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Abstract
If a planning agent is considering taking a bus,
for example, the time that passes during its plan-
ning can affect the feasibility of its plans, as the
bus may depart before the agent has found a com-
plete plan. Previous work on this situated tempo-
ral planning setting proposed an abstract delibera-
tion scheduling scheme for maximizing the prob-
ability of finding a plan that is still feasible at the
time it is found. In this paper, we extend the delib-
eration scheduling approach to address problems in
which plans can differ in their cost. Like the plan-
ning deadlines, these costs can be uncertain until a
complete plan has been found. We show that find-
ing a deliberation policy that minimizes expected
cost is PSPACE-hard and that even for known costs
and deadlines the optimal solution is a contingent,
rather than sequential, schedule. We then analyze
special cases of the problem and use these results
to propose a greedy scheme that considers both the
uncertain deadlines and costs. Our empirical evalu-
ation shows that the greedy scheme performs well
in practice on a variety of problems, including some
generated from planner search trees.

1 Introduction
Situated temporal planning [Cashmore et al., 2018] is a model
for the planning problem faced by an agent for whom signif-
icant time passes as it plans. In this setting, external tempo-
ral constraints (e.g., deadlines) can be introduced depending
on the actions included in a plan. For example, taking the
9:00 bus introduces a new constraint that the agent must be at
the bus stop by 9:00. These plan-specific constraints make
the problem different than real-time search (e.g., [Koenig
and Sun, 2009; Sharon et al., 2014; Cserna et al., 2017;
Cserna et al., 2018]), deadline-aware search [Dionne et al.,
2011], or Best-first Utility Guided Search [Burns et al., 2013].

Situated temporal planning calls for a search strategy dif-
ferent from traditional offline search algorithms, as the choice
of which node to expand must account for the fact that time
spent exploring one part of the search space passes in the real
world and may invalidate other partial plans. Shperberg et

al. [2019] suggested a rational metareasoning [Russell and
Wefald, 1991] scheme for situated temporal planning. They
formalized the problem as an MDP (called AE2 for Allocat-
ing Effort when Actions Expire) whose actions allocate a unit
of time to one of n running processes, showed that solving
this MDP optimally is NP-hard, and suggested a greedy de-
cision rule (denoted P-Greedy henceforth) that worked well
in their empirical evaluation. However, P-Greedy attempts
merely to maximize the chance of finding a timely plan, with-
out considering plan cost. For example, if taking a taxi does
not introduce a deadline but is much more expensive than tak-
ing the bus, P-Greedy always chooses to take the taxi, even if
there is very little uncertainty about whether the agent could
catch the bus on time.

In this paper, we extend the metareasoning problem for sit-
uated temporal planning to include plan cost. First, we pro-
vide a formal characterization of the metareasoning problem
with plan costs as an MDP (which we call ACE2 for Allo-
cating Computational Effort when Actions with Costs Ex-
pire), and show that optimally solving this MDP is PSPACE-
complete. We also show that even when the deadlines and
costs are known with certainty, an optimal solution for this
problem requires a contingent policy, in contrast with AE2
with known deadlines, where previous work showed that an
optimal policy can be linear. Finally, we provide an analytical
solution to the special case where only one process may be
scheduled, and use this solution to construct a greedy deci-
sion rule for the general case. Our empirical evaluation sug-
gests that the new greedy scheme performs significantly bet-
ter than various baseline algorithms and the P-Greedy scheme
on benchmarks featuring several families of distributions, in-
cluding distributions taken from actual runs of the OPTIC
planner [Benton et al., 2012]. This work brings situated tem-
poral planning closer to practical applicability, as plan cost is
often an important factor in applications.

2 Problem Statement: Cost vs Timeliness
The desire to achieve one’s goals as cheaply as possible, as
well as in a timely manner, induces a tradeoff between plan
cost and the probability of successfully finding a plan that is
still executable at the time it is found (except in the rare case
where all potential plans have equal cost). In order to make
the metareasoning problem well defined, we introduce a cost



of failure cf and require minimization of the expected cost
over outcomes representing either costs of timely plans or the
cost of failure. When the value of cf is high, optimal policies
will aim to maximize the probability of finding a plan, while
for low values of cf , optimal policies will focus on finding a
cheap plan, at the risk of not finding a plan at all. Moreover,
the simpler problem of maximizing the probability of success
is a special case where the cost of all correct and timely plans
is zero and cf > 0.

Following Shperberg et al. [2019], we abstract away from
any specific planning methodology and merely posit the ex-
istence of n computational processes, all attempting to solve
the same problem, and a single computing core for running
all of the processes. When a process completes, it delivers a
solution plan with a known execution cost. However, every
solution also has a (possibly unknown) deadline, and if the
solution is delivered at a time that is later than that deadline,
it cannot be used. A solution delivered at or before its dead-
line is called timely.

We can now define the ACE2 problem, in which the objec-
tive is to minimize the expected cost of the timely solution
found by the set of processes. The following distributions are
assumed to be known: (i) Di(t), the cumulative distribution
function (CDF) over wall clock times of a random variable
denoting the deadline for each process i. (ii) Mi(t), the CDF
giving the probability that process iwill terminate when given
an accumulated computation time of t or less. (iii) Ci, a prob-
ability mass function (PMF) over solution costs for process i.
We denote by dmaxi

the time of the latest possible deadline
for process i, i.e. the smallest t for which Di(t) = 1.

The true values of the deadline for process i and the cost
of plan i are revealed only when process i completes its com-
putation. We call such a process completed, otherwise it is
incomplete. The cost of a plan of an incomplete process, as
well as a completed process that has failed to find a timely
solution, is assumed to be cf . Thus, the probability of a pro-
cess failing to find a plan at all can be incorporated into its
cost distribution.

The problem is to find a policy for allocating the comput-
ing core’s time among the processes, as well as optionally
stopping deliberation and executing a complete plan already
computed by one of the processes, so as to minimize expected
cost of the executed plan. Note that in AE2 there is no need to
include an explicit decision to start executing a plan, as once
the first feasible plan is found, there is no benefit in searching
for better plans. However, when cost is considered, even after
the first timely plan is found, we may want to delay executing
it in the hope of finding a better plan.

When modeling processes solving the same problem, the
distributions over costs and deadlines may have dependen-
cies, complicating both the distribution estimation in practice
and the deliberation scheduling. In fact we show below that
optimally solving ACE2 with dependencies is PSPACE-hard.
Therefore, we make the metareasoning assumption that all
these distributions are independent, which in certain simple
special cases allows for efficient solutions. Since these sim-
ple cases do not cover our desired scenarios, we also present a
greedy algorithm for effectively handling the problem, based
on intuitions from the special cases.

3 Deliberation Scheduling MDP with Costs
Following Shperberg et al. [2019], we formulate a discrete-
time version of the problem, DACE2, allowing us to model
the problem as an MDP. We define mi(t) = Mi(t)−Mi(t−
1), the probability that process i completes after exactly t
steps of computation, and di(t) = Di(t) − Di(t − 1), the
probability that the deadline for process i is exactly at time t.

We formalize the DACE2 MDP as an indefinite duration
MDP with terminal states, where we keep track of time as part
of the state. The state variables are the wall clock time T , and
one state variable Ti for each process, with domain N, which
represents the cumulative time assigned to process i so far.
In addition, we have state variables cti and dli, the cost and
deadline (respectively) of each process that has completed its
computation. We also have a special terminal state DONE.
Since the cti and dli variables are irrelevant for incomplete
processes, and the time assigned to a process is irrelevant to
completed processes, the state space can be stated as:

S = {DONE} ∪(
dom(T )× ×

1≤i≤n
(dom(Ti) ∪ (dom(cti)× dom(dli)))

)
There are 2n actions in the MDP, {a1, . . . , an} ∪

{g1, . . . , gn}. Action ai assigns the next unit of computation
time to incomplete process i. Action gi denotes giving the
plan computed by completed process i the go-ahead to ex-
ecute, and transitioning into a terminal state. Note that for
every process i, either ai or gi is applicable but not both.

The initial state S0 has T = 0 and Ti = 0 for all 1 ≤ i ≤ n.
We use the notation T [S0] = 0 and Ti[S0] = 0 (i.e. state vari-
able as a function of the state) as a shorthand to denote this.
The transition distribution of the action ai is determined by
the Mi and Di distributions. If a process has just completed
its computation in the transition from state S to state S′, then
cti[S

′] and dli[S′] are assigned according to the actual dead-
line and cost of the solution obtained by process i. The state
variables for other processes remain unchanged.

More precisely, when transitioning from state S to S′ by
applying action ai: (1) The current time T [S′] = T [S] + 1.
(2) The computation time of every other process remains un-
changed, that is ∀j 6= i : Tj [S

′] = Tj [S]. (3) The probability
that process i’s computation completes in this transition is
Pterm = mi(Ti[S]+1)

1−Mi(Ti[S])
. Therefore, with probability 1−Pterm,

process i does not complete and we have Ti[S′] = Ti[S] + 1.
Conversely, with probability Pterm, process i completes. In
this case, cti[S′] and dli[S′] are assigned values according to
distributions Ci and Di, respectively. For example, in the in-
dependent cost case, for all x ≤ dmaxi , dli[S

′] = x with
probability di(x); if x < T [S′], then cti[S′] = cf , otherwise,
for all y, cti[S′] = y with probability Ci(y).

The reward for executing action ai before the last dead-
line of process i has passed (T [S] < dmaxi ) is always 0, but
when ai is applied in state S with T [S] ≥ dmaxi

, the reward
is −cf . In the latter case, transition into S′ = DONE with
probability 1. This exception is in order to avoid useless al-
location of time to processes where certainly no timely plan
can be found, as well as infinite allocation action sequences.



When applying action gi in state S, that is, executing the
plan found by completed process i, the transition is always to
terminal state S′ = DONE. The reward in this case is−cti[S]
if dli ≥ T [S] and −cf otherwise.

Although the MDP is a formal statement of the
DACE2 problem, we assume that it is specified implicitly
through a compact representation of the distribution (includ-
ing any possible dependencies), as the state space of the MDP
is exponential in the number of processes.

4 Theoretical Analysis of ACE2
4.1 Complexity of ACE2
Optimally solving the ACE2 problem is intractable. In fact,
for the general case with unrestricted dependencies we have:
Theorem 1. Finding the first action in an optimal policy for
a DACE2 problem is PSPACE-hard.

Proof. By reduction from quantified Boolean formulas
(QBF). Let α be a QBF specified in prenex normal form, i.e.:

α = ∃x1∀y1...∃xn∀ynΦ(x1, y1, ...xn, yn) (1)
with Φ being a 3-CNF Boolean formula in the xi, yi variables.
Determining the truth of α, or equivalently the existence of a
policy for assigning the xi such that Φ is always satisfied, is
PSPACE-hard (Garey and Johnson [1979], problem LO11).

We transform an instance of QBF into an instance of
DACE2 with 2n+2 processes, whose optimal allocation pol-
icy reveals the truth status of α. Among these processes, there
are 2n ‘variable setting’ processes pjxi

, one for each of the n
existential variables and for each j ∈ {t, f}. Each pjxi

always
takes exactly 1 time unit. Allocating time to pjxi

represents as-
signing the value j to xi. The uncontrollable yi variables are
modeled using the stochastic cost outcomes of the pjxi

pro-
cesses. Let cf = 2n+2. Each pjxi

has three possible costs: 1)
cf
2 , representing an outcome where the universally quantified

variable yi that follows xi is false, 2) cf2 + 1 representing an
outcome in which yi is true, and 3) cf , representing a ”fail-
ure” or that the process is incomplete (because it was not al-
located any computation time yet). As a shorthand, we denote
the event C(pjxi

) =
cf
2 by pjxi,0

, the event C(pjxi
) =

cf
2 + 1

by pjxi,1
, and C(pjxi

) = cf by pjxi,I
.

The remaining two processes, denoted by pdefault and
psuccess are designed to be selected according to whether α
is true. pdefault always takes time 2n+ 1 to complete and de-
livers a solution with a known cost of 1. We show below that
the optimal policy schedules the a action followed by the g
action for pdefault just when α is false.

When α is true, we show that it is optimal to schedule the
pjxi

corresponding to a satisfying assignment of α followed
by psuccess , which always takes time n+ 1, has a cost distri-
bution depending deterministically on the pjxi

, with cost 0 or
cf , depending on other costs, as defined below. If psuccess is
run and delivers a solution of cost 0, the optimal policy then
executes that solution (i.e. do the g action for psuccess ). The
deadline for all processes is D = 2n + 1, so by construction
one can either run pdefault , or run n variable-setting processes
and then psuccess before the deadline.

To test the truth of α, we have two tasks: enforcing ordered
setting of the xi, and letting the cost of psuccess be 0 if α is
true. We now define the details of the probability distribution
over the costs for the pjxi,1

and psuccess . First, we essentially
force one of each pjxi

pair to be allocated in order to make
psuccess achieve cost 0. For j ∈ {f, t} and n ≥ i ≥ 2,

P (pjxi,I
|pfxi−1,I

∧ ptxi−1,I) = 1

Note the dependence of the cost distribution on the observed
costs of the preceding pjxi

processes. The cost distribution for
completed processes (for conciseness, we omit this condition-
ing event in the equations) is P (pjx1,0

) = P (pjx1,1
) = 0.5 and

for n ≥ i ≥ 2, we have:

P (pjxi,0
|¬(pfxi−1,I

∧ ptxi−1,I))

= P (pjxi,1
|¬(pfxi−1,I

∧ ptxi−1,I)) = 0.5

The cost of psuccess given the costs of the pjxi
is defined

as follows. If for any 1 ≤ i ≤ n we have pfxi,I
∧ ptxi,I

, then
C(psuccess) = cf with probability 1. In all other cases we
have exactly one of C(ptxi

) < cf or C(pfxi
) < cf for all i.

Thus, the costs of all the pjxi
encode a unique assignmentA to

all the Boolean variables. Let C(psuccess) = 0 if assignment
A satisfies Φ, andC(psuccess) = cf otherwise. So the optimal
policy is to choose pdefault (for a cost of 1) just when α is
false. That is because in this case there is a probability of
at least 2−n of getting a non-satisfying assignment, thus a
cost of at least cf2 , and an expected cost ≥ 2n+2

2n+1 = 2 if the
default is not selected. However, if α is true, there exists a
policy that always satisfies Φ, and thus the optimal scheduling
policy begins with pfx0

or ptx0
(and concludes with psuccess ),

delivering a cost of 0 with probability 1.

If the last possible deadline is polynomial in the prob-
lem description size, then finding the optimal first action is
in PSPACE, since this is a ‘game against nature’ of polyno-
mial length. Thus, under this restriction, the DACE2 prob-
lem is PSPACE-complete. Note that since the DACE2 prob-
lem is PSPACE-hard, it follows immediately that ACE2is also
PSPACE-hard, as the discrete problem is a special case of the
more general model of ACE2.

Although of theoretical significance, membership in
PSPACE is no help for practical solution of this schedul-
ing problem, especially as it was conceived as a metareason-
ing problem, which must be solved in negligible computa-
tion time. Henceforth, we make the metareasoning assump-
tion that all the random variables are jointly independent.

4.2 The Case of Known Costs
The special case of DACE2 where all plan costs are 0 and the
cost of failure is 1 is equivalent to the discrete AE2 model of
Shperberg et al. [2019] (denoted by SAE2). Further simpli-
fying the SAE2 model to known deadlines, the problem was
shown to be NP-hard, even though the optimal schedule is
a linear sequence. However, with different costs the optimal
schedule is not even necessarily linear.



Theorem 2. Optimal solutions for DACE2 must sometimes
consist of a contingent schedule (that depends on previous
results delivered by processes), even for the restricted case of
known deadlines and known costs.

Proof. Let cf = 100 and consider processes {1, 2, 3}, with
C1 = 0, C2 = 10, C3 = 15, all with the same deadline
di = 2. Let the completion-time distributions be:m1 = [0.1 :
1, 0.9 : 10],m2 = [0.5 : 1, 0.5 : 10],m3 = [1 : 1]. That is,
all processes have some probability of completing computa-
tion in one time unit, and otherwise do not complete within
the deadline, with process 3 surely completing and delivering
a plan costing 15. Thus, by construction, any optimal policy
will run a process for at most one time unit, and only 2 pro-
cesses can be scheduled to run before the (common) deadline.

The optimal policy P ∗ here is to run process 2 first (action
a2). If process 2 completes (thus delivering a cost 10 plan),
then run process 1 (action a1), resulting in an expected cost
of (10 · 0.9 + 0 · 0.1 = 9) in this branch, because if process
1 completes we have a plan with cost 0 (do action g1), oth-
erwise we have a plan with cost 10 (do action g2). If process
2 does not complete, the best option is a3 to get a plan with
cost 15 (and then do g3 to execute it). Expected cost of this
policy is thus E[C(P ∗)] = 0.5 · 9 + 0.5 · 15 = 12. Note that
this is a strictly conditional (i.e. non-linear), policy.

To see that P ∗ is strictly better than any other policy, con-
sider starting with a3, which delivers a plan with cost 15. Now
doing a1, we get a 0.1 probability of improving this to 0, so
the expected cost is 13.5, while doing a2 at this point we get a
probability of 0.5 of improving the cost to 10, and thus a cost
12.5 in expectation, in both cases worse than P ∗. Alternately,
starting with a1, if process 1 completes we get cost 0, but oth-
erwise the best we can do is a3 to get a plan with cost 15. This
is also suboptimal (expected cost of this policy is 13.5).

4.3 Simple Special Case: One Running Process
Looking for tractable cases, we consider the case where we
are allowed to allocate time to only one incomplete pro-
cess, denoted by i. However, we also posit m − 1 com-
pleted plans with known costs cj and known deadlines dj for
1 ≤ j ≤ m − 1. These plans are results from processes that
have completed computation in the past, if any. For conve-
nience, we add an additional completed dummy plan m with
cm = cf and dm = ∞, denoting the failure case. Without
loss of generality, let 0 = d1 < d2 < ... < dm =∞ and also
c1 < c2 < ... < cm = cf , as a plan cj that has a cost greater
than or equal to cj+1 is dominated and can be removed. We
can find an optimal stopping policy for the incomplete pro-
cess i by considering all possible stopping points d1, ...dm.

Theorem 3. If only one specific incomplete process can be
scheduled, the optimal schedule (consisting of the optimal
stopping time) can be computed in polynomial time.

Proof. Let policy πi,k(td) be to do no computation for delay
time td (needed later on), then run process i until time dk (if
dk > td). Finally, execute the cheapest timely plan available
when i completes or ”times out”. Computing the expected
cost of πi,1(td), denoted byEπi,1

(td), is easy because d1 = 0,
so no computation time is allowed for process i. The best

timely plan at time td has cost cl for the first l for which dl ≥
td, and thus Eπi,1(td) = cl. In particular, Eπi,1(0) = c1.

The value of πi,2(td) is more complex. Let us denote by
si(t, td) the probability that process i, starting at time td and
running with no interruption, will complete its computation
in at most t additional time units, and succeed in finding a
timely solution. Likewise, denote by fi(t, td) the probabil-
ity that process i will complete computing under the same
conditions, and fail to find a solution (or find a solution, but
discover that the deadline has passed). That is, we have:

si(t, td) =

t∑
t′=1

mi(t
′)(1−Di(td + t′ − 1))

fi(t, td) =

t∑
t′=1

mi(t
′)Di(td + t′ − 1)

Note that fi(t, td)+si(t, td) = Mi(t) because at any point in
time, for a completed process, success and failure (in finding
a timely solution) are mutually exclusive events.

If we decide to stop computing at d2, we get cost c2 unless
something better came up earlier. That is, we get cost c2 ei-
ther if process i is incomplete, or if it is complete but failed;
however, if process i finds a timely solution, we get the better
among the solution cost returned by process i and c2. Thus:

Eπi,2
(td) = (1−Mi(d

′
2)) · c2 + (fi(d

′
2, td)− fi(d′1, td))

· c2 + (si(d
′
2, td)− si(d′1, td)) · E[min(Ci, c2)]

where d′j = dj − td. Note that we may actually get a result
with expected cost less than c1 even if E[Ci] > c1.

Generalizing to compute the expected cost of πk(td): with
probability 1 −Mi(t − td) process i does not complete be-
fore t, so we pick plan k with cost ck. The probability that
the computation stops with failure between dj−1 and dj is:
fi(d

′
j , td) − fi(d′j−1, td), in which case we pick plan j with

cost cj . With probability si(d′j , td) − si(d
′
j−1, td) the com-

putation generates a timely plan after dj−1 but before dj , re-
sulting in expected cost E[min(Ci, cj)]. All in all, we get
expected cost:

Eπi,k
(td) = (1−Mi(d

′
k)) · ck+

k∑
j=2

((fi(d
′
j , td)− fi(d′j−1, td)) · cj+

(si(d
′
j , td)− si(d′j−1, td)) · E[min(Ci, cj)])

Thus in the case of one incomplete process to be scheduled,
one can simply compute the values of all the Eπi,k

(0), and
select the optimal stopping point.

Unfortunately, this result cannot be easily extended to
schedule more than one incomplete process. One can still
solve the MDP in time that is ‘only’ exponential in the num-
ber of incomplete processes that may be scheduled. Obvi-
ously this is not reasonable for a large number of such pro-
cesses, and certainly not for the case where processes actu-
ally stand for search nodes and must be scheduled in negligi-
ble time. Instead, we use the above ideas to generate a greedy
rule that performs well in practice.



5 A Greedy Scheme With Costs
When considering only one incomplete process i for schedul-
ing, there was no benefit in allocating runtime other than dk
(for some k), as we are not allowed to use time not allocated
to process i towards other processes. However, when multi-
ple processes may be scheduled, it is desirable to use as little
time as necessary for the current process, as any remaining
time can be used by other incomplete processes. Therefore,
we generalize the notion of the value of a stopping policy πk
to stopping at dk subject to the constraint that at most t time
is allocated to the current process (after a delay of td). The ex-
pected value of the constrained policy, denoted by πk(t, td),
is given by:

Eπi,k
(t, td) = (1−Mi(min(t, d′k))) · ck+

k∑
j=2

((fi(min(t, d′j), td)− fi(min(t, d′j−1), td)) · cj+

(si(min(t, d′j), td)− si(min(t, d′j−1), td))·
E[min(Ci, cj)])

Although Eπi,k
(t, td) is monotonically decreasing in t,

there is some t at which the expected returns (minus expected
costs) per time unit is maximized, and this type of quantity
is the useful basis of numerous greedy algorithms. Using this
idea, we define the most-effective reward gain (i.e. cost re-
duction) rate for process i, relative to the current best valid
plan cost cc as:

ecri(td) = max
t,k

cc − Eπi,k
(t, td)

t
(2)

with cc = cf if there is no currently valid plan. This defini-
tion resembles the idea behind the returns rate at the ‘most
effective computation time’ (ei) of Shperberg et al. [2019],
but now in terms of expected cost, rather than logarithm of
probability of failure.

It is common to use the value ecri(0) (highest rate of re-
turns for process i) to select the process i that has the highest
returns rate among all processes. However, some processes
are more time-critical than others, and this can be measured
by how much the returns rate drops due to delaying the start
of the processing for process i by td. The returns rate for a
delayed process i is given by ecri(td). Processes for which
this decrease in returns rate ecri(0)− ecri(td) is high should
get priority. Trading off high returns rate with loss in returns
rate due to delay, we get the following criterion:

Qi(td) = ecri(0)− γecri(td) (3)
Note that γ is an empirically determined constant that can be
used to balance between immediate reward (reward from allo-
cating time to process i now) and future loss (due to delaying
time allocation to process i by td). The value γ = 0.5 gives
these factors equal weight, so one might expect a value not
far from that to provide a good balance.

We defined a greedy scheme called Delay-Aware Greedy
(DAG) based on Equation 3. This scheme allocates time to
a process i that maximizes Qi(td), we used td = 1 in the
experiments. If for each i, the optimal individual policy for

process i is to stop processing, then the algorithm terminates
and executes the first valid plan.

Each iteration of DAG requires computing the ecri values
of each process. Therefore, a naı̈ve implementation would
compute Eπi,k

(t, td) for every completed plan, for every
process, and for every 1 ≤ t ≤ dmaxi

. Computing each
Eπi,k

(t, td) takes time O(m · dmaxi
). Thus, a single itera-

tion of DAG requires O(n ·m2 · d2max) time, where dmax =
max1≤i≤n dmaxi

. Since there are at most dmax iterations,
and m is bounded by the number of processes, the execution
of DAG takesO(n3·d3max). However, DAG can be optimized.
First, the values of si, fi,Eπi,k

and ecri can be pre-computed
for every 1 ≤ t, td ≤ dmax inO(d2max) time, and can be used
across all iterations. Afterwards, each iteration would only
take O(n) time in order to obtain the process with the highest
Qi value. Hence, the overall runtime of DAG can be bounded
by O(n · d2max). Finally, if the Mi and Di distributions are
given implicitly, the computations of ecri, si and fi do not
need to consider every 1 ≤ t ≤ dmax, but rather specific
points of interest. For example, if the distributions are piece-
wise linear, one may only need to examine transition points
between segments and some other segment intersections.

6 Empirical Results
We tested the new DAG method on DACE2 problems whose
performance profiles, cost distributions, and deadline dis-
tributions had a variety of forms. Following Shperberg et
al. [2019], we used: Uniform (U), with minimal range value
a = 1 and maximal range value b uniformly drawn from
{[5, 10], [50, 100], [100, 200], [150, 300]}, we denote the set
of possible [a, b] ranges by R; Boltzmann (B), truncated ex-
ponential distribution with the diminishing return property,
using a λ ∈ {0.1, 1, 2} and range drawn from R; Truncated
Normal Distribution (N) with µ ∈ {5, 50, 100, 150}, σ ∈
{1, 5, 10}, and range drawn from R; and Planner (P), which
are distributions collected from search trees of the OPTIC
planner when run on problems from the Robocup Logis-
tics League [Niemueller et al., 2015] domain. To acquire the
planner distributions, A* was executed from each node of a
dumped search tree. The result of each of these searches pro-
vides the number N(v) of expansions necessary to find the
goal under a node v. These numbers were binned separately
for each (h(v), g(v)) pair. Then, a set V was formed by se-
lecting nodes randomly from the tree, each one standing for a
process. For each such v ∈ V , the list of numbers of expan-
sion in the bin corresponding to g(v) and h(v) was treated
as a distribution over completion times (in terms of number
of expansions). Likewise for creating the latest start times for
the resulting plan (the deadline distribution). When using our
method as part of a planner, one would need to create such
statistics on-the-fly.

We used the following scheduling algorithms as base-
lines for the evaluation: (i) MDP: solution computed using
the Bellman equation (whenever computationally feasible).
(ii) P-Greedy: the greedy log-probability of failure mini-
mization scheme of Shperberg et al. [2019]. (iii) Random:
allocate time to a random process that has not already failed.
(iv) Most promising process (MPP): allocate time to the



Dist # pr MDP MPP RR Random P-Greedy DAG(1/2) DAG(1)
C T C T C T C T C T C T C T

B

2 23.43 90,860 69.22 0 80.46 0 108.74 0 30.93 0 26.13 0 25.88 0
5 19.23 7.9 × 107 40.78 0 63.73 0 75.78 0 29.07 0 26.61 0 20.91 0

10 31.46 0 50.98 0 65.18 0 19.94 0 20.93 0 16.39 0
100 26.15 0 37.89 0 43.57 0 14.81 10 12.21 80 12.07 80

N

2 41.16 107,730 104.82 0 166.98 0 205.69 0 68.17 0 63.67 0 53.19 0
5 40.97 1.2 × 108 99.72 0 135 0 171.95 0 72.38 0 59.92 0 47.37 0

10 81.1 0 130.63 0 151.47 0 62.87 0 38.47 0 40.89 0
100 74.6 0 119.93 0 153.97 0 45.18 10 41.98 80 38.61 70

U

2 30.54 112,030 86.72 0 111.61 0 147.85 0 55.53 0 40.11 0 39.52 0
5 35.18 1.3 × 108 84.21 0 120.48 0 152.39 0 50.93 0 37.55 0 38.26 0

10 79.9 0 104.67 0 138.63 0 47.42 0 36.89 0 35.19 0
100 68.19 0 93.04 0 121.39 0 44.14 10 33.65 90 30.74 80

P

2 193.55 328,960 456.32 0 628.26 0 750.53 0 299.39 0 210.44 0 200.01 0
5 386.35 0 545.11 0 690.26 0 275.42 0 192.47 0 181.49 0

10 369.35 0 462.62 0 606.33 0 228.59 10 169.87 80 160.78 80
100 254.43 10 380.15 0 475.6 0 171.45 50 127.01 460 126.22 420

Average 144.58 0 201.97 0 253.71 0 94.76 10 71.12 50 66.72 50

Table 1: Solution cost and metareasoning runtime (ms) of the algorithms on different types of benchmark problems.

process with the highest probability to find a timely solu-
tion. In case of failure, the algorithm chooses the next most
promising process. (v) Round-robin (RR): allocate time
units to each non-failed process in equal portions and in circu-
lar order. In addition to a scheduling scheme, we must specify
a stopping scheme used by the candidate algorithms. The last
three algorithms choose the best (least-cost) timely completed
plan i available at any given time, but continue scheduling
processes until the (now known) deadline for i arrives, in case
a better plan is found. Once the deadline for i arrives, this
plan is executed. We compared all the above algorithms to
the DAG method using γ ∈ {0, 0.2, 0.5, 0.75, 1, 2, 10, 100}.
However, the reported results include only 0.5 and 1, which
were the best parameter values.

Evaluating the quality of a solution (policy) is not a triv-
ial task, especially for adaptive policies that depend on the
state to make a decision. In order to tackle this issue, we ran
the algorithms on each setting for 500 attempts and reported
the average cost over all runs. Since this policy evaluation
process introduced noise, we have measured the standard de-
viation (std) of the solution quality (not reported in the table);
the overall std was small (±3.27), therefore, the introduced
noise does not affect the trends reported below. The results
are shown in Table 1. The C column indicates the average
cost achieved by the policy created by the algorithms and the
T column is the metareasoning runtime in milliseconds. The
last rows gives average solution cost and geometric mean of
the runtimes. Generally, the DAG scheme achieved the low-
est costs among all algorithms (except for the MDP, which is
optimal), and demonstrates a significant advantage over the
naive schemes in terms of solution cost; γ = 1 seems to be
the best balance between loss due to delay and reward slope.
Although DAG was the slowest among all non-MDP algo-
rithms, it is still several orders of magnitude faster than the
MDP and required less than 1 second in all cases.

7 Conclusion
Situated temporal planning can benefit from metareasoning
about the unknown deadlines and search process runtimes.
An abstract deliberation scheduling scheme modeling such

search processes, aimed at maximizing the probability of
finding a timely solution, was developed by Shperberg et
al. [2019], but it did not model the cost of the computed so-
lution. This paper extends the latter scheme to handle plan
costs.

An MDP model of the extended deliberation scheduling
problem was defined and its complexity was analyzed. We
showed that the incorporation of costs significantly compli-
cates the metareasoning problem in several ways. First, even
when everything except algorithm runtimes is known (dead-
lines, costs), the optimal schedule requires contingent poli-
cies, rather than just a linear schedule as in the case without
costs. Second, the introduction of costs now necessitates a
stopping policy, trading off execution of an already computed
solution vs. attempting to find better solutions, at the risk of
making the current solution(s) expire. Finally, with costs (and
dependencies) we proved that finding even the first action in
an optimal schedule is PSPACE-hard.

As the MDP has exponential size and is provably in-
tractable, we examined special cases and approximations. We
gave a polynomial-time optimal solution for a simple case
in which there is only one running process (and a set of
completed processes). We present a greedy algorithm (DAG)
based on intuitions from this simple case, as well as the
greedy algorithm described by Shperberg et al. [2019] (P-
Greedy). Finally, we compared the new algorithm empiri-
cally against P-Greedy and other base-line algorithms; the re-
sults of DAG outperform the other methods. For very small
instances, where the MDP solution was possible, the DAG
scheme was near-optimal.

As more and more agents make plans that interact with the
external world in all its temporal complexity, this work will
help provide a foundation allowing situated planning to see
use in applications where costs play a significant role.
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