linear policy, Aiptq contains only a single
contiguous block of 1’s. A policy can then be represented
as an array of psi, liq pairs denoting (start, length) of the
processing time, respectively, and we can re-write PSi as

PSipAi “ psi, liqq “
li

ÿ

t“0

miptqp1´Dipt` siqq

With this representation, the problem becomes: Find an ar-
ray of pairs Ai “ psi, liq maximizing

PSUCC “ 1´
ź

i

p1´ PSipAiqq

Optimization of a product term is inconvenient. We can
equivalently minimize probability of failure PFAIL, which
is 1´ PSUCC . Taking logarithms, we seek to minimize:

logpPFAILq“logp
ź

i

p1´PSipAiqqq“
ÿ

i

logp1´PSipAiqq

(1)
An important special case is known deadlines, where we

can re-write the probability of success for process i as:

PSipAiq “
ÿ

tďdi

AiptqmipSiptqq“
ÿ

tďSipdiq

miptq“MipSipdiqq (2)

because 1 ´ Diptq “ 1 for all t ď di and zero for
t ą di. Using this probability of success in Equation 1
and using LFip.q to denote the log probability of failure,
logp1´Mip.qq, the objective function to minimize becomes

logpPFAILq “
ÿ

i

LFipSipdiqqq (3)

Note that in this case of known deadlines, we can map SEA2
into an equivalent (time-dependent planning) deliberation
scheduling problem simply by creating performance profiles
viptq “ ´LFiptq, and keeping the same deadlines. Addi-
tionally, if all the known dealines are also equal, we now
have a problem equivalent to that of allocating runtimes in
algorithm portfolios (Gomes and Selman 2001), where we
wish to maximize the probability that some algorithm in the
portfolio can find a solution before the (common) time limit
per problem instance.

Theorem 1. In SEA2 with known deadlines, the optimal lin-
ear contiguous policy is an optimal policy for the MDP.

Proof (outline): Consider any SEA2 MDP policy for
known deadlines, represented as a decision tree. Each state-
node has a single action edge, leading to a stochastic
(chance) node. Each chance node has one or more outgo-
ing edges, each leading to a state node. Given a (state, ac-
tion) pair ppT, T1...Tnq, aiq, there are two possible cases. If
T ě di, the deadline for process i is past, and process i fails
to find a timely solution (with probability 1): the respective
chance node is degenerate, and has only one next next state
with Ti “ F . If T ă di, the following chance node has only
two outgoing edges: either process i terminates successfully
(reaching a terminal state SUCCESS), or does not terminate
(and the next state has T and Ti incremented by 1). That is,
only the latter one edge leads to a node that can have outgo-
ing action edges. Thus, a maximum-length path in the tree
determines a unique sequence of actionsA, which is a linear
policy equivalent to this MDP policy.

Now consider any linear policy. The probability of suc-
cess for process i for known deadlines (Equation 2) depends
only on the total processing time given to process i before
its deadline di. Thus, any schedule that allocates processing
time beyond the deadline (called a tardy schedule) can be
improved (or at least made no worse) by re-allocating such
processing time to some other process. We thus consider be-
low only non-tardy schedules.

Under our SEA2 simplifying assumption that Pi “ 1, if a
process completes the computation this ends in SUCCESS.
Since Equation 2 depends only on the total amount of com-
putation time (before the deadline) for process i, rearranging
the schedule by moving allocations makes no difference as
long as the resulting schedule remains non-tardy. Therefore
the schedule can be rearranged to make allocations contigu-
ous, by making them appear in the same order as the dead-
lines (i.e. si ď sj is di ď dj). Thus the optimal contiguous
linear sequence is also an optimal solution to the MDP. l

Note that for non-tardy schedules with certain deadlines,
since a completed computation never fails, the simple ex-
ecution scheme and the semi-adaptive execution scheme are
equivalent. Although it is nice to know the form of optimal
policies for known deadlines, we have:

Theorem 2. For a compact representation of the distribu-
tions, finding the optimal contiguous linear SEA2 policy in
the case of known deadlines is NP-hard.

Proof (outline): by reduction from the optimization version
of knapsack ((Garey and Johnson 1979) problem [MP9]):

Definition 1 (Knapsack problem). Given a set of items S “
ts1, ...snu, each with a positive integer weight wi and value
vi, a weight limit W , find a subset S of S such that the total
weight of S is at most W with a maximal total value.

In the reduction, each process represents an item in the
Knapsack problem. We only need degenerate performance
profiles: for each process i, let its deadline be di “ W , and

its performance profileMi be a piecewise constant function:

Miptq “

#

0, t ă wi

εvi, wi ď t ďW
1, W ă t

ε is chosen such that the probability of success of at least
one process is ”almost” as much as the sum of success prob-
abilities of all the selected processes. Let H “ maxni“1 vi.
Setting ε ď 1

2H2n3 , we can show that every set of items
(processes) S we have:

ε
ÿ

siPS

vi ě PSUCCpSq “ 1´
ź

siPS

p1´εviq ą εpp
ÿ

siPS

viq´1q

Let S be an optimal contiguous schedule. W.l.o.g. we can
assume that the processing time assigned to each process
si P S is equal to wi, and that the sum of processing times
is at most W . Abusing the notation, we use S to also denote
the set of items si in the Knapsack problem corresponding
to the processes assigned time wi in S. The Knapsack value
of S is V “

ř

siPS
vi. By construction, the sum of weights

of the items in S is at most W , so S is a Knapsack solution.
Assume, in contradiction, that S is suboptimal. Then ex-

ists an (integer) Knapsack solution S1, with value V 1 ě
V ` 1. Taking S1 as a schedule (assigning time wi to each
process si P S1) creates a schedule where all processes run
before time W as well, with success probability:

PSUCCpS
1q “ 1´

ź

siPS1

p1´ εviq ą εpp
ÿ

siPS1

viq ´ 1q

ě εp
ÿ

siPS

viq ě PSUCCpSq

that is, schedule S1 has a greater success probability than S,
a contradiction. l

Note that the seemingly obvious proof of using the map-
ping between our deliberation scheduling and the NP-hard
equivalent deliberation scheduling in time-dependent plan-
ning does not generate a correct NP-hardness proof, as the
mapping involves an exponent. This results in number de-
scriptions of exponential size given the size of the descrip-
tion of the problem. Due to Theorem 1, this result (Theorem
2) also implies NP-hardness of the linear (not necessarily
contiguous) policy, as well as the NP-hardness of solving the
general SEA2 MDP. Observe that a compact representation
of the MDP is assumed, rather than a complete transition
distribution array, and that solving the MDP in the general
case may even be PSPACE-hard (conjecture).

As the linear policy optimization is NP-hard, we now con-
sider further restrictions, and in particular consider the case
of diminishing logarithm of returns in the performance pro-
file. That is, suppose that LFipt ` 1q ´ LFiptq is a non-
decreasing function of t for all i.
Theorem 3. The optimal SEA2 policy for the case of known
deadlines and diminishing logarithm of returns can be com-
puted in polynomial time.

Proof (outline): Although it seems to be a different
problem entirely, the theorem follows from results on job

scheduling with diminishing returns (Yedidsion 2012). The
problems are equivalent when we map log probability of
failure into costs, both of which need to be minimized. We
set the speedup function such that TipLFiptqq “ Tiplogp1´
Miptqqq “ t, i.e. set Tipcq “ expp1´M´1

i pcqq, whereM´1
i

is the inverse function ofMi. Then use any algorithm for the
job scheduling problem to get an optimal solution and map
it back to SEA2. l

If we have an analytical representation of LFiptq, we
can use the above conversion and the algorithm of Yedid-
sion (2012) directly. Likewise, if our distribution LFiptq is
piecewise linear diminishing returns, we can use the algo-
rithm for deliberation scheduling in time-dependent plan-
ning (Boddy and Dean 1994).

SEA2 with Diminishing Returns
As in general the performance profile may not be provided
analytically, and may also not be piecewise linear, we adapt
the above ideas to apply to the discrete distribution repre-
sentation that we have in SEA2. Properties A and B of an
optimal job schedule hold in SEA2. The solution property
C for the discrete case is slightly different, the inequality
needed here is:

LFipliq ´ LFipli ´ 1q ě LFi`1pli`1 ` 1q ´ LFi`1pli`1q

Proving this condition is similar to the proof for the continu-
ous case. That is, if condition C does not hold, then we have
for some i:

LFipliq ´ LFipli ´ 1q ă LFi`1pli`1 ` 1q ´ LFi`1pli`1q

where modifying the deliberation schedule to have: li Ð
li´1, li`1 Ð li`1`1, si`1 Ð si`1´1, decreases logarithm
of probability of failure, without causing it to be tardy.

In the algorithm, which we call ScheduleDR, we keep a
queue Q containing the current active profiles, and for each
profile the currently allocated time li. Q is kept sorted in
non-decreasing order of the gain giptq “ LFiptq ´ LFipt´
1q. Psuedo-code is given in Algorithm 1.

Algorithm 1: Scheduling for Diminishing Returns
1 ScheduleDR(Profiles)
2 For all 1 ď i ď n, let li “ 0
3 Let Q “ H; Order “ H
4 for t “ maxni“1 di downto 0 do
5 for each i for which di “ t do
6 Insert profile i into Q
7 Prepend i to Order

8 Retrieve profile j from Q
9 Increment lj , and re-insert into Q

10 Let t “ 0
11 for j from 1 to n do
12 Let sOrderrjs “ t
13 Let t “ t` lOrderrjs

14 Return the pairs psi, liq of all profiles.

By construction, the complexity of ScheduleDR isOppn`
dq log nq, where d “ maxni“1 di, the latest deadline. Note

that this algorithm is essentially the same as the deliberation
scheduling for piecewise linear profiles (Boddy and Dean
1994), adapted to the discrete case.

Non-diminishing returns
In general, as well as in the planning application, the Mi

distributions do not have diminishing returns, as we expect
Miptq to be near zero until some critical value of t (the
expected planning time for process i, also called “startup
time”), and then quickly increase, followed by a region that
behaves according to a diminishing returns rule. An addi-
tional complication is that the deadlines can be stochastic.
Therefore, we cannot directly use ScheduleDR.

Nevertheless, if the time allocated to each process is at
least equal to the critical value, thereby reaching the dimin-
ishing returns region, it is still possible to use the algorithm
for diminishing returns, as long as we make sure that the
algorithm does not ignore processes that have a significant
startup time. Therefore, we can convert such profiles that
have a startup time into diminishing returns by modifying
them to have a rampup starting at 0 (see below).

Under the assumption that all processing time is allocated
to process i, starting at time 0, the success distribution for
process i is:

fiptq “ PSipAi “ p0, tqq “ Pi

t
ÿ

t1“0

mipt
1qp1´Dipt

1qq

Define the most effective computation time for process i un-
der this assumption to be:

ei “ argmin
t

logp1´ fiptqq

t

Now can modify the function Mi in the region from 0 to ei
to have linear slope in probability of failure. That is, set:

LFiptq “ t
logp1´Mipeiqq

ei

for all 0 ď t ď ei. We now have performance profiles with
initially diminishing returns. (For some unimodular distribu-
tion this actually results in diminishing returns for all t.)

We also need to handle the uncertain deadlines. We do so
by setting a deadline proxy value dipthq as a function of Di

and a “confidence level threshold” 0 ď th ď 1, defined by:
dipthq = the first t such that Diptq ě th. Another possibility
is to use the expected value of the deadline as if it were a
known deadline.

After making these modifications, we can use the algo-
rithm for diminishing returns to create a schedule that is
optimal for the modified profiles and the proxy deadlines.
However, the resulting schedule may be very far from op-
timal, as in fact the time allocated for many processes can
be significantly lower than its most effective computation
time. We have attempted such a solution, and the empiri-
cal results were not good. Therefore, other than mentioning
these negative results for completeness, we do not further
elaborate this method. Nevertheless, some of the intuitions
and definitions from this section are still usable in the better-
performing real-time greedy scheme we describe below.

Real-time Deliberation Scheduling
Faster meta-reasoning is achievable if we try to allocate
computation time just for the first process to run, and defer
the rest of the scheduling. This makes sense as in practice the
initial computations actually may provide additional infor-
mation, which the full scheduling does not take into consid-
eration. Note that algorithm ScheduleDR() tends to allocate
computation time for a process that has an early deadline,
but may decide to throw it out (allocate it zero processing
time) if its performance slope is too low or it is unlikely to
complete computing before its deadline.

The intuition from the diminishing returns optimization is
thus to prefer the process i that has the best utility per time
unit. However, it is also important to allocate the time now
to a process i that has a deadline as early as possible, as this
is most critical. We therefore suggest the following greedy
algorithm. Whenever assigning computation time, allocate
td units of computation time to process i that maximizes:

Qpiq “
α

ErDis
´
logp1´ fipeiqq

ei
(4)

where α and td are positive empirically determined param-
eters, and ErDis is the expectation of the Di distribution,
which we use as a proxy for “deadline of process i”. The
α parameter trades off between preferring earlier expected
deadlines (large α) and better performance slopes (small α).

Empirical Evaluation
In order to empirically evaluate our scheduling meth-
ods, we generated several types of performance profiles
and deadline distributions based on the following distri-
butions: Uniform (U), with minimal range value a “

1 and maximal range value b uniformly drawn from
tr5, 10s, r50, 100s, r100, 200s, r150 ´ 300su, we denote the
set of possible ra ´ bs ranges by R; Boltzmann (B),
truncated exponential distribution with the diminishing re-
turn property, using a λ P t0.1, 1, 2u and range drawn
from R; Truncated Normal Distribution (N) with µ P

t5, 50, 100, 150u, σ P t1, 5, 10u, and range drawn from R;
Finally, we used distributions collected from search trees

of the Robocup Logistics League (Niemueller, Lakemeyer,
and Ferrein 2015) domain generated by the OPTIC planner
(denoted by P in the table). To acquire the distribution, A*
was executed from each node of the dumped search tree. The
result of each of these searches provides the numberNpvq of
expansions necessary to find the goal under a node v. These
numbers were binned separately for each phpvq, gpvqq pair.
Then, a number of nodes V in the tree was selected ran-
domly, each one standing for a process. For each such v P V ,
the list of numbers of expansion in the bin corresponding to
gpvq and hpvq was treated as a distribution over completion
times (in terms of number of expansions). Likewise for cre-
ating the latest start times for the resulting plan (the deadline
distribution). When using our method as part of a planner,
one would need to create such statistics on-the-fly.

Experiments were both with unknown deadline (UK) or
with a known deadline (K) which was randomly drawn from
the corresponding distribution before the execution.

K / UK Dist # pr MDP Greedy ScheduleDR MPP RR Random
Q T Q T Q T Q T Q T Q T

K

B

2 0.67 0.05 0.61 0.01 0.67 0.00 0.70 0.00 0.55 0.00 0.54 0.00
5 0.72 0.04 0.82 0.00 0.61 0.00 0.54 0.00 0.57 0.00

10 0.60 0.07 0.88 0.00 0.71 0.00 0.48 0.00 0.51 0.00
100 0.81 0.74 0.99 0.01 0.91 0.03 0.62 0.00 0.60 0.00

N

2 0.61 7.49 0.56 0.01 0.45 0.00 0.33 0.00 0.04 0.00 0.07 0.00
5 0.83 0.02 0.72 0.01 0.27 0.00 0.01 0.00 0.03 0.00

10 0.93 0.04 0.41 0.01 0.09 0.00 0.00 0.00 0.03 0.00
100 1.00 0.20 0.70 0.03 0.23 0.02 0.00 0.00 0.00 0.00

U

2 0.68 1.20 0.61 0.04 0.65 0.01 0.50 0.00 0.47 0.00 0.48 0.00
5 0.90 0.13 0.88 0.01 0.75 0.00 0.49 0.00 0.47 0.00

10 0.98 0.28 0.98 0.01 0.66 0.01 0.44 0.00 0.44 0.00
100 1.00 2.36 1.00 0.02 0.80 0.03 0.42 0.00 0.45 0.00

P

2 0.72 0.02 0.79 0.00 0.01 0.00 0.01 0.00 0.04 0.00
5 0.78 0.06 0.81 0.07 0.79 0.02 0.38 0.02 0.54 0.02

10 1.00 0.05 0.87 0.10 0.99 0.00 0.85 0.01 0.82 0.01
100 1.00 0.42 0.91 0.25 0.86 0.04 0.00 0.03 0.04 0.05

Known Average 0.82 0.08 0.78 0.01 0.58 0.00 0.33 0.00 0.35 0.00

UK

B

2 0.68 147.34 0.61 0.07 0.35 0.00 0.64 0.00 0.59 0.00 0.57 0.00
5 0.65 0.18 0.36 0.00 0.63 0.01 0.60 0.00 0.60 0.00

10 0.70 0.45 0.45 0.00 0.66 0.04 0.62 0.00 0.62 0.00
100 0.70 5.45 0.44 0.01 0.65 0.68 0.58 0.00 0.61 0.00

N

2 0.66 26.95 0.63 0.07 0.37 0.01 0.20 0.00 0.14 0.00 0.13 0.00
5 0.70 0.19 0.35 0.01 0.09 0.00 0.02 0.00 0.06 0.00

10 0.65 0.41 0.30 0.01 0.15 0.01 0.00 0.00 0.02 0.00
100 0.76 4.02 0.32 0.05 0.06 0.05 0.00 0.00 0.00 0.00

U

2 0.73 103.28 0.68 0.33 0.39 0.01 0.53 0.01 0.54 0.00 0.55 0.00
5 0.70 1.25 0.43 0.01 0.57 0.03 0.43 0.00 0.45 0.00

10 0.78 2.07 0.46 0.02 0.59 0.05 0.47 0.00 0.44 0.00
100 0.86 16.56 0.52 0.03 0.59 0.16 0.43 0.00 0.44 0.00

P

2 0.61 0.01 0.24 0.00 0.46 0.00 0.47 0.00 0.52 0.00
5 0.90 0.05 0.54 0.04 0.45 0.03 0.56 0.03 0.59 0.06

10 0.90 0.45 0.32 0.06 0.62 0.06 0.60 0.04 0.62 0.07
100 0.85 3.54 0.77 0.13 0.38 0.01 0.20 0.89 0.33 0.50

Unknown Average 0.73 0.47 0.41 0.01 0.45 0.02 0.39 0.00 0.41 0.00
Total Average 0.77 0.20 0.60 0.01 0.52 0.01 0.36 0.00 0.38 0.00

Table 1: Solution quality and runtime of the algorithms on different settings

We compared the results of ScheduleDR and the greedy
scheme to several naive schemes: (1) random - allocate time
to a random process that did not already fail; Most promising
plan (MPP) - allocate time to the plan with the highest proba-
bility to finish successfully and meet the deadline, in case of
failure, the algorithm chooses the next most promising plan
and repeats the process; Round-robin (RR) - allocate time
units to each non-failed process in equal portions and in cir-
cular order. Whenever possible, we also compared with the
optimal MDP solution computed using value-determination
of the Bellman equation. Unfortunately the space required
for the MDP is Opdnq just for enumerating the state space,
even with a compact representation of the transition dis-
tribution. Although the runtime is Opdn`1q, space was the
main limiting factor, so we could only compute the opti-
mal score for a few of the smallest instances. We tested
ScheduleDR using th P t0.2, 0.5, 0.7, 1u and greedy with
α P t0, 0.2, 0.5, 1, 20u, td P t1, 5, 10u. However, the re-
ported results include only the best configuration for each
algorithm: th “ 0.5, alpha “ 0, and td “ 1.

Evaluating the quality of a solution (policy) is not a trivial

task, especially for adaptive policies which depend on the
state to make a decision. In order to tackle this issue, we
ran the algorithms on each setting for 500 attempts and re-
ported the fraction of successful runs out of the total number
of attempts as the solution quality. The results are shown
in Table 1. The Q column indicates the solution quality
(probability of success using the policy created by the al-
gorithms); the T column is the runtime in seconds. The rows
denoted “average” are average solution quality and geomet-
ric mean of the runtimes. As expected, ScheduleDR had the
best performance when using known deadlines with dimin-
ishing returns performance profiles (B). However, in most
other cases ScheduleDR performed poorly, especially when
the deadlines were unknown. Greedy resulted in the best
policy in most cases, and the best average solution qual-
ity for both known and unknown deadlines. Overall, the
greedy scheme demonstrates a significant improvement over
the naive schemes in terms of solution quality. Nonetheless,
greedy had the worst runtime out of all other algorithms (ex-
cept for the MDP) with an average runtime of 1.24 seconds.
Note that the time reported is the total time for an entire pol-

icy evaluation, therefore, it includes hundreds of decisions
at different points. Thus, despite being the slowest of the ef-
ficient algorithms, the greedy scheme is sufficiently fast to
be used for metareasoning.

Discussion
This paper defined a deliberation scheduling problem that
models optimization of the probability of success for find-
ing a timely plan that depends on external events. This de-
pendence can cause a plan of action to expire, and thus our
deliberation scheduling problem is similar to that of time-
dependent planning, though with a different objective func-
tion. In fact, there is a direct mapping between these delib-
eration scheduling problems that we can exploit. However,
in our case the time at which the actions expire (also called
deadlines) are uncertain, adding complexity to our version
of the problem. An additional surprising connection exists to
job scheduling, where some results similar to those in time-
dependent planning are useful.

We introduce a formal MDP model of our deliberation
scheduling problem, and analyze its complexity. As solv-
ing the MDP is computationally hard, we examine the pos-
sibility to provide simple (”linear”) schedules as a solution,
rather than a full MDP policy. Such solutions are shown by
counter-example to be suboptimal, except when the problem
is restricted to known deadlines, in which case the optimal
constant schedule is also an optimal solution to the MDP.
Unfortunately we show that even finding the optimal simple
schedule is NP-hard. By examining the relationship to time
dependent planning and to job scheduling, we can use simi-
lar results for the further restricted case of a appropriate form
of diminishing returns, where an optimal solution is possi-
ble in low-order polynomial time (Boddy and Dean 1994;
Horvitz 2001; Yedidsion 2012).

As the restrictions that allow polynomial-time optimal so-
lutions usually do not hold in practice, we develop algo-
rithms that use intuitions from the special case. These are
evaluated empirically; one of them, a greedy scheduling al-
gorithm, seems to be close to optimal for many distributions.

Nevertheless, several issues remain open, both theoret-
ical and practical. Some immediate theoretical questions
are: Can the optimal policy be approximated in polyno-
mial time within a small constant factor (whether multiplica-
tive or additive)? What is the actual complexity class of the
deliberation-scheduling MDP? On the practical side, faster
algorithms with good practical results, are needed. Dynamic
algorithms are especially important due to the main moti-
vation of our problem, which comes from allocating time
for search. For example, the different “processes” could ac-
tually represent different nodes in a planner’s search for a
timely plan. In this case, however, nodes are added (and pos-
sibly pruned) during the search, thereby adding and deleting
processes that need to be scheduled, in some cases modi-
fying node statistics. The allocation effort thus needs to be
very fast, but may take advantage of there being only a few
changes in the setup each time the search effort is reallo-
cated. An adaptation of our greedy scheme is likely to be
applicable, but additional research is required before it can
be fully integrated into an existing planner.

Acknowledgements
Partially supported by ISF grant #844/17, and by the Frankel
center for CS at BGU. Project also funded by the European
Union’s Horizon 2020 Research and Innovation programme
under Grant Agreement No. 730086 (ERGO).

References
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
planning with preferences and time-dependent continuous
costs. In ICAPS.
Boddy, M., and Dean, T. L. 1994. Deliberation schedul-
ing for problem solving in time-constrained environments.
Artificial Intelligence 67(2):245 – 285.
Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2018. Temporal planning while
the clock ticks. In ICAPS, 39–46.
Cresswell, S., and Coddington, A. 2003. Planning with
timed literals and deadlines. In Proceedings of 22nd Work-
shop of the UK Planning and Scheduling Special Interest
Group, 23–35.
Dean, T. L.; Kaelbling, L. P.; Kirman, J.; and Nicholson,
A. E. 1995. Planning under time constraints in stochastic
domains. Artif. Intell. 76(1-2):35–74.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. Technical Report 195, University of Freiburg.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability, A Guide to the Theory of NP-completeness.
W. H. Freeman and Co. 190.
Garvey, A., and Lesser, V. R. 1994. A survey of research in
deliberative real-time artificial intelligence. Real-Time Sys-
tems 6(3):317–347.
Gomes, C. P., and Selman, B. 2001. Algorithm portfolios.
Artif. Intell. 126(1-2):43–62.
Hansen, E. A., and Zilberstein, S. 2001. Monitoring and
control of anytime algorithms: A dynamic programming ap-
proach. Artif. Intell. 126(1-2):139–157.
Horvitz, E. 2001. Principles and applications of continual
computation. Artif. Intell. 126(1-2):159–196.
Niemueller, T.; Lakemeyer, G.; and Ferrein, A. 2015. The
RoboCup Logistics League as a Benchmark for Planning in
Robotics. In WS on Planning and Robotics (PlanRob) at Int.
Conf. on Aut. Planning and Scheduling (ICAPS).
Russell, S. J., and Wefald, E. 1991. Principles of metarea-
soning. Artificial Intelligence 49(1-3):361–395.
Yedidsion, L. 2012. Bi-criteria and tri-criteria analysis to
minimize maximum lateness makespan and resource con-
sumption for scheduling a single machine. J. Scheduling
15(6):665–679.

